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Abstract. We show that any finitely generated gyrovector subspace in the Mdbius
gyrovector space coincides with the intersection of the linear subspace generated by
the same generators and the Mobius ball. As an application, we present a notion
of orthogonal gyrodecomposition and clarify the relationship with the orthogonal
decomposition. In addition, an announce of the abstract of the results which were
recently obtained by the second author will be made. One of the main results is the
orthogonal gyroexpansion of an arbitrary element with respect to any orthogonal
basis in the Mobius gyrovector space and its concrete procedure to calculate the
gyrocoefficients.

1 Introduction

Let us recall the definitions of the (gyrocommutative) gyrogroups, abstract gy-
rovector spaces, the Einstein and the Mobius gyrovector spaces. Please refer [U1]
for the precise statements and basic facts.

Definition. A magma (G,®) is a nonempty set G with a map @ : G x G = G.

We use the notation a @ b to denote ®(a,b) for all a,b € G. An automorphism ¢
. of a magma (G, ®) is a bijective self-map of G, ¢ : G — G, such that dladb) =

#(a) ® B(b). The set of all automorphisms of (G, ®) is denoted by Aut(G, ®).
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Definition (Gyrocommutative Gyrogroups). [Ul] A magma (G, ®) is a gy-
rocommutative gyrogroup if

Gl) 30€G st. 0pa=a (Ya€G)

G2) VaeGIzeG st. zda=0

G3) dlgyrla,blce G s.t. a® (bDc) = (a® b) ® gyra,blc
G4) gyrfa,b] € Aut(G, D)

(G5) gyrla,b] = gyr(a @ b, b

(G6) a®b=gyra,b|(b® a)

for all a,b,c € G.

Definition (Gyrovector Spaces). [Ul] (G, ®, ®) is areal inner product gyrovec-
tor space (gyrovector space, in short), if (G, ®) is a gyrocommutative gyrogroup
and there exists a real inner product space V such that G C Vand @ : RxG — G-
possesses the following properties:

(V0) gyr[u,v]a-gyr[u,v]b=a-b

(V1) 1®a=a ‘

(V2) (r1+m)Qa=r®a®r;Qa

(V3) (rir))®a=r®(r:Qa)
Irl®a _ a

V4 rgall ~ Tal

(V5) gyr[u,v] (r®a) = regyru,v]a
(V6) gyr[r@uv,r,@v| =1
(VV)> (other) operations @, ® are defined on the set ||G|| = {£]||a||; a € G}
C R'so that (||G||, ®, ®) is a real, one-dimensional vector space satisfying
(V7) lIrea|l = Ir[@]|al|
(V8) lla®b|| <|lall & ||b]]

for all u,v,a,b € G, r,re,r€R.

Example (Einstein Gyrovector Spacés).[Ul] Let ¢ be the speed of right in
the vacuum and let R2 = {a € R3; ||a|| < ¢} be the all relativistically admissible
velocities of material particles. The Einstein addition @g in R? and the scalar
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multiplication ®g are given by the equations

1 1
aEBEb=1 ?{ +b+—21+ (ax(axb))}
_ ~flally a _
r®Ea—ctanh(rtanh . )”a” (if a #0), r@,0=0
for a,b € R3, r € R, where 7, = ! =.
_ lla]
2

The addition @ and the scalar multiplication @g for the set [|R3|| = (—¢,¢) in
the axiom (VV) of gyrovector spaces are defined by the equations

a+b

b= ————
aEBE 1+c%-ab

r®Ea = ctanh (rtanh“1 %)

for any a,b € (—c,c), r € R. Then, (R, &g, ®g) is a gyrovector space.

Example (Mobius Gyrovector Spaces).[Ul] Let V be an arbitrary real inner
product space and V, = {a € V; ||a|| < s} for any fixed s > 0. The M&bius
addition and the Mobius scalar multiplication are given by the equations

(1+ Za-b+ |b]>)a+ (1 - %llal?) b
1+ Za-b+ %||al?||b][?

aEBM.b=

_ s tanh (rtann=? 1) @ 0 0=0

r®,a = s tan <r an s ) Tl (if a #0), T,

for a,b € V,, r € R. Note that each of the M&bius scalar multiplication and
the operations on the set ||V,]|| is identical to the corresponding operation for the
Einstein gyrovector spaces. Then, (V;, &y, ®m) is a gyrovector space. We simply
denote S by @, ®, respectively.

If several kinds of operations appear in a formula simultaneously, we always give
priority by the following order (1) ordinary scalar multiplication (2) gyroscalar
multiplication ® (3) gyroaddition @, that is,

r@uwia; ® roQ@uaas = {r1®@(wia1)} & {ra@(wea2)},
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and the parentheses are omitted in such cases. In general, we note that gyroaddi-
tion does not distribute with (both ordinary and gyro)scalar multiplications:

adb#bda
a®(boc)#(a®b) e
rQ(a®b) #readreb
t(a @ b) # ta & tb.

They, however, are enjoying algebraic rules such as the left (and right) gyroas-
sociative law(G3), the gyrocommutative law(G6), the scalar distributive law(V2)
and the scalar associative law(V3), so there exist rich symmetrical structures which
we should clarify precisely. '

In the limit of large s, s — 0o, the ball V,; expands to the whole space V. The
next proposition suggests that each result for inner product spaces can be restored
" from the counterpart in the Moébius gyrovector spaces.

Proposition.[U1] The Maobius addition (resp. Mobius scalar multiplication) re-
duces to the vector addition (resp. scalar multiplication) as s — oo, that is,

a®db—a+b (s— o0)

r®a —ra (s— 00).

Example. If we identify R? with the complex plain C, then the Mébius addition

. o _a+b
in Rf reduces toa ® b = T If we take
i 2 2, 1
a=—, b——g—gl, C—i,
then
a®(bdc)=0
. 4+ 16
(a@b)@c—53_8z,
1+ ab
(a®b)®1+abc_0

1463 \ 4+ 16
“® (b®1+_z'>ac) 58
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T. Abe raised the following question in his talk[A]:

Question. Let (G, ®,®) be a gyrovector space, or any kind of generalization of
gyrovector space and a;,a; € G. Can we have the following;:

{ri®a; ®r2®az; ri,r2 € R} = {X2®a2 ® \1®a;; A1, 2 € R}?

r®(r1®a1 &3] 7"2®0/2) € {A1®al B A®ag; A1, A2 € R} ?

We gave an answer to this problem and its natural extension in the Mébius
gyrovector space in the lecture which was made at this RIMS conference. In this
paper, we present a survéy of the lecture, and will announce an abstract of the
results which were recently obtained by the second author.

2 Finitely generated gyrovector subspaces and
orthogonal gyrodecomposition

We assume that s = 1 for simplicity.
In the Mobius gyrovector space, we can show

{r1®a; ®r2Qaz; r1,r2 € R} = {A1a1 + Aoag; M, A2 ER}NV,
for a;,a; € V.

(C) From the definitions of @, ®, it follows that r,®a; ® ry®ay is a linear combi-
nation of a;, a;. The fact that V; is a gyrovector space contains that V; is closed
under the operations @, ®, therefore r;@a; ® r:Qas € V;.

(D) By the next Theorem.

Theorem 1. [AW] Let (Vl, ®, ®) be the Mobius gyrovector space and 0 # a;,as €

Vi. Put a= o, Suppose that 0 # t1,¢; € R satisfy the condition
|laal| |Ia2||
+t——1| < 1.
|| 1|| I 2||

(I) If 2ty + tl # 0, then we put

o = 0% + 2atity + 1% + 1 — /(0® + 201ty + 1% + 1)? — Batyty — 4ty
! 2(2aty + 1)

424 2atity + ta? — 1+ /(812 + 201ty + 12 + 1)% — Batity — 4612
B 2ty ’
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(IT) If 202 + ¢4 = 0, then we put

ty

e

Co =t1.

Then, we have 0 < |c1|, [co] <1 and

+lo— =1 Qa; B ra®@as,
|| 1|| I 2|| ,
where
, tanh !¢ and 7 tanh ¢,
1= ——— 7 2= =g
tanh™? ||la:| tanh™! |laz||

Theorem 1 is deduced from Theorem 2. In our proof of Theorem 2, it is not
difficult to derive the right-hand sides of z,y, however, we need some arguments
to compare their absolute values to 1, which is one of the most crucial points in
this study.

Theorem 2.[AW] Consider the following system of equations for real numbers:
2y + (y2® + 20z — )y +1=0 (1)
2y’ + (20 + f)a® — Py +z =0 @)

Suppose that —1 < a <1, 8#0and 1+ B(2a+f) <

(I) If 2a + B # 0, then

_1+82a+8)+79° = VU + B2a+B) +1°) — 4(2a + B)B?
B 2(2a+ B)y

_ 1482+ B) —*+ V(1 +BRa+ ) +17)? — 42+ B)By’
2y

is a unique pair as the solution to the system of equations (1), (2), which satisfies
0 < |z|,]y] < 1. Moreover,

_ 1+ ﬁ(2a +B8) + 72+ /(1 + B2a + B) +72)2 — 42+ B) B2
22a+ B)y

_14B8@2a+ ) — 2 — V(1 + B2+ ) +7°)* — 422 + B)BY?
2y
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is a unique pair as the solution to the system of equations (1), (2), which satisfies
|z, |yl > 1.

(IT) If 2a + B = 0, then
By

y=-—-
Y

is a unique pair as the solution to the system of equatlons (1), (2), which satisfies
0<|z|, |yl <1

Definition. A nonempty subset M of V; is a gyrovector subspace if M is closed,
under gyrovector space addition and scalar multiplication, that is,

abeM, reR = adbeM, r@aeM.

For any nonempty subset A of V;, the intersection of all gyrovector subspaces
of V; which contain A is said to be the gyrovector subspace generated by A, and
denoted by \/? A, that is,

V-"A = ﬂ {M; AC M, M is a gyrovector subspace of V;}.
For example, let n = 4 and (41,1%2,%3,%4) = (1,4,2,3). If we add parentheses

in the formula ¢; ® ¢4 ® ¢, @ c3 to specify the order of gyroaddition, there are 5
possibilities, as follows:

i ®{c:® (c2®c3)}
(c1 ®cs) ® (c2® c3)
c1 ® {(cs @ c2) D cs}
{ci®(cs® cg)} ®cs
{(a®ec)®er}®es

Theorem 3.[AW] Let (V1, ®, ®) be the Mobius gyrovector space, 0 # a1, -+ ,an €
V, and let (y,- - - ,4,) be a permutation of (1,--- ,n). For an arbitrary given order
for gyroaddition of ;, ®a;, & - - - ® r;, @®a,,, we have the following:

Vg{al,..o ,an} v
={r,®a; ® - ®1:,®;,; Ty, ** ,Ti, € R}

+ + n '7tn€R}nV1.
{ laall 1|l [laall n“
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Remark. We have the same result for finitely generated gyrovector subspaces in
the Einstein gyrovector space.

Next, we state orthogonal gyrodecomposition with respect to relatively closed
gyrovector subspaces. It can be obtained from the ordinary orthogonal decompo-
sition with respect to closed linear subspaces. It is also easy to deduce the result
for general s > 0 from the case s = 1.

Theorem 4.[AW] Let V be a real Hilbert space and let (V,®, ®) be the Mobius
gyrovector space, and let M be a gyrovector subspace of V; that is topologically
relatively closed. Suppose that

x=x;+x, x€clinM, z, € M+

is the (ordinary) orthogonal decomposition of an arbitrary element & € V; with
respect to clinM, which is the closed linear subspace generated by M. Then, a
unique pair (y, z) exists that satisfies

T=y®dz, yeM, zecM-nV,.
Moreover, if @1, 22 # 0, then these elements y, z are determined by

Y = ATy, 2= Ao,

where
A = |22 )[* + a2 * + 1 = /([ [ + [[22] 2 + 1) — 4] |]?
2|[aq |2
Do = loe1|]? + |ae2l® — 1+ +/([J1]2 + [|22] [ + 1)% — 4|21 |?

2||a.|[?
In addition, the inequalities 0 < A\; < 1 and A2 > 1 hold.

Remark. If the gyrovector subspace M above is closed with respect to the
Poincaré matric A which is introduced by Ungar, then M is relatively closed with
respect to the norm topology, so the above theorem is applicable to M.

Remark. We can obtain a similar result for the Einstein gyrovector spaces.

3 Gyrolinear independency, Orthogonal gyroex-
pansion with respect to an orthogonal basis

We announce an abstract of the results which were recently obtained by the
second author.
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Definition. A finite subset {ai,--- ,a,} C V; is gyrolinearly independent if, for
any permutation (i1,--- ,4,) of {1,--- ,n} and for any order of gyroaddition, the
following implication holds:

rTa®a;, & O, ®a;, =0 = r=---=7r,=0.

Consider the triple {a,b,c} in the open unit disc of the complex plain which is
stated as an example in Section 1. Then, {a,b,c} is not gyrolinearly independent.

Theorem (W). Let {ai,--- ,a,} be a linearly independent set in V. Suppose
that two gyrolinear combinations r, @@, ® -+ - ®r, QR ap, M1 Qa1 ®--- D\, R a,
are given the same order of gyroaddition and

n@ad - Orm®an=MQ0a:1® & A ® an.
Then we have r; = \; (j=1,---,n).

Theorem (W). For any finite subset in V,, two notions of linearly independent
and gyrolinearly independent coincide.

Definition (Ungar).[U1] The functions d and h on each Mé6bius gyrovector space
(V,, @, ®) are defined by the equations

d(a,b) = ||boal|

h(a,b) = tanh™! d(a,)
S

for all a,b € V,. Then (V,,h) is a metric space. If, in aﬂdition, V) -]0) is
complete as a metric space, then (Vj, h) is also complete.

Theorem (W). Let M be an h-closed gyrovector subspace of V, and & € V.
(1) Let
T=YPz, Yy €M, zeMtnvV,

be the orthogonal gyrodecomposition with respect to M. Then y is the
closest point to @ in M. Thus y satisfies the identity

(2) Conversely, let y be the closest point to # in M, namely, ¥ is an element in
M satisfying identity (3). Then
r=yd(Oydx)

is the orthogonal gyrodecomposition with respect to M. Thus Oy ® x €
MinV,.
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Theorem (W). Let {e,}32; be a complete orthonormal sequence in a real Hilbert
space V. Let {w,};2; be a sequence in R such that 0 < w, < s for all n. Then,

n=1
for any « € V,, we have the orthogonal gyroexpansion

T =r1Qw;e; DroQuses P -+ D r,Qwpe, D ---

This means that the sequence of partial sums-converges to & with respect to the
metric h stated before, and the partial sums do not depend on their order of
gyroaddition by the orthgonality of the terms, so we do not need parentheses.
Moreover, we can calculate the gyrocoefficients {r,}5; by an explicit procedure.

Lemma. If {u,v,w} is an orthogonal set in V;, then the associative law holds,
ie.,

uEB(vEBw)=(u€Bv)‘®w.
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