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ABSTRACT. The Whittaker coefficients of Eisenstein series on covering groups may
be described by attaching number‐theoretic quantities to objects that appear in

the theory of quantum groups, namely crystal graphs and canonical bases. This

description connects work by three mathematicians in apparently unrelated areas:

T. Kubota (number theory/automorphic forms), M. Kashiwara (quantum groups)
and T. Tokuyama (combinatorics).

1. INTRODUCTION

Let n\geq 1, F be a number field containing a full set $\mu$_{n} of n‐th roots of unity, and

G be a spli\underline{\mathrm{t}} semisimple algebraic group defined over F . Then there is a central simple
extension G of G(\mathrm{A}_{F}) by $\mu$_{n},

1\rightarrow$\mu$_{n}\rightarrow\overline{G}\rightarrow G(\mathrm{A}_{F})\rightarrow 1.
The construction of such an extension goes back to Matsumoto [11]; generalizations
to wider classes of groups G were given by Brylinski and Deligne [5]. Our object here

is to describe Eisenstein series on these covering groups when G is the general linear

group and to answer a basic question: what are the Whittaker‐Fourier coefficients of

such an Eisenstein series?

This question may be phrased in a concrete way, and indeed it is helpful do to so

in order to carry out computations. Such a formulation goes back to Kubota. Let

us suppose that n > 1 and that in fact F contains the 2n‐th roots of unity (so in

particular F has no real embeddings). Let (\displaystyle \frac{c}{d})_{n} be the n‐th power residue symbol.
Let  $\Gamma$ be the principal congruence subgroup of  SL(2, \mathcal{O}_{F}) modulo n^{2} . Then Kubota

[9] showed that the map  $\kappa$ :  $\Gamma$\rightarrow$\mu$_{n} given by

 $\kappa$(\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)) =\left\{\begin{array}{ll}
(\frac{c}{d})_{n} & \mathrm{i}\mathrm{f} c\neq 0\\
1 & \mathrm{i}\mathrm{f} c=0
\end{array}\right.
is a homomorphism. The proof uses the n‐th power reciprocity law. Note that this

map is fundamentally different than sending a matrix to a Dirichlet character modulo

d . Indeed, the kernel of  $\kappa$ is not a congruence subgroup.
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One may construct an Eisenstein series on SL_{2} that incorporates  $\kappa$ :

 E(z, s)=\displaystyle \sum_{ $\gamma$\in$\Gamma$_{\infty}\backslash  $\Gamma$} $\kappa$( $\gamma$)\Im( $\gamma$ \mathrm{o}z)^{s}.
Here z is in a product of r_{2} copies of hyperbohc three space (where r_{2} is the number of

pairs of complex conjugate embeddings of F into \mathbb{C}), and \Im is the natural analogue of

the imaginary part function for this space. More generally one could take \Im to be any
function in a certain induced space. The study of these Eisenstein series is equivalent
to the study of Eisenstein series on the  n‐fold cover of GL_{2}(\mathrm{A}_{F}) .

Kubota [10] analyzed the Fourier coefficients of E(z, s) and showed that the m‐th

Fourier coefficient, m\neq 0 , is a Dirichlet series in s whose coefficients are n‐th order

Gauss sums. These series are not (for n> 2) Langlands L-‐functions, but they have

analytic continuation and functional equation in s! To describe these coefficients we

change the notation slightly. Let S be a set of places containing all archimedean places
and all finite places that are ramified over \mathbb{Q} and that is sufficiently large that the ring
of S‐integers \mathcal{O}_{S} has class number one. Let (\displaystyle \frac{c}{d})_{n} now be the n‐th power residue symbol
for \mathcal{O}_{S} . Then Brubaker and Bump [1] reformulated Kubota�s result over \mathcal{O}_{S} (they also

gave an explicit scattering matrix for the functional equation). The m‐th coefficient

(for \Re(s)\gg 0) is of the form

(1) \displaystyle \sum_{ $\sigma$\neq 0}\frac{g_{n}(m,c)}{Nc^{2s}}$\Psi$_{m}(c)
where $\Psi$_{m} ranges over a certain finite dimensional vector space of functions that will

not concern us, N denotes the absolute norm, and g_{n}(m, c) is the n‐th order Gauss

sum modulo c

g_{n}(m, c)=\displaystyle \sum_{d\mathrm{m}\mathrm{o}\mathrm{d} c}(\frac{d}{c})_{n}e(md/c)
(d,c)=1

where e is an additive character of conductor \mathcal{O}_{\mathcal{S}} . The sum in (1) is over nonzero

ideals in \mathcal{O}_{S} , and the function $\Psi$_{m} has the correct equivariance property so that each

summand in (1) is independent of the choice of generator c for the ideal \mathrm{c}\mathcal{O}_{S}.
The arithmetic piece of the coefficient, that is the Gauss sum g_{n}(m, c) , may be

reconstructed by elementary means from the prime power coefficients of the form

g_{n}(p^{a},p^{b}) with a, b\geq 0 and p ranging over all primes. So we focus on the coefficients

g_{n}(p^{a},p^{b}) . It is easy to see that

\bullet If  b\geq a+2 : g_{n}(p^{a},p^{b})=0 (because of the oscillation of the additive character);
\bullet If  b\leq a : g_{n}(p^{a},p^{b}) is  $\phi$(p^{b}) if n| b , and zero otherwise (because the additive

character is identically 1). Here  $\phi$ is the Euler phi‐function for the ring \mathcal{O}_{S} . If

b\leq a , we write u(b) for this simple arithmetic function.

By contrast in the case b=a+1 the sum is always nonzero and gives a non‐trivial

n‐th order Gauss sum when (n, b)=1 . We represent the situation with the graph

(2) -\cdot--b=0^{b\subset 1b=2} \cdots b=a_{b=a+1}^{-}
Here the contributions when b = 0 and b = a+1 are special (being (Np) and a

non‐trivial n‐th order Gauss sum, resp.) and are so indicated in the picture with a
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circle and box, resp. For the remaiming locations, the contribution is simply h_{m}(b) . We

emphasize that while the functions h_{m} and g_{n} depend on n , the picture is essentially
the same for any n.

A key point is that (2) represents the crystal graph attached to a representation
of quantum gl_{2}! More precisely, the vertices and edges are the crystal graph of the

irreducible representation of highest weight (a+1) $\epsilon$ where  $\epsilon$ is the fundamental weight.
These graphs were introduced by Kashiwara, and capture aspects of the representation
theory of this algebraic object (the edges represent the Kashiwara operators). The two

special locations marked with a box and a circle correspond to the maximal root string
going to the lowest and to the highest weight vector, resp.

Remarkably, this description generalizes to  GL_{r+1} for any r \geq  1 . The analogue
of E(z, s) is the Borel Eisenstein series on GL_{r+1} , which is a function of r complex
variables. The Whittaker coefficients are also indexed by r integral parameters (cor‐
responding to the simple roots). To avoid a lot of notation, we shall state the result

roughly.

Theorem 1 (Brubaker, Bump, Friedberg [2]). Let m_{1} ,
.. .

, m_{r}\neq 0 . Then the \mathrm{m} :=

(ml, . . . , m_{r})‐th Whittaker coefficient of the Borel Eisenstein series on an n‐fold cover

of GL_{r+1} is a multiple Dirichlet series of the form

\displaystyle \sum_{c_{1},\ldots,c_{ $\tau$}\neq 0}\frac{H_{\mathrm{m}}(c_{1}.'.\cdot.\cdot\cdot,\mathrm{c}_{r})}{Nc_{1}^{2s_{1}}N$\theta$_{r^{r}}}$\Psi$_{\mathrm{m}} (cl, \cdots  c_{r} ).

The arithmetic coefficients H_{\mathrm{m}}(\mathrm{c}) for general \mathrm{m}, \mathrm{c} may be computed from the coeffi‐
cients of the form H_{p^{\mathrm{a}}}(p^{\mathrm{b}}) with p prime and \mathrm{a}_{f} \mathrm{b} \in (\mathbb{Z}_{\geq 0})^{r} . Moreover, these prime
power coefficients may be expressed as sums of arithmetic quantities in terms of a

crystal graph attached to quantum gl_{r+1}.

The description in terms of crystal graphs is a bit intricate. The highest weight
of the underlying representation is determined from \mathrm{a} , and there is a shift by p , half
the sum of the positive roots. For each vertex of the corresponding crystal graph, one

attaches the path on this crystal graph from the vertex to the lowest weight vector

which is obtained by applying the Kashiwara operators in the order determined by
a certain factorization of the long element into simple reflections. One then records

the lengths b_{i} corresponding to the pieces of the path which are the root strings for

each Kashiwara operator, and decorates some of the b_{i} by boxes and some by circles

corresponding to root strings which are extremal. The contribution from the segment
of length b_{i} is h_{n}(b_{i}) generically (that is, if it is neither boxed nor circled), Np^{b_{i}} if

b_{i} is circled, and the Gauss sum g_{n}(p^{b_{\dot{\mathrm{t}}}-1},p^{b_{i}}) if b_{i} is boxed. If b_{i} is both boxed and

circled (which does not happen for GL_{2} but does occur in higher rank situations), the

contribution is zero. One then takes the product of these contributions to determine

the arithmetic quantity attached to the given vertex. See [2] for details. There is also

a dual version using paths to the highest weight vector.

Though we have specified that n>1 , in fact such a description applies when n=1

as well. For the group itself (that is, for the 1‐fold cover), the Whittaker coefficients
at a prime p were shown by Shintani [12] to be Schur polynomials (this statement

was generalized to other groups in the Casselman‐Shalika formula). A formula of

Tokuyama [13] expresses the Schur polynomial as a sum over semi‐standard Young
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tableaux. Tokuyama�s formula may be recast ([3], Chapter 5) as a formula for the

Schur polynomial attached to a representation of GL_{r+1}(\mathbb{C}) of highest weight  $\lambda$ as

a sum over the crystal graph attached to highest weight  $\lambda$+ $\rho$ . This is exactly the

expression of the above Theorem when  n=1.

In closing we mention that these theorems generalize. Friedberg and Zhang [6] have

established crystal graph descriptions of the Whittaker coefficients of Eisenstein series

for covers of odd orthogonal groups (other root systems are in progress). They have

also used Eisenstein series on symplectic groups to give new Tokuyama‐type formulas
for characters of the spin group \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}_{2r+1}(\mathbb{C}) [7] . And Brubaker and Friedberg [4]
have considered the Whittaker coefficients of maximal parabolic Eisenstein series on

covering groups, estabhshing additional connections to the representation theory of

quantum groups, and in particular to Lusztig�s canonical bases.
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