Pointwise multipliers on Musielak-Orlicz and Musielak-Orlicz-Morrey spaces

Eiichi Nakai Department of Mathematics Ibaraki University

1 Introduction

This report is an announcement of [17] and [18].

Let (Ω, μ) be a complete σ -finite measure space. We denote by $L^0(\Omega)$ the set of all measurable functions from Ω to \mathbb{R} or \mathbb{C} . Let E_1 and E_2 be subspaces of $L^0(\Omega)$. We say that a function $g \in L^0(\Omega)$ is a pointwise multiplier from E_1 to E_2 , if the pointwise multiplication fg is in E_2 for any $f \in E_1$. We denote by $\mathrm{PWM}(E_1, E_2)$ the set of all pointwise multipliers from E_1 to E_2 . We abbreviate $\mathrm{PWM}(E, E)$ to $\mathrm{PWM}(E)$.

For $p \in (0, \infty]$, we denote by $L^p(\Omega)$ the usual Lebesgue spaces. It is well known as Hölder's inequality that

$$||fg||_{L^{p_2}(\Omega)} \le ||f||_{L^{p_1}(\Omega)} ||g||_{L^{p_3}(\Omega)},$$

for $1/p_2 = 1/p_1 + 1/p_3$ with $p_i \in (0, \infty]$, i = 1, 2, 3. This shows that

$$\mathrm{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) \supset L^{p_3}(\Omega).$$

Conversely, we can show the reverse inclusion by using the uniform boundedness theorem or the closed graph theorem. That is,

$$PWM(L^{p_1}(\Omega), L^{p_2}(\Omega)) = L^{p_3}(\Omega). \tag{1.1}$$

²⁰¹⁰ Mathematics Subject Classification. 46E30, 46B42.

Key words and phrases. Musielak-Orlicz space, Morrey-space, variable exponent, pointwise multiplier, pointwise multiplication.

The author was supported by Grant-in-Aid for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Science.

This equality was extended to Orlicz spaces by [7, 8]. In this report we extend the above equality to Musielak-Orlicz spaces and Musielak-Orlicz-Morrey spaces.

Recall that, for a normed or quasi-normed space $E \subset L^0(\Omega)$, we say that E has the lattice (ideal) property if the following holds:

$$f \in E, h \in L^0(\Omega), |h(x)| \le |f(x)| \text{ a.e. } \Rightarrow h \in E, ||h||_E \le ||f||_E.$$

It is known that, if E has the lattice property and is complete, then

$$PWM(E) = L^{\infty}(\Omega)$$
 and $||g||_{Op} = ||g||_{L^{\infty}(\Omega)}$,

where $||g||_{\text{Op}}$ is the operator norm of $g \in \text{PWM}(E)$. In this report we consider pointwise multipliers from a Musielak-Orlicz-Morrey space to another Musielak-Orlicz-Morrey space.

For the introduction, first we show the proof of (1.1). To do this we first show the following lemma.

Lemma 1.1.

$$g \in L^{p_3}(\Omega) \implies ||g||_{\mathcal{O}_{\mathcal{P}}} = ||g||_{L^{p_3}(\Omega)}.$$
 (1.2)

Proof. Let $g \in L^{p_3}(\Omega)$. Then, by Hölder's inequality, g is a bounded operator from $L^{p_1}(\Omega)$ to $L^{p_2}(\Omega)$ and

$$||g||_{\mathrm{Op}} \leq ||g||_{L^{p_3}(\Omega)}.$$

Let $f = |g|^{p_3/p_1}$. Then $f \in L^{p_1}(\Omega)$ and $||f||_{L^{p_1}(\Omega)} = ||g||_{L^{p_3}(\Omega)}^{p_3/p_1}$. Moreover, $fg \in L^{p_2}(\Omega)$, $||fg||_{L^{p_2}(\Omega)} = ||g||_{L^{p_3}(\Omega)}^{p_3/p_2}$, and

$$||f||_{L^{p_1}(\Omega)}||g||_{L^{p_3}(\Omega)} = ||fg||_{L^{p_2}(\Omega)},$$

since

$$\frac{p_3}{p_1} + 1 = p_3 \left(\frac{1}{p_1} + \frac{1}{p_3} \right) = \frac{p_3}{p_2}.$$

This shows that (1.2).

To prove (1.1) we need to show

$$PWM(L^{p_1}(\Omega), L^{p_2}(\Omega)) \subset L^{p_3}(\Omega). \tag{1.3}$$

Proof of (1.3). Let $g \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega))$. Take a sequence of finitely simple functions $g_j \geq 0$ such that $g_j \nearrow |g|$ a.e. Then, for any $f \in L^{p_1}(\Omega)$, we have

$$||fg_j||_{L^{p_2}(\Omega)} \le ||fg||_{L^{p_2}(\Omega)}.$$

By the uniform boundedness theorem and Lemma 1.1 we have

$$\sup_{j} \|g_j\|_{\operatorname{Op}} < \infty \quad \text{and} \quad \sup_{j} \|g_j\|_{L^{p_3}(\Omega)} < \infty.$$

Therefore, $g \in L^{p_3}(\Omega)$.

Another proof of (1.3). Let $g \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega))$. Then g is a closed operator from $L^{p_1}(\Omega)$ to $L^{p_2}(\Omega)$. Actually, if

$$f_j \to f$$
 in $L^{p_1}(\Omega)$ and $f_j g \to h$ in $L^{p_2}(\Omega)$,

then we can take its subsequence $f_{j(k)}$ such that

$$f_{j(k)} \to f$$
 a.e. and $f_{j(k)}g \to h$ a.e.

This shows that h = fg a.e. That is, g is a closed operator.

By the closed graph theorem g is a bounded operator. Take a sequence of finitely simple functions $g_j \geq 0$ such that $g_j \nearrow |g|$ a.e. Then $g_j \in \text{PWM}(L^{p_1}(\Omega), L^{p_2}(\Omega)) \cap L^{p_3}(\Omega)$ and then, by Lemma 1.1 we have

$$||g_j||_{L^{p_3}(\Omega)} = ||g_j||_{\mathrm{Op}} \le ||g||_{\mathrm{Op}},$$

for all j. Therefore, $g \in L^{p_3}(\Omega)$.

2 Orlicz and Musielak-Orlicz spaces

Let $\bar{\Phi}$ be the set of all functions $\Phi:[0,\infty]\to[0,\infty]$ such that

$$\lim_{t\to +0}\Phi(t)=\Phi(0)=0\quad \text{and}\quad \lim_{t\to \infty}\Phi(t)=\Phi(\infty)=\infty.$$

Let

$$a(\Phi)=\sup\{t\geq 0: \Phi(t)=0\}, \quad b(\Phi)=\inf\{t\geq 0: \Phi(t)=\infty\}.$$

Definition 2.1. A function $\Phi \in \bar{\Phi}$ is called a Young function (or sometimes also called an Orlicz function) if Φ is nondecreasing on $[0, \infty)$ and convex on $[0, b(\Phi))$, and

$$\lim_{t \to b(\Phi) - 0} \Phi(t) = \Phi(b(\Phi)) \ (\leq \infty).$$

Any Young function is neither identically zero nor identically infinity on $(0, \infty)$. We denote by Φ_Y the set of all Young functions.

We define three subsets $\mathcal{Y}^{(i)}$ (i = 1, 2, 3) of Young functions as

$$\mathcal{Y}^{(1)} = \{ \Phi \in \Phi_Y : b(\Phi) = \infty \},$$

$$\mathcal{Y}^{(2)} = \{ \Phi \in \Phi_Y : b(\Phi) < \infty, \ \Phi(b(\Phi)) = \infty \},$$

$$\mathcal{Y}^{(3)} = \{ \Phi \in \Phi_Y : b(\Phi) < \infty, \ \Phi(b(\Phi)) < \infty \}.$$

See Figure 1.

Definition 2.2 (Orlicz space). For a function $\Phi \in \Phi_Y$, let

$$L^{\Phi}(\Omega) = \left\{ f \in L^{0}(\Omega) : \int_{\Omega} \Phi(k|f(x)|) \, d\mu(x) < \infty \text{ for some } k > 0 \right\},$$
$$\|f\|_{L^{\Phi}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi\left(\frac{|f(x)|}{\lambda}\right) d\mu(x) \le 1 \right\}.$$

For example

$$\Phi(t) = t^p \ (\in \mathcal{Y}^{(1)}) \quad \Rightarrow \quad L^{\Phi}(\Omega) = L^p(\Omega),$$

$$\Phi(t) = \begin{cases} 0 & (0 \le t \le 1) \\ \infty & (t > 1) \end{cases} \quad (\in \mathcal{Y}^{(3)}) \quad \Rightarrow \quad L^{\Phi}(\Omega) = L^{\infty}(\Omega).$$

To show

$$PWM(L^{\Phi_1}(\Omega), L^{\Phi_2}(\Omega)) = L^{\Phi_3}(\Omega),$$

we need generalized Hölder's inequality

$$||fg||_{L^{\Phi_2}(\Omega)} \le C||f||_{L^{\Phi_1}(\Omega)}||g||_{L^{\Phi_3}(\Omega)}$$

and

$$||g||_{\mathsf{Op}} \sim ||g||_{L^{\Phi_3}(\Omega)} \quad \text{for } g \in L^{\Phi_3}(\Omega).$$
 (2.1)

Figure 1: Three types of Young functions

If we prove

$$\int_{\Omega} \Phi_3 \left(\frac{|g(x)|}{\|g\|_{L^{\Phi_3}(\Omega)}} \right) d\mu(x) = 1 \quad \text{for all } g \in L^{\Phi_3}(\Omega) \text{ with } g \not\equiv 0,$$

then we get (2.1). However, this holds if and only if $\Phi_3 \in \Delta_2$, which is strong restriction. So we prove it for all finitely simple functions $g \not\equiv 0$. To do this we need $\Phi_3 \in \mathcal{Y}^{(1)} \cup \mathcal{Y}^{(2)}$.

Definition 2.3. Let Φ_Y^v be the set of all $\Phi: \Omega \times [0, \infty] \to [0, \infty]$ such that $\Phi(x, \cdot)$ is a Young function for every $x \in \Omega$, and that $\Phi(\cdot, t)$ is measurable on Ω for every $t \in [0, \infty]$. Assume also that, for any subset $A \subset \Omega$ with finite measure, there exists $t \in (0, \infty)$ such that $\Phi(\cdot, t)\chi_A$ is integrable.

Definition 2.4. (i) Let Φ_{GY} be the set of all $\Phi \in \bar{\Phi}$ such that $\Phi((\cdot)^{1/\ell})$ is in Φ_Y for some $\ell \in (0,1]$.

(ii) Let Φ_{GY}^v be the set of all $\Phi: \Omega \times [0, \infty] \to [0, \infty]$ such that $\Phi(\cdot, (\cdot)^{1/\ell})$ is in Φ_V^v for some $\ell \in (0, 1]$.

For example, let $\Phi(x,t) = t^{p(x)}$.

$$p_- \ge 1 \quad \Rightarrow \quad \Phi \in \varPhi_Y^v,$$
 $p_- > 0 \quad \Rightarrow \quad \Phi \in \varPhi_{GY}^v.$

For $\Phi, \Psi \in \bar{\Phi}$, we write $\Phi \approx \Psi$ if there exists a positive constant C such that

$$\Phi(C^{-1}t) \le \Psi(t) \le \Phi(Ct)$$
 for all $t \in (0, \infty)$.

For $\Phi, \Psi : \Omega \times [0, \infty] \to [0, \infty]$, we also write $\Phi \approx \Psi$ if there exists a positive constant C such that

$$\Phi(x,C^{-1}t) \leq \Psi(x,t) \leq \Phi(x,Ct) \quad \text{for all } (x,t) \in \Omega \times (0,\infty).$$

Lemma 2.1. Let $\Phi \in \Phi_{GY}^v$. For a subset $A \subset \Omega$ with $0 < \mu(A) < \infty$, let $\Phi^A(t) = \int_A \Phi(x,t) d\mu(x)$. Then $\Phi^A \in \Phi_{GY}$.

Remark 2.1. (i) $\forall \Phi \in \mathcal{Y}^{(3)} \exists \Psi \in \mathcal{Y}^{(2)} \text{ s.t. } \Phi \approx \Psi.$

(ii) $\exists \Phi \in \Phi_Y^v$ with $\Phi(x, \cdot) \in \mathcal{Y}^{(1)}$ for each x, but $\Phi^A \in \mathcal{Y}^{(3)}$. Actually, let $\Omega = (0, 1) \subset \mathbb{R}$ with the Lebesgue measure and take Young functions $\Phi(x, \cdot) \in \mathcal{Y}^{(1)}$ for all $x \in \Omega$ such that $\Phi(x, 1) = 1$ and $\Phi(x, 1 + x) = 2/x$. Then $\Phi^{\Omega} \in \mathcal{Y}^{(3)}$.

Definition 2.5. Let $\bar{\Phi}_Y$, $\bar{\Phi}_Y^v$, $\bar{\Phi}_{GY}$ and $\bar{\Phi}_{GY}^v$ be the sets of all $\Phi \in \bar{\Phi}$ such that $\Phi \approx \Psi$ for some Ψ in Φ_Y , Φ_Y^v , Φ_{GY} and Φ_{GY}^v , respectively.

Definition 2.6. For a function $\Phi \in \bar{\varPhi}_{GY}^v$, let

$$L^{\Phi}(\Omega) = \left\{ f \in L^{0}(\Omega) : \int_{\Omega} \Phi(x, k|f(x)|) \, d\mu(x) < \infty \text{ for some } k > 0 \right\},$$
$$\|f\|_{L^{\Phi}} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi\left(x, \frac{|f(x)|}{\lambda}\right) d\mu(x) \le 1 \right\}.$$

If $\Phi \approx \Psi$, then $L^{\Phi}(\Omega) = L^{\Psi}(\Omega)$ with equivalent quasi-norms.

Example 2.1. Let $p = p(\cdot)$ be a variable exponent, that is, it is a measurable function defined on Ω valued in $(0, \infty]$, and let $\Phi(x, t) = t^{p(x)}$. In this case we denote $L^{\Phi}(\Omega)$ by $L^{p(\cdot)}(\Omega)$.

Example 2.2. Let w be a weight function, that is, it is a measurable function defined on Ω valued in $(0, \infty)$ a.e., and $\int_A w(x) d\mu(x) < \infty$ for any $A \subset \Omega$ with finite measure. Let p be a variable exponent, and let

$$\Phi(x,t) = t^{p(x)}w(x).$$

In this case we denote $L^{\Phi}(\Omega)$ by $L_w^{p(\cdot)}(\Omega)$.

Example 2.3. Let p be a variable exponent, and let

$$\Phi(x,t) = \begin{cases} 1/\exp(1/t^{p(x)}), & t \in [0,1], \\ \exp(t^{p(x)}), & t \in (1,\infty]. \end{cases}$$

In this case we denote $L^{\Phi}(\Omega)$ by $\exp(L^{p(\cdot)})(\Omega)$.

Next we recall the generalized inverse of Young function Φ in the sense of O'Neil [20, Definition 1.2]. For a Young function Φ and $u \in [0, \infty]$, let

$$\Phi^{-1}(u) = \inf\{t \ge 0 : \Phi(t) > u\},\tag{2.2}$$

where $\inf \emptyset = \infty$. For $\Phi \in \bar{\varPhi}_{GY}^v$, we define also its generalized inverse with respect to t by (2.2) for each x and denote it by Φ^{-1} . That is,

$$\Phi^{-1}(x,u) = \inf\{t \ge 0 : \Phi(x,t) > u\}, \quad (x,u) \in \Omega \times [0,\infty].$$
 (2.3)

Theorem 2.2. Let $\Phi_i \in \bar{\Phi}_{GY}^v$, i = 1, 2, 3. Assume that there exists a constant C > 0 such that

$$\frac{1}{C}\Phi_2^{-1}(x,t) \le \Phi_1^{-1}(x,t)\Phi_3^{-1}(x,t) \le C\Phi_2^{-1}(x,t)$$
for $(x,t) \in \Omega \times (0,\infty)$. (2.4)

Assume also that there exists $\Psi_3 \in \Phi_{GY}^v$ such that

$$\Phi_3 \approx \Psi_3 \quad and \quad \Psi_3^A((\cdot)^{1/\ell}) \in \mathcal{Y}^{(1)} \cup \mathcal{Y}^{(2)}, \tag{2.5}$$

for some $\ell \in (0,1]$ and for any $A \subset \Omega$ with $0 < \mu(A) < \infty$, where $\Psi_3^A(t) = \int_A \Psi_3(x,t) d\mu(x)$. Then

$$\mathrm{PWM}(L^{\Phi_1}(\Omega), L^{\Phi_2}(\Omega)) = L^{\Phi_3}(\Omega),$$
$$\|g\|_{\mathrm{Op}} \sim \|g\|_{L^{\Phi_3}(\Omega)}.$$

Let p_i be variable exponents, w_i be weight functions, i = 1, 2, 3, and

$$\Omega_{\infty} = \{ x \in \Omega : p_3(x) = \infty \}.$$

Assume that $\inf_{x \in \Omega} p_i(x) > 0$, i = 1, 2, 3, and $\sup_{x \in \Omega \setminus \Omega_{\infty}} p_3(x) < \infty$.

Example 2.4. Let

$$\frac{1}{p_1(x)} + \frac{1}{p_3(x)} = \frac{1}{p_2(x)}.$$

Then

$$\begin{aligned} \mathrm{PWM}(L^{p_1(\cdot)}(\Omega), L^{p_2(\cdot)}(\Omega)) &= L^{p_3(\cdot)}(\Omega), \\ \mathrm{PWM}(\exp(L^{p_1(\cdot)})(\Omega), \exp(L^{p_2(\cdot)})(\Omega)) &= \exp(L^{p_3(\cdot)})(\Omega). \end{aligned}$$

Example 2.5. Let

$$\frac{1}{p_1(x)} + \frac{1}{p_3(x)} = \frac{1}{p_2(x)}, \quad w_1(x)^{1/p_1(x)} w_3(x)^{1/p_3(x)} = w_2(x)^{1/p_2(x)}.$$

Then

$$PWM(L_{w_1}^{p_1(\cdot)}(\Omega), L_{w_2}^{p_2(\cdot)}(\Omega)) = L_{w_3}^{p_3(\cdot)}(\Omega).$$

3 Musielak-Orlicz-Morrey spaces

Let \mathbb{R}^n be the *n*-dimensional Euclidean space and μ the Lebesgue measure. For a function $\phi: \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ and a ball B = B(x, r), we write $\phi(B) = \phi(x, r)$.

Definition 3.1 (Musielak-Orlicz-Morrey space). For $\Phi \in \bar{\Phi}_{GY}^v$, $\phi : \mathbb{R}^n \times (0,\infty) \to (0,\infty)$ and a ball B, let

$$||f||_{\Phi,\phi,B} = \inf\left\{\lambda > 0: \frac{1}{\phi(B)\mu(B)} \int_{B} \Phi\left(x, \frac{|f(x)|}{\lambda}\right) d\mu(x) \le 1\right\},\,$$

and let

$$L^{(\Phi,\phi)}(\mathbb{R}^n) = \left\{ f \in L^0(\mathbb{R}^n) : ||f||_{L^{(\Phi,\phi)}(\mathbb{R}^n)} < \infty \right\},$$
$$||f||_{L^{(\Phi,\phi)}(\mathbb{R}^n)} = \sup_{B} ||f||_{\Phi,\phi,B},$$

where the supremum is taken over all balls B.

If
$$\phi(B) = 1/\mu(B)$$
, then $L^{(\Phi,\phi)}(\mathbb{R}^n) = L^{\Phi}(\mathbb{R}^n)$.

For functions $\theta, \kappa : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$, we write $\theta \sim \kappa$ if there exists a positive constant C such that

$$\frac{1}{C} \le \frac{\theta(x,r)}{\kappa(x,r)} \le C \quad \text{for all } (x,r) \in \mathbb{R}^n \times (0,\infty).$$

If $\Phi \approx \Psi$ and $\phi \sim \psi$, then $L^{(\Phi,\phi)}(\mathbb{R}^n) = L^{(\Psi,\psi)}(\mathbb{R}^n)$ with equivalent quasinorms.

Definition 3.2. A function $\theta: \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ is almost increasing (almost decreasing) with respect to the order by ball inclusion if there exists a positive constant C such that

$$\theta(B_1) \le C\theta(B_2) \quad (\theta(B_1) \ge C\theta(B_2))$$

for all balls B_1 and B_2 with $B_1 \subset B_2$.

Definition 3.3. Let \mathcal{G}^v be the set of all $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ such that ϕ is almost decreasing with respect to the order by ball inclusion and $\phi(B)\mu(B)$ is almost increasing with respect to the order by ball inclusion.

Theorem 3.1. Let $\Phi_i \in \bar{\Phi}_{GY}^v$ and $\phi_i \in \mathcal{G}^v$, i = 1, 2, 3. Assume that there exists a positive constant C such that

$$C^{-1}\Phi_2^{-1}(x, t\phi_2(x, r)) \le \Phi_1^{-1}(x, t\phi_1(x, r))\Phi_3^{-1}(x, t\phi_3(x, r))$$

$$\le C\Phi_2^{-1}(x, t\phi_2(x, r)), \quad \text{for all } x \in \mathbb{R}^n \text{ and } r, t \in (0, \infty),$$

and that ϕ_3/ϕ_1 is almost increasing with respect to the order by ball inclusion. Assume also one of the following:

- (i) Φ_3 satisfies the Δ_2 condition, that is, $\Phi_3(x, 2t) \leq \exists C_{\Phi_3} \Phi_3(x, t)$.
- (ii) $\lim_{\substack{r\to\infty\\x\in\mathbb{R}^n}}\inf \phi_3(x,r)\mu(B(x,r))=\infty$, $\phi_3(x,r)$ is continuous with respect to x and r, and, for all balls B,
 - (a) $\exists \Psi_B \in \mathcal{Y}^{(1)}$ s.t. $\sup_{x \in B} \Phi_3(x, t) \leq \Psi_B(t)$ for all t, and,
 - (b) $\lim_{r \to +0} \inf_{x \in B} \phi_3(x, r) = \infty$.

Then

$$PWM(L^{(\Phi_1,\phi_1)}(\mathbb{R}^n), L^{(\Phi_2,\phi_2)}(\mathbb{R}^n)) = L^{(\Phi_3,\phi_3)}(\mathbb{R}^n),$$
$$||g||_{Op} \sim ||g||_{L^{(\Phi_3,\phi_3)}(\mathbb{R}^n)}.$$

Corollary 3.2. Let $p_i(\cdot)$ be variable exponents with $0 < (p_i)_- \le (p_i)_+ \le \infty$, w_i be weights and $\phi_i \in \mathcal{G}^v$, i = 1, 2, 3. Assume that

$$1/p_1(x) + 1/p_3(x) = 1/p_2(x),$$

that there exists a positive constant C such that

$$C^{-1}(\phi_{2}(x,r)/w_{2}(x))^{1/p_{2}(x)}$$

$$\leq (\phi_{1}(x,r)/w_{1}(x))^{1/p_{1}(x)}(\phi_{3}(x,r)/w_{3}(x))^{1/p_{3}(x)}$$

$$\leq C (\phi_{2}(x,r)/w_{2}(x))^{1/p_{2}(x)},$$
for all $x \in \mathbb{R}^{n}$ and $r \in (0,\infty)$,

and that ϕ_3/ϕ_1 is almost increasing with respect to the order by ball inclusion. If $(p_3)_+ < \infty$, then

$$PWM(L_{w_1}^{(p_1,\phi_1)}(\mathbb{R}^n), L_{w_2}^{(p_2,\phi_2)}(\mathbb{R}^n)) = L_{w_3}^{(p_3,\phi_3)}(\mathbb{R}^n),$$
$$\|g\|_{Op} \sim \|g\|_{L_{w_3}^{(p_3,\phi_3)}(\mathbb{R}^n)}.$$

Corollary 3.3. Let $p_i(\cdot)$ and $\lambda_i(\cdot)$ be variable exponents with $0 < (p_i)_- \le (p_i)_+ \le \infty$ and $-n \le (\lambda_i)_- \le (\lambda_i)_+ < 0$, w_i be weights, i = 1, 2, 3. Let λ^* be a constant with $-n \le \lambda^* < 0$, and let

$$\phi_i(x,r) = \begin{cases} r^{\lambda_i(x)}, & r \le 1/e, \\ r^{\lambda^*}, & r > 1/e. \end{cases}$$

Assume that $(p_3)_+ < \infty$, that $\lambda_i(\cdot)$, i = 1, 2, 3, are log-Hölder continuous, and that

$$\begin{cases} \frac{1}{p_1(x)} + \frac{1}{p_3(x)} = \frac{1}{p_2(x)}, & \frac{\lambda_1(x)}{p_1(x)} + \frac{\lambda_3(x)}{p_3(x)} = \frac{\lambda_2(x)}{p_2(x)}, \\ w_1(x)^{1/p_1(x)} w_3(x)^{1/p_3(x)} = w_2(x)^{1/p_2(x)}, \\ \lambda_3(x) \ge \lambda_1(x), & \text{for all } x \in \mathbb{R}^n. \end{cases}$$

Then

$$PWM(L_{w_1}^{(p_1,\phi_1)}(\mathbb{R}^n), L_{w_2}^{(p_2,\phi_2)}(\mathbb{R}^n)) = L_{w_3}^{(p_3,\phi_3)}(\mathbb{R}^n),$$
$$\|g\|_{\mathcal{O}_{\mathbf{P}}} \sim \|g\|_{L_{w_3}^{(p_3,\phi_3)}(\mathbb{R}^n)}.$$

Corollary 3.4. Let $p_i(\cdot)$ be variable exponents with $0 < (p_i)_- \le (p_i)_+ \le \infty$, and let

$$\Phi_i(x,t) = \begin{cases} 1/\exp(1/t^{p_i(x)}), & t \in [0,1], \\ \exp(t^{p_i(x)}), & t \in (1,\infty], \end{cases} i = 1, 2, 3.$$

Let λ be a constant with $-1 < \lambda < 0$, and let $\phi(B) = \mu(B)^{\lambda}$. Assume that $(p_3)_+ < \infty$ and that $1/p_1(x) + 1/p_3(x) = 1/p_2(x)$. Then

$$PWM(L^{(\Phi_1,\phi)}(\mathbb{R}^n), L^{(\Phi_2,\phi)}(\mathbb{R}^n)) = L^{(\Phi_3,\phi)}(\mathbb{R}^n),$$
$$||g||_{\mathcal{O}_{\mathcal{P}}} \sim ||g||_{L^{(\Phi_3,\phi)}(\mathbb{R}^n)}.$$

The results in this section can be extended to Musielak-Orlicz-Morrey spaces defined on spaces of homogeneous type or metric measure spaces with non-doubling measure.

References

- [1] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with variable exponents, Lecture Notes in Math. 2017, 2011.
- [2] L. V. Kantorovich and G. P. Akilov, Functional analysis. Translated from the Russian by Howard L. Silcock. Second edition. Pergamon Press, Oxford-Elmsford, N.Y., 1982. xiv+589 pp. ISBN: 0-08-023036-9; 0-08-026486-7
- [3] P. Kolwicz, K. Leśnik and L. Maligranda, Pointwise multipliers of Calderón-Lozanovskii spaces, Math. Nachr. 286, no. 8-9 (2013), 876– 907.
- [4] P. Kolwicz, K. Leśnik and L. Maligranda, Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266 (2014), no. 2, 616–659.
- [5] H. Komatsu, Fourier kaiseki. (Japanese) [Fourier analysis] Second edition. Iwanami Shoten Kiso Sugaku [Iwanami Lectures on Fundamental Mathematics], 13. Kaisekigaku (I) [Analysis (I)], vi. Iwanami Shoten, Tokyo, 1983. vi+195 pp. (First edition is published in 1978 in Japanese)
- [6] L. Maligranda, Orlicz spaces and interpolation, Seminars in mathematics 5, Departamento de Matemática, Universidade Estadual de Campinas, Brasil, 1989.
- [7] L. Maligranda and E. Nakai, Pointwise multipliers of Orlicz spaces, Arch. Math. 95 (2010), 251–256.
- [8] L. Maligranda and L. E. Persson, Generalized duality of some Banach function spaces, Indag. Math. 51 (1989), no. 3, 323–338.
- [9] C. B. Morrey, Jr, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166.

- [10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, 1983.
 - ISBN: 978-3-540-12706-2 (Print) 978-3-540-38692-6 (Online)
- [11] E. Nakai, Pointwise multipliers, Memoirs of The Akashi College of Technology, 37 (1995), 85–94.
- [12] E. Nakai, Pointwise multipliers on the Morrey spaces. Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 46 (1997), no. 1, 1–11.
- [13] E. Nakai, A characterization of pointwise multipliers on the Morrey spaces, Sci. Math. 3 (2000), no. 3, 445–454.
- [14] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and Function Spaces (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 2004, 323–333.
- [15] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (2006), no. 1, 1–19.
- [16] E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Mathematica, 188 (2008), 193–221.
- [17] E. Nakai, Pointwise multipliers on Musielak-Orlicz spaces, Nihonkai Math. J., to appear.
- [18] E. Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, preparation.
- [19] E. Nakai, Pointwise multipliers on several function spaces a survey –, preparation.
- [20] R. O'Neil, Fractional integration in Orlicz spaces. I., Trans. Amer. Math. Soc. 115 (1965), 300–328.
- [21] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polonaise A (1932), 207–220; reprinted in his Collected Papers, PWN, Warszawa 1988, 217–230.

- [22] W. Orlicz, Über Räume (L^M), Bull. Acad. Polonaise A (1936), 93–107; reprinted in his Collected Papers, PWN, Warszawa 1988, 345–359.
- [23] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1991.
- [24] K. Yosida, Fanctional analysis, sixth edition, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980.

Eiichi Nakai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail address: eiichi.nakai,math@vc.ibaraki.ac.jp

茨城大学 理学部 中井 英一