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Abstract

We introduce an Eisenstein series associated to a loxodromic el-
ement of cofinite Kleinian groups, named the loxodromic Eisenstein
series, and study its fundamental properties. We also establish the
precise spectral expansion associated to the Laplace-Beltrami oper-
ator and derive the analytic continuation with the location of the
possible poles and their residues. In addition, we study the asymp-
totic behavior of the loxodromic Eisenstein series for a degenerating
sequence of finite volume three-dimensional hyperbolic manifolds.

1 Introduction

1.1 What is the loxodromic Eisenstein series?

The loxodromic Eisenstein series is an analogue of the ordinary Eisenstein
series defined for a cusp. It is defined for a pair of loxodromic fixed points, or
equivalently a loxodromic element of cofinite Kleinian groups. It is also an
analogue of the hyperbolic Eisenstein series for Fuchsian groups of the first
kind, which is defined for a primitive hyperbolic element. There are many
studies on the hyperbolic Eisenstein series. Thus we start by introducing
some of their results.



1.2 Hyperbolic Eisenstein series for Fuchsian groups
of the first kind

Form-valued hyperbolic Eisenstein series was first introduced by S. S. Kudla
and J. J. Millson [10] in 1979 as an analogue of the ordinary Eisenstein
series associated to a parabolic fixed point. They established an explicit
construction of the harmonic 1-form dual to an oriented closed geodesic on an
oriented Riemann surface M of genus greater than 1. After that scalar-valued
hyperbolic Eisenstein series and elliptic Eisenstein series was introduced by
J. Jorgenson and J. Klamar in 2004 ( see [4] or [11] ). Their definition of the
hyperbolic Eisenstein series is given as follows.

Let Hy := {z = ¢+ 4y € C | y > 0} be the upper half plane and
I’ € PSL(2,R) be a Fuchsian group of the first kind. We use the coordinates
T =ePcosp, y = e’sin .

Definition 1 (J.Jorgenson and J.Kramer, 2004). Let v € I be a primitive
hyperbolic element(<> |tr(y)| > 2 and primitive) and Iy, = () be the cen-
tralizer of it in I'. For z € H, and s € C with sufficiently large Re(s), the
hyperbolic Eisenstein series Fpyp, (2, s) associated to -y is defined as follows.

Frypi(5) = 3 sinp(Anz)',
n€ECL\T
where A € PSL(2, R) is the matrix such that AyA™! = (“((;’) a('yc;‘l ) for some
a(y) R
' Let L., be the y-invariant geodesic in Hj and dyyy(2, L,) be the hyperbolic

distance from z to the geodesic line L.,. Then the hyperbolic Eisenstein series
is written as

Epyp(2,8) = Z cosh(dnyp(n2, Ly)) ™°.
n€y\I

The hyperbolic Eisenstein series Eyyp, 4(2, s) converges absolutely and locally
uniformly for any z € H, and s € C with Re(s) > 1. It defines I'-invariant
function and satisfies the differential shift equation

(—A + 5(5 = 1)) Buypy(2, 8) = 8°Enyp(2, 5+ 2).

We introduce some more studies on the hyperbolic Eisenstein series.



e (J. Jorgenson, J. Kramer and A-M. v. Pippich, 2010)
The hyperbolic Eisenstein series is in L2(I'\H,) and we can obtain the
spectral expansion associated to Laplace-Beltrami operator A precisely.
It has a meromorphic continuation to all s € C and their possible pole
and their residues are derived from the spectral expansion ( see [8] ).

e (D. Garbin, J. Jorgenson and M. Munn, 2008 and T. Falliero, 2007)
The asymptotic behavior of hyperbolic Eisenstein series for degenerat-
ing families of finite volume hyperbolic Riemann surfaces is studied. It
is known that in some cases hyperbolic Eisenstein series converges to
the ordinary Eisenstein series on the limit surface ( see [3] or [2] ).

2 Preliminaries

2.1 Notation

Let Hz := C x (0,00) = {(2,7) | 2 € C,r > 0} be the three-dimensional
hyperbolic space. For P € H?, we use the notation P = (z,7) = (z,y,7) =
z+rj € Hs, where z =z +14y, j=(0,0,1). The hyperbolic line element
do? and the hyperbolic volume element dv are given by

dzdydr
_ ”‘3 .

_ dz? + dy® + dr?

do? : >
r

, dv :

The hyperbolic Laplace-Beltrami operator A associated with do? is given by

z o oy 0
oz  Oy:  Or? or’

The group PSL(2, C) = SL(2,C)/{£I} acts on Hj by fractional linear trans-
formation. It is defined as follows.

For M = (‘Z 3) € PSL(2,C) and P = z +rj € Hs,

A=r2(

P+ MP := M(P) := (aP +b)(cP +d)™",
where the inverse is taken in the skew field of quaternions. More explicitly,

(az + b)(cz + d) + acr? T

M(P) = lez + d|? + |c|?r? lez +d|? + |c|2r2‘7'
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An element v € SL(2,C),y # I is called

elliptic if |tr(y)] <2 and tr(y) € R,
parabolic if [tr(y)] =2 and tr(y) € R,
lozodromic if [tr(y)| > 2 and tr(y) € R,
or tr(y) ¢ R.

Let v € PSL(2,C) be the loxodromic element. Then < is conjugate in

PSL(2,C) to an element
_faly) O
D(y) = ( 8{ a(,y)—1> )

where D(vy) is uniquely determined by the condition [a(y)| > 1 and N(v) :=
la()|?> > 1 is called the norm of . Let T' C PSL(2,C) be a cofinite Kleinian
group i.e. I'is discrete subgroup of PSL(2, C) with finite volume fundamental
domain.
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2.2 Parabolic Eisenstein series for cofinite Kleinian groups

The ordinary Eisenstein series are defined for a cusp or equivalently a parabolic
element of I". We call it “parabolic Eisenstein series” in order to distinguish
from the loxodromic Eisenstein series.

Definition 2. Let v € T" be a parabolic element and v = A~'co € P!C be
the cusp corresponding to . Then the parabolic Eisenstein series associated
to -y is defined for P € Hj and s € C with Re(s) > 2 as follows.

1 8
Epary(P, 8) == E,(P, s) = T, Z r(AnP)°?,
TS VAV

where I', denotes the stabilizer subgroup of v in I' and I'/, the maximal
unipotent subgroup of I',,.

Let o > 0 be sufficiently large such that it satisfies ro > r(AM P) for any
M €T and S,, be the horosphere in Hj defined by {r(P) = ro}. Then we
have

r(P)* = r§ exp(—s-duyp(P, Sry))-



We define parabolic counting function Npar,¢(T'; P, Sy,) as follows.
NPBI,C(T; P, Sro) = ﬂ{"] € FC\F | dhyp(npa S"o) < T}’ (1)

where § denotes the cardinality of the set. By using the counting function
Noar ¢ (T; P, Sy,) we can express the parabolic Eisenstein series as the Stieltjes
integral

(o o]
B c(P,s) =18 / € dNpor,c(t; P, Sry). @)
0

Epary(P, s) converges locally uniformly and absolutely for s € C with
Re(s) > 2. It has the meropmorphic continuation to all of C and satisfies
the following functional equation

(—A + 3(s — 2)) Epar,y (P, s) = 0.

It has no poles in {s € C | Re(s) > 1} except possibly finitely many points
in the semi-open interval (1,2] on the real line.

3 Loxodromic Eisenstein series

Let v € T' be a loxodromic element (< tr(y) € R and [tr(y)]| > 2, or tr(y) ¢

R). Then there exists A € PSL(2,C) such that AyA~! = (“f}’ o )

la(y)| > 1. We use the following change of the coordinates = = e” cos ¢ cos 6,
y=ePcospsing, r = esin .

Definition 3 (loxodromic Eisenstein series). Let v € I' be a loxodromic
element and I'y be the centralizer of y in I'. Then the loxodromic Eisenstein
series Eiox (P, s) associated to -y is defined for P € Hj and s € C with
sufficiently large Re(s) by

Bixy(P,5) = ) singp(AnP)’, (3)

nEr,\I'

where A € PSL(2,C) is the matrix such that AyA™! = ( “g') a('y(;’l) and
la(")| > 1.
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Let L, be the y-invariant geodesic in Hj and L, be the positive r-axis.
Then L, = A'L,. The hyperbolic distance dpy,(P, Lo) from P to the
geodesic line Lg holds the following formula

sin(¢(P)) cosh(duyp(P, Lo)) = 1.

Using this formula, we can rewrite the loxodromic Eisenstein series as

Eloxy(P, ) = Z cosh(dnyp (NP, Ly)) ™" (4)
ner,\I'
For T > 0, we define the counting function Ny (T'; P, L,) as follows.
N (T P, Ly) = {1 € T\ Tldago(nP, L) < T}, %)

where f denotes the cardinality of the set. Then we can express the loxo-
dromic Eisenstein series (1) as a Stieltjes integral

Eiox (P, s) = / cosh(u) "*dNigx,y(u; P, Ly). (6)
: 0

Theorem 1. The loxodromic Eisenstein series (3) converges absolutely and
locally uniformly for any P € H3 and s € C with Re(s) > 2. It defines
I-invariant function where it converges and satisfies the differential shift
equation

(—A + 5(5 — 2)) Eioxr (P, 5) = 82 Eioxr (P, 5 + 2). (7)

The outline of the proof of Theorem 1 is as follows. When Re(s) > 2, by
using the counting function (5), we can show that for any € > 0 there exists
To > 0 such that for any T" > T

/T (coshu) *dNigxy(u; P)| < e.

The I'-invariance and differential equation (7) follow from direct calculation.

4 Spectral expansion and meromorphic con-
tinuation

4.1 Spectral expansion

Lemma 1. For any s € C with Re(s) > 2, the loxodromic Eisenstein series
Erox (P, s) is bounded as a function of P € I'\H;. If I' is not cocompact
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and v is a cusp such that v = A(joo) for some A € PSL(2,C), we have the
estimate

| Elox,7 (P, 8)| = O(T(A—lp)—ne(s))

as P — v. In particular, the loxodromic Eisenstein series is square integrable
i.e.

Brox (P, s)eL*(T'\Hs).

Lemma 2. Let (-,-) be the inner product in L?(T'\H3) and % be the real-
valued, smooth, bounded function on a fundamental domain Fpr = I'\Hj.
Let (I')tor be the torsion subgroup of the I'y and z,, be the geodesic line
associated to v on Fr. Assume that € > 0 is sufficiently small. Then we have
the following estimate.

(Broxs (P, 5), %) = % L [ werio+o(55)

as 8 — 00.

Theorem 2. For any s € C with Re(s) > 2, the loxodromic Eisenstein series
Eioxy(P, s) associated to y € I' admits the following spectral expansion.

Buy(P,3) = 3 ams(s)em(P)

meD

1 h [FVj : FV;] 00 '
YH [ o (1 + i), (8)
where e, is the eigenfunction of —A and [A,,| is the Euclidean area of a
period parallelogram for lattice A,;. The coefficients a,,(s) and @144y (s)

are given by

1

" (s = 1+ )/ AT (s = 1 = pim)/2)
™ e

(s/2)?

™
€

X /~ emdo, (9)
Ly
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1w D((s—14u)/2)[((s — 1 —1ip)/2)

Y = 1T )| € T(s/2)?

x /~ E,,(P,1+iw)do, (10)
Ly

where p2, = 1 — )\, and )\, is the eigenvalue of the eigenfunction e,,.

The outline of the proof of Theorem 2 is as follows. From Lemma 1, the
loxodromic Eisenstein series is in L?(I"\Hj3). The existence of the spectral
expansion (8) follows from this. In order to give the coefficients an, (s), we
calculate the inner product (Ejex,y, €m) and compare its order with

I'((s = 14 pm)/2T((s — 1 — ttm)/2)
I'(s/2)?

by using Lemma 2 and Stirling’s asymptotic formula.

4.2 Meromorphic continuation

As a consequence of Theorem 2, we can derive the meromorphic continuation
and obtain the location of the possible poles and their residues.

Theorem 3. The loxodromic Eisenstein series Fio (P, s) have a meromor-
phic continuation to all complex numbers s € C. The possible poles of the
continued function are located at the following points.

(a) s =1+ py —2n, where n € N and p2, = 1 — ), for the eigenvalue Ay,
with residues

Resg—14pm—2n [Elox,'y (P, s)]

1 o CDTE=—N) oy :
=Tl e AT E e oy o) / (P)do.

(b) s = p, — 2n, where n € N and w = p, is a pole of the Eisenstein series
E,(P,w) with Re(p,) < 1, with residues
Ress:p,,——-2n [Elox,'y (P ) 3)]

_ 1 anh i (—=1)*T(p, —2n+k — 1)
l(F’Y)tor! € k=0 k! - F((p,, - 271‘)/2)2
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h
X Z[CTw=p,,—2n+2kEu(P y w) . Resw_—_p,,—2n+2kElI(R w)do
Ly

v=1

+ Rty 2 iB(P6) - [ CTump amiaB(P)o].
L'Y

(¢) s=2—p, —2n, where n € N and w = p, is a pole of the Eisenstein
series E,(P,w) with Re(p,) € (1, 2], with residues

Resszz_py_zn [Elax,'y(P y S)]
_ 1 4r* (=)"T(1—p,—n)
T el e AT(@-p - 20)/2)

h
x Z[CTwz,,uE,,(P, w) - /z Res,—, B, (P,w)do

v=1

+ Resy, B, (P,w) - /~ CT._,,E,(P, w)da].
L'Y

5 Asymptotic behavior through degeneration

We consider degeneration of hyperbolic three-manifolds and study the asymp-
totic behavior of the Loxodromic Eisenstein series.

Theorem (W. Thurston). Let M be a complete orientable hyperbolic three-
manifold of finite volume which has p + ¢ cusps. Then there is a convergent
sequence of hyperbolic three-manifolds {M;}$2; such that M; — M, (i — oc0)
and each M; has exactly p cusps and ¢ short geodesics ( see [13] or [5] ).

Then there is a positive sequence &; — 0, (¢ = o0) such that each of ¢
short geodesics of M; has the length < ¢;. In particular, any complete non-
compact hyperbolic three-manifold of finite volume is a limit of a sequence
of compact hyperbolic three-manifolds. The sequence {M;}32, is called the
degenerating sequence with limit manifold M.

Theorem (D. Kazhdan and G. Margulis). There exists a positive number
4 such that for each orientable hyperbolic manifold M and each z€M the
loops based at z of length < 24 generate a free Abelian group of rank at
most two in m (M, z) ( see [9] ).
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The universal constant p is called Kazhdan-Margulis constant.

Definition 4. For complete three-dimensional hyperbolic manifold M and
€ > 0, we define Mo, as the set of z € M such that there exists a non-
contractible loop at z of length < ¢ and M(c o) as M\ M(q).

M) and M(c ) are called e-thin part and e-thick part of M respectively.
Let ¢ = ¢(e) > 0 be the positive real number such that the hyperbolic metric
from (0,0, c) to (1,0,c) equals to €. If € < 2u, then a connected component
of e-thin part of M can be classified as following three types.

e cusp tube (Z-cusp)
It is isometric to the quotient space (2 + z + 1)\ H,, where H, := {P €
H3 | r(P) > c}.

e cusp torus (Z X Z-cusp)
It is isometric to the quotient space (z + z+1,z — z+ T)\H,,
(Im(7) > 0, |7| > 1).

e Margulis torus (infinite tube)
It is isometric to the e-thin part of (y)\U, where v is a loxodromic
transformation and U is the tubular neighborhood of the axis of +.

Remark. Let M) 1, and M) ¢ be the connected component of the e-thin
part M(o.) containing the short geodesic L., and the cusp ( respectively. If
M is a complete hyperbolic three-manifold of finite volume, then M), is
the Margulis torus and M(q),¢ is the cusp torus.

Let M; - M be a degenerating sequence of hyperbolic three-manifolds
of finite volume with limit manifold M. Let L., be a short geodesic of M; of
which the length I, — 0 as ¢ — oo and result new cusp ¢ on M. Then for
sufficiently large positive real number 7o > 0 and L,,, we define g(ro,l,;) as
follows.

9("'07l'y¢) = /;_1 (\/;%) %,

where |P| denotes the Euclidean area determined by the boundary torus of
the connected component M; (o), Ly

(11)
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Lemma 3. Under the above setting, the following equation holds.
,Ilglo MOX,M;’,’Y& (T + g(TO, l’n); P, L%’) = NPN,M,C(T’ P, Sﬂ"o),

where Niox a7, (T'; P, Ly,) and Nparar,c(T; P, Sr,) is the loxodromic counting
function and the parabolic counting function respectively.

Theorem 4. Let M; — M be a degenerating sequence of hyperbolic three-
manifolds of finite volume with limit manifold M. Let L., be a short geodesic
of M; of which the length /,, — 0 as 7 — oo and result new cusp ¢ on M.
Then we have

1Py
1 (L) B, (P 5) = B (P,

o0 \ 2L,
where |P| denotes the Euclidean area determined by boundary torus of cusp
¢.
The outline of the proof of Theorem 4 is as follows. First, by estimat-

ing with counting function, we can show that for any € > 0 there exists
sufficiently large Ty such that

(o.¢)
22 e9rok) / cosh(w) ~*d Niox a1+ (u; P, L)
To-+g(ro.li)

< 2—1e(2—.s)To+(s+1)5,7(7'0,1,')+2‘r(10g N('YO) + 2,,.) ' s
- sinh(2r) — 2r s —

Next, from Lemma 3, we have

5 <€ (12)

To+g(rosly;)
lim 27 *rge®9(rotw) / (cosh(u)) ™°d Niox, ;v (w; P, Ly;)
0

i—00

[

To
7o / €™ **dNpar,n,¢ (u; P, Sp, ). (13)
0

Furthermore, we can evaluate g(ro, l,,) and then

s
—8,.8 ,89(roly;) — 9=8p8 |Pl 1 |P|
27Toe "o (\/27rl%r§ Tt 2wl 3
P
- 14
(27‘1’7’ ? ( )

as l,, = 0, i.e. ¢ — co. From (12)—(14), we obtain the assertion of Theorem
4.
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