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1 Introduction

This report is an announcement of [17] and [18]. _

Let (2, 1) be a complete o-finite measure space. We denote by L°({2) the
set of all measurable functions from 2 to R or C. Let E; and E, be subspaces
of L°(Q). We say that a function g € L(Q2) is a pointwise multiplier from
E; to E,, if the pointwise multiplication‘ fgis in E; for any f € E;. We
denote by PWM(E}, Es) i:he set of all pointwise multipliers from FE; to Es.
We abbreviate PWM(E, E) to PWM(E). |

~ For p € (0, 00], we denote by LP(Q2) the usual Lebesgue spaces. It is well
known as Holder’s inequaiity that

1 £9llzrai@) < I fllzes (@ llgllzes (o),
for 1/ps = 1/p1 + 1/p3 with p; € (0,00|, 2 = 1,2,3. This shows that
PWM(LP (Q), LP()) S I7(Q).

Conversely, we can show the reverse inclusion by using the uniform bound-
edness theorem or the closed graph theorem. That is,

PWM(LP: (Q), LP(Q)) = LP*(<). (1.1)

2010 Mathematics Subject Classification. 46E30, 46B42.

Key words and phrases. Musielak-Orlicz space, Morrey-space, variable exponent, pointwise
multiplier, pointwise multiplication.

The author was supported by Grant-in-Aid for Scientific Research (B), No. 15H03621,
Japan Society for the Promotion of Science.




This equality was extended to Orlicz spaces by [7, 8]. In this report we
extend the above equality to Musielak-Orlicz spaces and Musielak-Orlicz-
Morrey spaces.

Recall that, for a normed or quasi-normed space E - LO(9), we say that
E has the lattice (ideal) property if the following holds: |

fe€E, he L), |hMz)| < |f(z)ae. = heE, |hls<|lfls
It is known that, if £ has the lattice property and is complete, then
PWM(E) = L=(2) and |lgllop = llgllze (0,

where ||g||op is the operator norm of g € PWM(E) In this report we con-
sider pointwise multipliers from a Musielak-Orlicz-Morrey space to another
Musielak-Orlicz-Morrey space.

For the introduction, first we show the proof of (1.1). To do this we first

show the following lemma.

Lemma 1.1.
geLP*(Q) = |gllop = llgllzes(e)- (1.2)

Proof. Let g € LP3(Q2). Then, by Holder’s inequality, g is a bounded oper-
ator from LP'(Q) to LP?(2) and

"g”Op < ||9|]L?3(Q).

Let f = |g|*3/P*. Then f € LP(Q) and | fllzer) = ||g||iiézzln) Moreover,
fg € L), Ifgllr2( = llglf23/7,, and

| fllzer @y llgllzos @) = || 9l o2 (0)s

since . )
&+1—p3< +—>=&”-.
h , 1 D3 D2

This shows that (1.2). O

To prove (1.1) we need to show

PWM(LP (), L7()) C LP*(Q). (1.3)
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Proof of (1.3). Let g € PWM(LP(Q2), L**(Q2)). Take a sequence of finitely
simple functions g; > 0 such that g; * [g| a.e. Then, for any f € LP(Q2), we
“have -

1£95ll 22y < £ 9l Lr2@-

By the uniform boundedness theorem and Lemma 1.1 we have
sup [|gjllop < oo and  sup||g;||zes(@) < oo.
J J

Therefore, g € LP3(2). O

Ahother proof of (1.3). Let g € PWM(LP1(R2), LP2()). Then g is a closed
operator from LP1(Q) to LP2(Q2). Actually, if

fi—= fin IP*(Q) and fjg — hin L7(Q),
then we can take its subsequence f;() such that

fj(k) — f a.e. and fj(k)g - h a.e.

‘"This shows that h = fg a.e. That is, g is a closed operator. _

By the closed graph theorem g is a bounded operator. Take a sequence
of finitely simple functions g; > 0 such that g; , |g| a.e. Then g; €
PWM(LP1(2), LP2(§2)) N LP3(2) and then, by Lemma 1.1 we have

1951l 2s @) = llgsllop < llgllop,

for all j. Therefore, g € L3 (Q). O

2 Orlicz and Musielak-Orlicz spaces
Let @ be the set of all functions  : [0, 00] — [0, 00] such that

tl_l)l_{loq)(t) = <I>(O) =0 and tllglo ®(t) = ®(00) = 0.
Let

a(®) =sup{t > 0: ®(¢t) =0}, b(®)=inf{t>0: ®(t) = oo}.



Definition 2.1. A function ® € & is called a Young function (or sometimes
also called an Orlicz function) if ® is nondecreasing on [0, c0) and convex on
[0, 5(®)), and

im@(6) = 2(6(2)) (< ).

Any Young function is neither identically zero nor identically infinity on
(0,00). We denote by @y the set of all Young functions.

We define three subsets Y@ (i = 1,2, 3) of Young functions as

YU ={® € Jy : b(®) = oo},
VP ={® € dy : b(®) < 00, B(B(®)) = oo},
VO = {® e Jy : b(®) < 0o, B(b(P)) < 00} .

See Figure 1.

Definition 2.2 (Orlicz space). For a function ® € &y, let

L2 (Q) = {f e L°(Q): /Q<I>(k|f(:z:)|) du(z) < oo for some k > 0} ,
1 f]l 220 =. inf{)\ >0: /Q<I>(|f—(;)—|>du(x) < 1},

For example

1) =t (e YY) = L2Q) =IrQ),

o o<t<y , L, _ re
@(t)—{oo tony €Y = @ =170

To show

PWM(L® (Q), L*(Q)) = L*(Q),
we need generalized Holder’s inequality
I £9ll 220y < Cllfller@)llgllzes o)

and
llgllop ~ llgllzescy for g € L*(). (2.1)
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Figure 1: Three types of Young functions
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If we prove
/ ds (M) du(r) =1 for all g € L®(Q) with g # 0,
a = \llgllzeso) |

then we get (2.1). However, this holds if and only if &5 € A,, which is strong
restriction. So we prove it for all finitely simple functions g # 0. To do this
we need &3 € YO U Y@,

Definition 2.3. Let % be the set of all & : Q x [0, 00] — [0, 00] such that
®(z,-) is a Young function for every z € €2, and that ®(-,¢) is measurable on
Q for every t € [0,00]. Assume also that, for any subset A C Q with finite
measure, there exists ¢ € (0, 00) such that ®(-,¢)x 4 is integrable.

Definition 2.4. (i) Let ®¢y be the set of all ® € & such that ®((-)/¢) is
in @y for some ¢ € (0, 1].

(ii) Let %y, be the set of all & : Q x.[0, 00] — [0, 00| such that ®(-, (-)¥/%)
is in % for some ¢ € (0, 1].

For example, let ®(z,t) = t?(®.

p->1 = &ec o},
p->0 = de Py
For ®,¥ € &, we write ® ~ ¥ if there exists a positive constant C such

that
®(C't) < U(t) < P(Ct) forall t € (0,00).

For &, ¥ : Q x [0,00] — [0, 00|, we also write ® ~ ¥ if there exists a positive
constant C such that

®(z,C7't) < U(z,t) < B(e,Ct) for all (z,8) € Q x (0,00).

Lemma 2.1. Let ® € ®%,. For a subset A C Q with 0 < p(A) < oo, let
- ®A(t) = [, ¥(z,t) du(z). Then 4 € Pgy.
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Remark 2.1. () V@ € YO W € YD st. &~ V.

(i) 3® € &Y% with ®(z,-) € YO for each z, but 4 € Y. Actually,
let Q@ = (0,1) C R with the Lebesgue measure and take Young functions
®(z,-) € YU for all z € Q such that &(z,1) = 1 and ®(z,1 + z) = 2/=z.
Then &2 € YO,

Definition 2.5. Let &y, 9%, &gy and @Y%, be the sets of all & € & such
that ® ~ VU for some V¥ in &y, &}, gy and P%y, respectively.

Definition 2.6. For a function ® € &%y, let
L®(Q) = {f €L’): / O(z, k| f(z)|) du(z) < oo for some &k > O} ,
Q
1fllzs = inf {)\ 50 /q)(x, @)du(x) < 1} .
Q

If ® ~ ¥, then L%(Q) = LY(Q) with equivalent quasi-norms.

Example 2.1. Let p = p(-) be a variable exponent, that is, it is a measurable
function defined on  valued in (0, 00], and let ®(z,t) = tP@. In this case
we denote L2(2) by LPO(Q).

Example 2.2. Let w be a weight function, that is, it is a measurable function
defined on € valued in (0,00) a.e., and [, w(z)du(z) < oo for any A C Q
with finite measure. Let p be a variable exponent, and let

®(z,t) = tP@w(z).
In this case we denote L%(€) by L ().
Example 2.3. Let p be a variable exponent, and let

_J1/exp(1/tP@), te[0,1],
@8 = {exp(tp(””)), t € (1,00).

In this case we denote L®(Q) by exp(LP0)(1).

Next we recall the generalized inverse of Young function ® in the sense
of O’Neil [20, Definition 1.2]. For a Young function ® and u € [0, 00], let

Ot (u) =inf{t > 0: ®(t) > u}, (2.2)
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where inf() = co. For ® € &%y, we define also its generalized inverse with
respect to ¢ by (2.2) for each z and denote it by ®~1. That is,

@ (z,u) =inf{t > 0: ®(z,t) > u}, (z,u) € Qx[0,00]. (2.3)
Theorem 2.2. Let ®; € &Y%y, i = 1,2,3. Assume that there exists a constant
C > 0 such that

| -1 -1 -1
5¢’2 (z,t) < @1 (2,0)®5 7 (2,1) < CP; (z,0)
for (z,t) € 2 x (0,00). (2.4)
Assume also that there exists ¥3 € %y such that
By~ and VH(()V) € YO UY®D, (2:5)
for some £ € (0,1] and for any A C Q with 0 < p(A) < oo, where Ui(t) =
[ Ws(z,t) du(z). Then
PWM(L® (@), L% (@) = L%(9),

ligllop ~ llgllz2s(0)-
Let p; be variable exponents, w; be weight functions, 7 = 1, 2,3, and
Qo ={z € Q: p3(z) = 0}.
Assume that inf p;(z) >0,7=1,2,3, and sup p3(z) < c0.
€N ZEN Qo

Example 2.4. Let
1 1 1

@) 2@ mE@)

Then
PWM(LPO (@), I70(@)) = I#0(@),
'PWM(exp(L”l('))(Q), exp(Lpz('))(Q)) = exp(LpS('))(Q).
Example 2.5. Let
1 1
+ = ,
pi(z)  p3(x)  pa(z)
Then

wy ()P ®yg (x)l/ps(w) = wy(x) 1/p2(z)

PWM(L(9), Lz0(Q)) = L0 ().
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3 Musielak—Orlicz—Morrey spaces

Let R™ be the n-dimensional Euclidean space and p the Lebesgue measure.
For a function ¢ : R™ x (0,00) — (0,00) and a ball B = B(z,r), we write
#(B) = ¢(z,7).

Definition 3.1 (Musielak-Orlicz-Morrey space). For ® € 9%, ¢ : R* x
(0,00) — (0,00) and a ball B, let

1 fllogs = inf{A >0io = [ ( &A”) du(z) < 1} ,

and let

LOAR) = {f € I°(R") : ||l oremy < 00},

| fll o) gy = S%P 1 fll,,55

where the supremum is taken over all balls B.

If (B) = 1/u(B), then L®®(R") = L®(R").
For functions 8, x : R™ x (0, 00) — (0, 00), we write 8 ~ & if there exists
a positive constant C.such that

1 < 0(z,r)

< r .
C S n@r) <C forall (z,7r) € R" x (0,00)

If ® ~ ¥ and ¢ ~ 7, then L&) (R") = L¥¥)(R") with equivalent quasi-

norms.

Definition 3.2. A function 6 : R" x (0,00) — (0,00) is almost increasing
(almost decreasing) with respect to the order by ball inclusion if there exists

a positive constant C' such that

0(B:) < CO(B,) (0(B1) > CO(By))
for all balls B; and B, with B; C Bs.

Definition 3.3. Let G” be the set of all ¢ : R™ x (0,00) — (0,00) such
that ¢ is almost decreasing with respect to the order by ball inclusion and
¢(B)u(B) is almost increasing with respect to the order by ball inclusion.



89

Theorem 3.1. Let ®; € 9%y and ¢; € G°, i = 1,2,3. Assume that there

ezists a positive constant C' such that
C™1®; (z,tpy(z, 7)) < BT (=, tp1 (2, 7)) D5 (, tes(z, 7))
< CO; (z,tpa(z,7)), for all z € R™ and r,t € (0,00),
and that ¢3/¢; is almost increasing with respect to the order by ball inclusion.
Assume also one of the following:
(i) @3 satisfies the Ay condition, that is, ®3(z,2t) < ICs, P3(z, t).
(ii) li)m iellRf ¢s(z,r)u(B(z, 1)) = 00, ¢3(z,r) is continuous with respect to
r—00 zER™
z and r, and, for all balls B,
(a) IV € YU s.t. sup B3(z,t) < Vp(t) for all t, and,
z€EB

(b Ly, ek 9s(em) = o

Then
PWM( L(‘I’l"/’l)(]R"), L(‘I’é’@)(Rn)) — L(‘I’3’¢3)(R“),

llgllop ~ N9l Ls.60) mn)-

Corollary 3.2. Let p;(-) be variable exponents with 0 < (p;)— < (p;)+ < 00,
w; be weights and ¢; € G¥, 1 =1,2,3. Assume that

1/p1(z) + 1/ps(z) = 1/pa(),
that there exists a positive constant C' such that
C ™Y ¢s(z,7)/wa()) /P2
< (Bu(@, ) /wi(2) VPO (g3 (z, 1) Jws(z)) /P

< C (¢o(z,7) fwa(x)) /P2,
for all z € R™ and r € (0, 00),

and that ¢3/ P is almost increasing with respect to the order by ball inclusion.

If (p3)+ < 0o, then
PWM(LE#)(R™), LE9)(R™)) = LES*)(R™),

I9llop ~ 19l g0 gy
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Corollary 3.3. Let p;(-) and M\i(-) be variable exponents with 0 < (p;)_ <
(Ps)+ < 00 and —n < (N)— < (M) <0, w; be weights, 1 = 1,2,3. Let \* be
a constant with —n < \* < 0, and let

r@ < 1/,

dil@,r) = {r’\*, r>1/e.

Assume that (p3)+ < oo, that (), ¢ = 1,2,3, are log-Hélder continuous,
and that

pi(z)  ps(x) pg_(x)’ pi(z)  ps(x)  pa(x)’

wi ()P @ays () 1/P3@) = gy (z) /P2

As(z) > Ai(z), for all z € R™.

Then
PWM(LEHD (R™), LE#)(R™)) = LE) (R™),

Igllon ~ llgll ;gs:5) gy

Corollary 3.4. Let p;(-) be variable exponents with 0 < (p;)- < (p;)+ < 00,
and let

1/ exp(1/t7), teo0,1],

=1,2,3.
exp(tPi@), t € (1,00],

Let \ be a constant with —1 < X\ < 0, and let ¢(B) = u(B)*. Assume that
(p3)+ < oo and that 1/p1(z) + 1/ps(x) = 1/pe(z). Then
PWM( L(‘I’l"”)(R“)', L(%"”)(R”)) = [(23.9) (R™),
lgllop ~ ll9llws.0) @y

The results in this section can be extended to Musielak-Orlicz-Morrey
spaces defined on spaces of homogeneous type or metric measure spaces with

non-doubling measure.



References

1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

L. Diening, P. Harjulehto, P. Hast6 and M. Ruzicka, Lebesgue and
Sobolev Spaces with variable exponents, Lecture Notes in Math. 2017,
2011.

L. V. Kantorovich and G. P. Akilov, Funetional analysis. Translated
from the Russian by Howard L. Silcock. Second edition. Pergamon Press,
Oxford-Elmsford, N.Y., 1982. xiv+589 pp. ISBN: 0-08-023036-9; 0-08-
026486-7

P. Kolwicz, K. Les$nik and L. Maligranda, Pointwise multipliers of
Calderén-Lozanovskil spaces, Math. Nachr. 286, no. 8-9 (2013), 876—
907.

P. Kolwicz, K. Leénik and L. Maligranda, Pointwise products of some

91

Banach function spaces and factorization. J. Funct. Anal. 266 (2014),

no. 2, 616-659.

H. Komatsu, Fourier kaiseki. (Japanese) [Fourier analysis] Second edi-
tion. Iwanami Shoten Kiso Sugaku [Iwanami Lectures on Fundamental
Mathematics|, 13. Kaisekigaku (I) [Analysis (I)], vi. Iwanami Shoten,
Tokyo, 1983. vi+195 pp. (First edition is published in 1978 in J apanese)

L. Maligranda, Orlicz spaces and interpolation, Seminars in mathemat-
ics 5, Departamento de Matematica, Universidade Estadual de Camp-
inas, Brasil, 1989.

L. Maligranda and E. Nakai, Pointwise multipliers of Orlicz spaces, Arch.

Math. 95 (2010), 251-256.

L. Maligranda and L. E. Persson, Generalized duality of some Banach
function spaces, Indag. Math. 51 (1989), no. 3, 323-338.

C. B. Morrey, Jr, On the solutions of quasi-linear elliptic partial differ-
ential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126-166.



92

[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math.
1034, 1983.
ISBN: 978-3-540-12706-2 (Print) 978-3-540-38692-6 (Online)

[11] E. Nakai, Pointwise multipliers, Memoirs of The Akashi College of Tech-
nology, 37 (1995), 85-94.

[12] E. Nakai, Pointwise multipliers on the Morrey spaces. Mem. Osaka Ky-
oiku Univ. IIT Natur. Sci. Appl. Sci. 46 (1997), no. 1, 1-11.

[13] E. Nakai, A characterization of pointwise multipliers on the Morrey
spaces, Sci. Math. 3 (2000), no. 3, 445-454.

[14] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Ba-
nach and Function Spaces (Kitakyushu, 2003), Yokohama Publishers,
Yokohama, 2004, 323—333.

[15] E. Nakai, The Campanato, Morrey and Holder spaces on spaces of ho-
mogeneous type, Studia Math. 176 (2006), no. 1, 1-19.

[16] E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal func-
tion, Studia Mathematica, 188 (2008), 193-221.

[17] E. Nakai, Pointwise multipliers on Musielak-Orlicz spaces, Nihonkai
Math. J., to appear.

[18] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces,
preparation.

[19] E. Nakai, Pointwise multipliers on several function spaces — a survey —,

preparation.

[20] R. O’Neil, Fractional integration in Orlicz spaces. I., Trans. Amer. Math.
Soc. 115 (1965), 300-328.

[21] W. Orlicz, Uber eine gewisse Klasse von Rdumen vom Typus B, Bull.
Acad. Polonaise A (1932), 207-220; reprinted in his Collected Papers,
PWN, Warszawa 1988, 217-230.



93

[22] W. Orlicz, Uber Raume (L), Bull. Acad. Polonaise A (1936), 93-107;
reprinted in his Collected ‘Pa,pers, PWN, Warszawa 1988, 345-359.

[23] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc.,
New York, Basel and Hong Kong, 1991.

[24] K. Yosida, Fanctional analysis, sixth edition, Springer—Verlag, Berlin,
Heidelberg, New York, Tokyo, 1980.

Eiichi Nakai

Department of Mathematics

Ibaraki University

Mito, Ibaraki 310-8512, Japan

E-mail address: eiichi.nakai.math@vc.ibaraki.ac.jp

TR TR sk Fi



