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The Kohnen plus space, simply called plus space, is a subspace of

the space of modular forms with half‐integral weight in which the mod‐

ular forms satisfy some restriction on whose Fourier coefficients. The

concept was initially brought up by Kohnen [4] in 1980. The original
definition was only for the classical modular forms, that is, which is in

one variable. It was shown by Eichler and Zagier [1] that the plus space
of weight k+1/2 is isomorphic to the space of Jacobi forms of weight
k+1 and index 1 if k is odd. Later, the plus space was generalized to

the case of Siegel modular forms Uy Ibukiyama [2] in 1992. Ibukiyama
also showed that in the case we can still construct an isomorphism be‐

tween the plus space and the space of Siegel‐Jacobi forms. On the other

hand, in 2013, the concept of plus space and its relation with the space

of Jacobi forms was brought into the case of Hilbert modular forms

by Hiraga and Ikeda [3]. They used Weil representation to character‐

ize the plus space and showed that it is actually the fixed subspace of

some Hecke operator E^{K} on the whole space of Hilbert modular forms

of weight k+1/2 . And here, we want to state the similar results for the

Hilbert‐Siegel case. The definition of plus space in this case is based

on the ones from Ibukiyama, Hiraga and Ikeda.

Let F be a totally real field of degree n over \mathbb{Q} with ring of integers
0 and the different O. Denote the n embeddings of F in \mathbb{R} by $\iota$_{i} . An

element  $\xi$\in F will be considered as a real n‐tuple.
Let us fix a positive integer m . The Siegel upper half‐plane of genus

m is defined by

\mathfrak{h}_{m}=\{X+\sqrt{-1}\mathrm{Y}\in M_{m}(\mathbb{C})|X, \mathrm{Y}\in \mathrm{S}\mathrm{y}\mathrm{m}_{m}(\mathbb{R}), \mathrm{Y}>0\}

where \mathrm{Y}>0 means that \mathrm{Y} is positive definite. The set \mathfrak{h}_{m}^{n} consists of

n‐tuples whose components are in \mathfrak{h}_{m} . Also, the set (\mathbb{C}^{m})^{n} consists of

n‐tuples of complex column vectors with size m . Note that any vector

with size m here is considered as a column vector.

The symplectic group of degree 2m is defined by

Sp_{m}(F)=\{g\in GL_{2m}(F)|{}^{t}g\left(\begin{array}{ll}
0 & -I_{m}\\
I_{m} & 0
\end{array}\right)g=\left(\begin{array}{ll}
0 & -I_{m}\\
I_{m} & 0
\end{array}\right)\}
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where I_{m} is the identity matrix of size m . It acts on \mathfrak{h}_{m}^{n} as

gz=(($\iota$_{\dot{\mathfrak{g}}}(a)z_{i}+L_{i}(b))(L_{i}(c)z_{i}+$\iota$_{i}(d))^{-1})_{i=1}^{n}
for

g=\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in Sp_{m}(F) , a, b, c, d\in M_{m}(F)
and z=(z_{i})\in(\mathfrak{h}_{m})^{n}.

To define the factor of automorphy with half‐integral weight, we have

to give the theta function.

Definition 0.1. The theta function  $\Theta$ is a function on \mathfrak{h}_{m}^{n} defined by

 $\Theta$(z)=\displaystyle \sum_{p\in 0^{m}}\exp(2 $\pi$\sqrt{-1}\mathrm{T}\mathrm{r} (Epzp) )

where Tr is the sum of the component of a complex n‐tuple.

Let us define the two congruence subgroups of Sp_{m}(F) :

(0.1)

$\Gamma$_{0}(1)=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in Sp_{m}(F)|a, c\in M_{m}(0), b\in M_{m}(\mathfrak{d}^{-1})c\in M_{m}(0)\}
and

$\Gamma$_{0}(4)=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in Sp_{m}(F)|a, c\in M_{m}(0), b\in M_{m}(0^{-1})c\in M_{m}(4\partial).\}
The factor of automorphy of weight 1/2 is a function \tilde{j} on \mathrm{r}_{0}(4)\times \mathfrak{h}_{m}^{n}
given by

\displaystyle \tilde{j}( $\gamma$, z)=\frac{ $\Theta$( $\gamma$ z)}{ $\Theta$(z)}.
It satisfies

\tilde{j}( $\gamma$, z)^{4}=N(cz+d)^{2} if  $\gamma$= \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in$\Gamma$_{0}(4)

where N is the product of the component of a complex n‐tuple.
For simplicity, here we only consider the Hilbert‐Siegel modular

forms of parallel weight. We fix a positive integer k . Let M_{k+1/2}($\Gamma$_{0}(4))
be the space of Hilbert‐Siegel modular forms with respect to the factor
of automorphy \tilde{j}^{2k+1} and S_{k+1/2}($\Gamma$_{0}(4)) be the subspace of M_{k+1/2}($\Gamma$_{0}(4))
consisting of cusp forms. Then for any Hilbert‐Siegel modular form

h\in M_{k+1/2}($\Gamma$_{0}(4)) , it has Fourier expansion in the form

h(z)=\displaystyle \sum_{T\in L^{*}}c(T)\mathrm{e}(\mathrm{T}\mathrm{r}(\mathrm{t}\mathrm{r}(Tz)))
where L^{*} is the set of all half‐integral matrices in M_{m}(F) , the coefficient

c(T)=0 if T is not positive semi‐definite and tr is the usual trace for
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matrices. Moreover, as usual, \mathrm{e}( $\tau$) = \exp(2 $\pi$\sqrt{-1} $\tau$) for  $\tau$ \in \mathbb{C} . For

simplicity, we put q^{T}=\mathrm{e}(\mathrm{T}\mathrm{r}(\mathrm{t}\mathrm{r}(Tz))) .
Now we are ready to define the Kohnen plus spaces.

Definition 0.2. The Kohnen plus spaces with respect to the case above

are defined by

M_{k+1/2}^{+}($\Gamma$_{0}(4))=\{h\in M_{k+1/2}($\Gamma$_{0}(4))|c(T)=0 unless there exists

 $\lambda$\in 0^{m} such that (-1)^{k}T\equiv $\lambda$\cdot{}^{t}$\lambda$ \mathrm{m}\mathrm{o}\mathrm{d} 4L^{*} }

and

S_{k+1/2}^{+}($\Gamma$_{0}(4))=M_{k+1/2}^{+}($\Gamma$_{0}(4))\cap S_{k+1/2}($\Gamma$_{0}(4)) .

Let h=\displaystyle \sum_{T}c(T)q^{T}\in M_{k+1/2}^{+}($\Gamma$_{0}(4)) . For any  $\lambda$\in(0/20)^{m} , we set

h_{ $\lambda$}(z)=\displaystyle \sum_{\mathrm{m}(-1)^{k}T\equiv $\lambda$\cdot{}^{t}$\lambda$\mathrm{o}\mathrm{d}4L^{*}}c(T)q^{T/4}.
It is easy to see the definition of h_{ $\lambda$} does not depend on the choice

of  $\lambda$ \mathrm{m}\mathrm{o}\mathrm{d} 20^{m} . The functions h_{ $\lambda$} are actually Hilbert‐Siegel modular

forms of weight k+1/2 with respect to some congruence subgroups of

Sp_{m}(F) and some characters. From the definition of the plus space,

we have

h(z)=\displaystyle \sum_{ $\lambda$\in(0/20)^{m}}h_{ $\lambda$}(4z) .

Next, we want to give the definition of Jacobi forms. It is well‐known

that Sp_{m}(F) acts on \mathfrak{h}_{m}^{n}\times(\mathbb{C}^{m})^{n} by

g(z, w)=(($\iota$_{i}(a)z_{i}+L_{i}(b))(L_{i}(c)z_{i}+L_{i}(d))^{-1},{}^{t}(L_{i}(c)z_{i}+L_{i}(d))^{-1}w_{i})_{i=1}^{n}
for

g= \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in Sp_{m}(F) , a, b, c, d\in M_{m}(F) ,

z=(z_{i})\in(\mathfrak{h}_{m})^{n} and w=(w_{i})\in(\mathbb{C}^{m})^{n}.

Definition 0.3. A holomorphic function G on \mathfrak{h}_{m}^{n}\times(\mathbb{C}^{m})^{n} is called a

Jacobi form of weight k and index 1 if the following three statements

hold.

(1) G(z, w+zx+y)=\mathrm{e}(‐TT (\not\in rzx+2\mathrm{b}w) ) G(z, w) for any x\in 0^{m},  y\in

(0)
(2)  G( $\gamma$(z,w))=N(\det(cz+d))^{k}\mathrm{e}(Tr ({}^{t}w(cz+d)^{-1}cw) ) G(z, w)

( $\gamma$= \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) \in$\Gamma$_{0}(1)) ,
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(3) G satisfies the cusp condition, for which we omit the detail here.

The space of all such forms \dot{u} denoted by J_{k,1} and the subspace of cusp

forms in J_{k,1} is denoted by J_{k,1}^{\mathrm{C}\mathrm{U}\mathrm{S}\mathrm{P}}.
For any  $\lambda$\in(0/20)^{m} we can refer a theta series on \mathrm{b}_{m}^{n}\times(\mathbb{C}^{m})^{n} as

$\theta$_{ $\lambda$}(z, w)=\displaystyle \sum_{p\in 0^{m}}\mathrm{e} (Tr (\displaystyle \int p+\frac{ $\lambda$}{2})z(p+\frac{ $\lambda$}{2})+2\cdot{}^{t}(p+\frac{ $\lambda$}{2})w))) .

The right hand side above does not depend on the choice of  $\lambda$ mod

 20^{m} . Now if  G\in  J_{k,1} is a Jacobi form of weight k and index 1, then

for any  $\lambda$\in(0/20)^{m} , there exists a unique holomorphic function G_{ $\lambda$} on

\mathfrak{h}_{m}^{n} such that

G(z, w)=\displaystyle \sum_{ $\lambda$\in(0/20)^{m}}G_{ $\lambda$}(z)$\theta$_{ $\lambda$}(z, w) .

This formula is called the theta expansion of G . In fact, G_{ $\lambda$} are Hilbert‐

Siegel modular forms of weight k+1/2.
Now let k be odd. The main theorem tells us that the plus space

and the space of Jacobi forms are actually isomorphic.

Theorem 0.1. Assume h\in M_{k+1/2}^{+}($\Gamma$_{0}(4)) and G\in J_{k+1,1} . With the

notations given above, we have

\displaystyle \sum_{ $\lambda$\in(\mathrm{p}/20)^{rn}}h_{ $\lambda$}(z)$\theta$_{ $\lambda$}(z, w)\in J_{k+1,1}
and

\displaystyle \sum_{ $\lambda$\in(\mathfrak{p}/20)^{m}}G_{ $\lambda$}(4z)\in M_{k+1/2}^{+}($\Gamma$_{0}(4))
.

The two canonical mappings are the inverse of each other. Thus these

give an isomorphism between M_{k+1/2}^{+}($\Gamma$_{0}(4)) (S_{k+1/2}^{+}($\Gamma$_{0}(4))) and J_{k+1,1}

(J_{k+1}^{\mathrm{C}\mathrm{U}\mathrm{S}\mathrm{P}}) .
As mentioned in the beginning, the classical, Siegel and Hilbert case

for this theorem were proved by Eichler & Zagier, Ibukiyama and Hi‐

raga & Ikeda, respectively.
Finally, we want to state the key concept of this result. Let A be the

adele ring of F and  $\psi$=\displaystyle \prod_{v}$\psi$_{v} : \mathrm{A}/F\rightarrow \mathbb{C}^{\mathrm{X}} be the unique additive

character on A which is trivial on F and has $\psi$_{\infty}(x)=\mathrm{e}(x) as whose

local components for any infinite place \infty of  F . We denote the global
Weil representation of Sp_{m}(\mathrm{A}_{f}) , the finite part of the double metaplec‐
tic covering of Sp_{m}(\mathrm{A}) , on the Schwartz space S(\mathrm{A}_{f}^{m}) of \mathrm{A}_{f}^{m} by $\omega$_{ $\psi$}.
For any finite place v , the group K_{v} = $\Gamma$_{0}(1)_{v} is defined similarly as

(0.1) and we put K =\displaystyle \prod_{v<\infty}K_{v} . It is known that if we restrict $\omega$_{ $\psi$}
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on the inverse image \overline{K} of K in S\overline{p_{m}(\mathrm{A}}_{f} ), then \mathrm{S}((2^{-1}\hat{0}/\hat{0})^{m}) forms an

invariant irreducible subspace for the restricted representation. Here

\displaystyle \hat{0}=\prod_{v<\infty}0_{v} and \mathrm{S}((2^{-1}\hat{0}/\hat{0})^{m}) consists of Schwartz functions  $\Phi$ sup‐

ported on  2^{-1}\hat{0}^{m} which satisfies  $\Phi$(X+\mathrm{Y})= $\Phi$(X) for \mathrm{Y}\in\hat{0}^{m} . The

deduced representation of \overline{K} on \mathrm{S}((2^{-1}\hat{0}/\hat{0})^{m}) is denoted by $\Omega$_{ $\psi$} . For

 $\lambda$\in (0/20)^{m} , we set $\Phi$_{ $\lambda$} \in \mathrm{S}((2^{-1}\hat{0}/\hat{0})^{m}) to be the characteristic func‐

tion of  $\lambda$/2+\hat{0}^{m} . These 2^{nm} functions form a basis for \mathrm{S}((2^{-1}\hat{0}/\hat{0})^{m}) .

Note that any Hilbert‐Siegel modular form of weight k+1/2 can

be uniquely lifted to an automorphic form on Sp_{m}(\mathrm{A}) , the metaplectic
double covering of Sp_{m}(\mathrm{A}) . If we denote the space of all the automor‐

phic forms obtained by this way by A_{k+1/2}(Sp_{m}(F)\backslash Sp_{m}(\mathrm{A})) , it forms

a representation of  Sp_{m}(\mathrm{A}_{f})\sim by the right translation  $\rho$ . The corre‐

sponding action of  Sp_{m}(\mathrm{A}_{f}) on the union of all Hilbert‐Siegel modular

forms of weight k+1/2 is also denoted by  $\rho$.

Theorem 0.2. Let k be odd. The three following statements are equiv‐
alent.

(1) h(z) = \displaystyle \sum_{ $\lambda$\in(0/20)^{m}}h_{ $\lambda$}(4z) \in  M_{k+1/2}^{+}($\Gamma$_{0}(4)) where h_{ $\lambda$} is defined as

above.

(2) Given a family \{h_{ $\lambda$}\}_{ $\lambda$\in(0/20)^{m}} of 2^{nm} Hilbert‐Siegel modular forms of
weight k+1/2 . The space \displaystyle \sum_{ $\lambda$\in(0/20)^{m}}\mathbb{C}\cdot h_{ $\lambda$} forms a representation of
\overline{K} by p which is equivalent to rr via the intertwining map h_{ $\lambda$}\mapsto$\Phi$_{ $\lambda$}.

(3) \displaystyle \sum_{ $\lambda$}h_{ $\lambda$}(z)$\theta$_{ $\lambda$}(z,w)\in J_{k+1,1}.

The equivalence of (2) and (3) simply comes from the representative
definition of Jacobi forms. So the efforts of the author on this research

mainly focuses on the equivalence of (1) and (2), especially the (1) \Rightarrow(2)
part.
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