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A PENALTY METHOD FOR THE TIME-DEPENDENT STOKES
PROBLEM WITH THE SLIP BOUNDARY CONDITION AND ITS
FINITE ELEMENT APPROXIMATION

GUANYU ZHOU!, TAKAHITO KASHIWABARA!, AND ISSEI OIKAWA?

ABSTRACT. We consider the finite element method for the time-dependent Stokes prob-
lem with the slip boundary condition in a smooth domain. To avoid a variational crime of
numerical computation, a penalty method is applied, which also facilitates the numerical
implementation. For the continuous problems, the convergence of the penalty method is
investigated. Then, we consider the P1/Pl-stabilization or P1b/P1 finite element approxi-
mations with penalty and time-discretization. For the penalty term, we propose the reduced
and non-reduced integration schemes, and obtain the error estimate for velocity and pressure.
The theoretical results are verified by numerical experiments.

1. INTRODUCTION

We consider the time-dependent Stokes problem in a smooth bounded domain Q ¢ RY

(N = 2,3) with boundary 8Q = yUTL,7NT = 0, which reads as:

u—vAu+Vp=f, V.-u=0 in Q x (0,7T),

u=0 on v x (0,7),
(1.1) (P) o _

u-n=0, (I-n®n)o(u,p)n=0 onT x (0,7T),

u(z,0) = ug in Q,

where 0 < T < oo, u and p represent the velocity and pressure of the fluid, respectively,
v denotes the viscosity constant, n is the unit outer normal vector to I', and o(u,p) =

—pI + v(Vu + VuT) represents the stress tensor.

The slip boundary conditions (1.1)s have many applications for the real flow problems
[19, 16, 12, 21]. In applying the finite element method (FEM) to (P), however, there exist
some numerical difficulties to deal with the slip boundary condition when I is smooth. In
FEM, } is approximated by a polygon or polyhedron €, with the boundaries v; = ~ and
I', = T'. Let ny denote the unit outer normal vector to I'y. If the slip boundary condition is
implemented by us - np = 0 on I'y, then it reduces to the homogeneous Dirichlet boundary
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condition uhlph =0, because ny, is discontinuous at the vertices of I'p, which is called the
variational crime.

To overcome the variational crime, in [24, 23], the slip boundary condition is implemented
by (us - n)(P) = 0 for every boundary node P, where () is a spherical shell and the exact
value of n is easy to obtain. Using the quadratic approximation, the implementation u(P) -
n(Gx(P)) = 0 for each node or barycentre P of the boundary element on I, is considered in
(1], where Gj, : T, — I' is an abstract transformation. Noting that n(Gy(P)) and n(P) are
nontrivial to calculate for a general 2, we can use some average of nj, near P for approximation
(see [2, 5]), which shows good convergence properties. However, the rigorous error analysis is
difficult and seems still unknown in the literature. In addition, to implement (uy - n)(P) =
in finite element code seems not easy, which requires more techniques than the Dirichlet
boundary condition (see [1, 7]).

Instead of implementing the slip boundary condition directly, we consider a penalty method,
the implementation of which can be easily achieved by the popular FEM software Freefem-++
[9].or FEniCS [17]. Moreover, the penalty method avoids the variational crime and has good
convergence properties. -

The idea of the penalty method is to approximate (u - n)lp 0 by the bilinear form
L f(ue-n)(v - n) dT for any test function v € H'(Q), where ¢ is a penalty parameter with
0<e < 1. Substituting v = u, and passing to the limit ¢ — 0, we can prove the convergence
(ue - m)lr = 0.

There exists some literature work on the penalty method. First, let us pay attention to the
error estimate of [ju—u.||. For the stationary Stokes/Navier-Stokes problems, the sub-optimal
error estimate ||u—uc| g1 < Cy/eis proved under a priori estimate ||o'(u, p)|| .2(ry < C; whereas -
the optimal error estimate ||u—u|/ g1 < Ce requires a priori estimate ||o(u, p)|| ., 1 - +|k |<C
and the estimate of error of pressure using the inf-sup condition (2.2) (cf. [4, 6, 30]), where
k. is a constant from the pressure p. of the penalty problem. Owing to the compatibility of
the initial value and the boundary condition for (P) and (P,), we only have the regularity
with weight /¢ for us; and uee near t = 0. As a result, the analysis method of the stationary
problem cannot be directly applied to the case of time-dependent problem. In this paper, we
show a priori estimates of (P) and (P.) under various assumptions on the regularity of given.
data, with the help of which we derive the sub-optimal O( v/€) and quasi-optimal O(e| loge|)
error estimates for penalty.

Let us turn our attention to the finite element approximation and error ana,lys1s For the
stationary problems without penalty, Verfiirth [27, 28, 29] obtains the error O(h?) in en-
ergy norm using the Lagrange approach. It claims the error estimate O(h) in [28, Theorem

5.1] by virtue of the estimate: \frh u-(np—n- w—l)ah' < Ch”u”H%(I-‘,,)”a""H‘é(r,.)’ which
seems non-trivial since ny, is discontinuous on I'y. If the right-hand side is estimated by
| - lz2(ry), it yields the error estimate O(h%), Then, under the assumption that there exists
an approximation of n better than nj;, Knobloch [15] derives the error estimate O(h) for lin-
ear approximation and O(h%) for quadratic approximation. And under the assumption that
n(G) is prescribed, Bancsh and Deckelnick [1] prove O(h2) for P2/Pl-element approxima-
tion. For the stationary problems with penalty method, Dione and Urquiza [6] also consider



the P2/P1-element approximation, and deduce O(h%) using the technique from [1]. We men-
tion that the error estimate of [6] reduces to O(h?) if the contribution o, 72l (e = )l 2y
(see (4.13) of [6]) is taken into account in the error analysis (see {16, Proposition 4.2]). In
(13, 30], the P1/P1-stabilization (or P1b/P1) approximation is considered, and the penalty
term is implemented by reduced and non-reduced integration schemes.The authors show the
error estimate O(h2), which is improved to O(h) for the two-dimensional case with reduced
integration scheme.

All the above results are concerned with the stationary problem. In the present paper, we
investigate the P1/P1-stabilization (or P1b/P1) full-discrete finite element approximation for
the time-dependent problem with penalty. Introducing the projection operators of velocity
and pressure (by the result of [13, 30]), under some assumptions on a priori estimates of (P)
(cf. [25]), we derive the error estimate O(t + h + /€ + h//€). Taking ¢ = h, we have the
convergence order O(7++v/h). For the two-dimensional case with reduced integration scheme,
the error estimate is improved to O(7 + h + /€ + h%/+/€), which becomes O(7 + h) if € = h2.

The paper is organized as follows. In Section 2, we introduce the penalty problem (P.),
and derive a priori estimates for (P) and (P¢)under various assumptions on the regularity
of the initial value and force. In Section 3, we investigate the convergence behaviour of
the penalty method for continuous problem. We deduce the sub-optimal O(y/€) and quasi-
optimal O(e|log ¢|) error estimates for penalty. Section 4 is devoted to the numerical analysis
for the P1/P1-stabilization (or P1b/P1) finite element approximation with penalty and time-
discretization. Two integration schemes (reduced and non-reduced) -are considered for the
penalty term, and we derive the error estimate. The numerical experiments are presented in
Section 5.

Notation. Throughout this paper, the norms of the Sobolev spaces H*(w) and W*?(w) are
denoted by || - ||k and || - |lwke(), respectively. The inner product of L?(w) or L*(w)N
is denoted by (-,-),. We will use the abbreviation L™(H*(w)) to imply L™(0,T; H*(w)),
Lm(0,t; H*(w)), L™(0,t; H*(w)N) or L™(0,T; H*(w)N). Sometimes, we omit w in the above
notations when w = Q. We introduce the notation v, = v-n and vy = (I — n ® n)v to
represent the normal and tangential component of v on I, respectively. We use C' to denote
generic constants independent of ¢, h and 7. We also use C(a,b) to emphasize the constant
is dependent on a and b.

2. THE PENALTY PROBLEM AND A PRIORI ESTIMATES
2.1. Function spaces and bilinear forms. We introduce the function spaces:
V={veH®@" |v=00n9}, Vp={veV]|v,=00onT},
H ={ve X QN |V-v=0}, HI={ve€ H’|uv,r =0 holds weakly},
Vi={veV|V-v=0}, VZ=V,NV?, Q=L*Q),
Q=Li®)={ec *®)|(e,1) =0}, A=H:T), A =H),

where X* denotes the dual space of a Banach space X.
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For any w C RV, we set the bilinear forms:

a.(u,v) == g(é'(u), E())w for u,v € H*(w)",
bw(v7p) = (—V v, Q)w forve Hl(w)N) qc L2(w)a
c(A p) =\ pr for A€ A, p€ A,

where £(u) = Vu+ Vu® and (-, ), denotes the inner product of L?(w) or the dual product
between A and A*. We introduce some inequalities for the above bilinear forms.

(1) Korn’s inequality: there exists a constant C' depending on Q such that

(2.1) aq(v,v) > Clv|3:, Yo V.
-(2) Inf-sup condition: there exists a constant C' depending on €2 such that
(2.2) Cllallzz € sup ba(v,0) VgeQ.

veH Q)N v 2
The variational form for (P) reads as: for all ¢ € (0,T),
(ue(t),v) + aa(u(t),v) + ba(v, p(t)) + c(A(t),va) = (f(t),v)  VweV,

(2.3) ba(u(t),q) =0 VgeQ,
c(un(t), p) =0 V€AY,
where )\(t) :="—0(u(t),p(t))n - n is the normal component of traction tensor on I', and

u(z,0) = up. The unique existence of weak solution for (P) follows from the standard theory
(see [26, §1, Chapter 3]). In fact, given ug € HJ and f € L*(V,7*), then there exists a unique
weak solution u € C([0,T]; H3) N L*(0,T; V;?) for (P) , i.e. u satisfies: u(z,0) = up, and for
all t € (0,7), ‘

(2.4) (u(t),v) + aq(u(t),v) = (f(£),v), WweV,.

2.2. The penalty method. Let ¢ be the penalty parameter with 0 < ¢ < 1, and u¢ be
an initial value approximating to ug. The penalty problem in variational form is given by:
for all t € (0,T), find (ue(t),p(t)) € V x Q with ug(t) € V* and ue(z,0) = ug such that
Y(v,q) €V x Q,
| (we(t), v) + aa(uc(t), v) + ba(v, pe(t)) + €7 e(ten(t), va) = (£(t),0),
blu(t),0) = 0.
The strong form of the penalty problem reads as:
Ug — VAU +Vpe=f, V-u=0 in Q x (0,7),

2.5 P ue =0 on v x (0,T),
( : ) ( E) U(Ueaps)n + €_1umn =0 on I’ x (0’ T)’
ue-(wy 0) = Ueo in 2

Proposition 2.1. Given ug € H° and f € L?(V?*), there exists a unigue weak solution
ue € C([0,T); H°) N L2(V?) for (Pe). i,e, ue satisfies: ue(z,0) = ue and for all t € (0,T),

(et(t), v) + aa(uc(t), v) + €7 (Uen(t), va)r = (f(1),v), Vv eV
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2.3. A priori estimates for (P) and (P.). To obtain the error estimates of the penalty
" method ie. |lu — u||, we need a priori estimates for (P) and (P,).

2.3.1. A priori estimate for (P).
Proposition 2.2. (1) Under uo € H? and f € L*(V*), we have:
el eqay + sy < CULFEaugny + luoliZz) =: Ca(f, uo).
(2) Under ug € V; and f € L*(L?), we have:
||Ut||iz(L2) + ||u||%w(m) < C(”f"%z(m) + luollF2) =: Ca(f, uo).
(3) Under uy € V7 N HAQ)Y, f € C([0,T}; L?) and f, € L2(0,T; L?), we have:
(2.6a) (el oo 2y + NuelZ2arny < Car(f, uo),
(2.6b) V|| 7222y + 1V w321y < ClIVEf(Z2wz) + Ca(f, wo),

where Csi(f, u) = C(”ft”%%v,g‘) + lluollF= + "f||2c([0,t];;2))~ In addition, if uy €
H3(Q)N and £(0) € HY(Q)N, then we have:

@7 NulZe@s + luelfany < (FllZawe + luollfs + £ O)Fn) =: Caa(f, uo).

Remark 2.1 (Régula,rity for u). By a similar argument of [10, Theorems 2.4 and 2.5], we can
show the regularity supyc, .7 t*"t™ 2| Dful|%4= < oo when Q and f are sufficiently smooth,
which implies that we can obtain any regularity of u in time interval (t,, T) for some t, > 0.

Remark 2.2 (Regularity for p). Consider the stationary Stokes problem with the slip boundary
condition:

—Aut+Vp*=f*, V-u*=0 inQ,
w=0 onv, u,=0, (I-n®n)o(u,p*)n=0 onTl.

For sufficiently smooth v and T, given f* € H™(2)" (m € N), the following regularity holds
(cf. [20)): ||uw*|gmsz + |[P*|am+r < C||f*||am. As a result, we conclude from Proposition 2.2
(2) that:

llullz2¢a2y + Pl 221y < Co(f, uo)-
And it follows from (2.6) and (2.7) that:

(2:8a) lullego,ria2) + Pllcqo.r;ay < Cai(f, uo),
(2.8b) luell 2qzy + ||pell 2y < Csa(f, wo)-

2.3.2. A priori estimate for (P).
Proposition 2.3. (1) Under ug € H° and f € L2(V°*), we have:
el Zooz2y + NeellZagery + € el F2grzcry < CLlf, ueo)-
(2) Under ug € V7 with |jug - nl| 2@y < C/e and f € L*(L?), we have:

.“”675“%2(1,2) + “ue”iw(Hl) + 6—1||“en”i°°_(L2(r‘)) < Co(f, ue) + Ce"lllueoliiz(ry
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(3) Under ue € Vo1 HA(Q)N, |lue - nl|
we have:
(2.9a) et oo 22y + NttetlFagarry < Coa(F, teo) + Clle  tep - "”i_,%(r)’

@90)  Vouaelaqzay + Vel < Cralf ) + Clle -l

g S Ce fec(o T];L?) and f, € L*(L?),

Remark 2.3 (Regularity for u.). By a similar argument to [10, Theorems 2:4 and 2.5], we can
obtain any regularity for u. away from ¢ = 0. However, we have a breakdown of regularity
for u on 0Q at t = 0. In order to derive [luelr2(2) < C, we need us(0) € HY(Q)N
and €7![|ug(0) - nlL2ry < C, which cannot be realistically assumed. Hence, we only have

Vitua € LA(L?).
Remark 2.4 (Regularity for p). Consider the stationary Stokes problem with penalty:
—Au;+Vpi=f* V-.ui=0 inQQ,
{ ur=0 onvy, o(u,p)n+elul,n=0 onl.

For sufficiently smooth v and T, given f* € H™(Q)Y (m € N), we have the following
regularity (cf. [30, Appendix]): [lul|lgm+z + |[pf||gm+: < C||f*||um. Then, we obtain from
(2.9) that

(2.10a) luclleqo i) + IPellogomimy < Caa(f,u0) + Clie™ o - 1l 4
(2.10b) IVtuetll ey + [VEpetll ey < Coalf, o) + Clle o -l 3

3. THE ERROR ESTIMATE OF PENALTY METHOD

With the help of a priori estimates in the previous section, we investigate the convergence
of the penalty method.

3.1. The sub-optimal error estimate. Setting A, := Zu,,, we rewrite (2.5) as
(uet, ’U) + aQ(U‘E) U) + bﬂ(vape) + C(Aév Un) = (fa U) V’U € I/a
3.1) b(ue,q) =0 Vg € Q,
 C(Uen, 1) = €c(Ae, 1) Vp e A"
Since uen|r # 0, we see that pe(t) ¢ Q We set
1 ) \
kev(t) = ﬁl}pe(t) dz, pe(t) = pe(t) - ks(t) € Q.
Recalling that A(t) = —o(u(t), p(t))n - n, we set:
Ceu(t) = u(t) —ue(t), ep(t) :=p(t) —Pe(t), ea(t) := At) = (Ae(t) — ke(t)).
We state the sub-optimal error estimate result. ‘

Theorem 3.1. (1) Under the initial error ||up — ez < Cive, up € V2 and f €
L*(L?), we have

(3:2) “eu||L°°(L2) + ||€u||L2(H1) + \/E"/\ - /\e“Lz(Lz(r)) < Cve
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(2) In addition, if we assume ||ug—ueollm < Citv/e, |[uenllL2qy < C’e ug € VINH3(Q)Y,
f(0)e HI(Q) and f, € L?(L?), then we have

(33) “eut||L2(L2) + Heulle(Hl) + \/E”A - AE"L""(LZ(F)) S C\/E.

3.2. The quasi-optimal error estimate. Under stronger assumptions than in Theorem
3.1, we prove the quasi-optimal error. estimate.

Theorem 3.2. We take the assumption of Theorem 8.1 (2). Moreover we assume that

luo = ueollzz < Cize, ||ueo - n||H7(r) < Ce and f € C([0,T); L?). Then we have:

(3.4) ||eu||Lco(L2) + ||eu||Lz(H1) + Ii\/-eu||Loo(H1) + ||\/-eut,”L2(L2) < Ce| log EI.

We explain the main difficulties and introduce a sketch of the proof of Theorem 3.2. In the
~case of the stationary Stokes problem, the estimates of [le,||z2 and [[ex[ -3 - follow from
the H'-norm estimate of e, by the inf-sup conditions of b(-,-) and ¢(-,-). However, for the
non-stationary problem, we have to deal with the estimates of e,(t), e, and ey at the same
time.

To prove (3.4), we consider the energy estimate of e, in L?(H') and L?(L?) norms, and
the energy estimate of v/te,; in L?(L?) norm and v/te, in L®°(H") norm. Since we have the
a-priori estimates (2.9b) and (2.10b) with weight /% near ¢t = 0, we divide the estimate of
e, into three cases: (1) 0 <t < ¢, (2) e <t <1and (3)t > 1. For case (1), the desired
result follows from the energy estimate of e,, the sub-optimal error estimate (3.3) and ¢ < e.
In case (2), we apply the a-priori estimates (2.9b) and (2.10b). Owing to the weight /%
and € < t < 1, we get the error bound O(e|loge|). The case (3) is easy, since we have the
regularity Wlthout weight v/# according to Remarks (2.2) and (2 3). Combining these three
cases, we can conclude (3.4).

Remark 3.1. Because of the nonlocal compatibility condition [|u(0)[|g1(q) < C is unrealistic
to assume, we only have a priori estimate for ue; with weight v/# (see Proposition 2.3 (3)).
Moreover, the initial error ||A(0) — e ueo - n+ ke(0)|| 2(ry < Cy/€ seems non-trivial to ensure.
For the above two reasons, we obtain the error estimate for eut with weight /%, and derive
the error estimate O(e|log e|) instead of O(e).

4. THE FINITE ELEMENT APPROXIMATION

We introduce a regular triangulation 7, to 24, where h := maxge7, diam(K) denotes the
mesh size. In this paper, the P1/P1-stabilization (or P1b/P1) finite element approximation
is considered. We set the finite element spaces for P1/P1 (or P1b/P1) element:

Vi = {vn € C(Q)N | v, € PI(K)YN VK € Tp,v, =0o0n 7}, for P1/P1,
Vi = {vp € CQ)N | vn € PI(K)N © B(K)N VK € Tp,up, =0 o0n v}, for P1b/P1,
Qn={aqn € CW)" | gn € Pi(K) VK € T}, Qn=QnN L),

where P;(K) is the set of linear polynomials in a triangle K and B(K) stands for the bubble
function space on K. We denote by S the triangulation of I', inherited from 7. For the
Dirichlet boundary condition u|, = 0, the error owing to the approximation u),, = 0 has
been well studied in the literature. In this paper, we focus on dealing with the slip boundary



condition. In the following argument, we ignore the difference between v and v, (ie. we
assume vy = +y;,) for simplicity.
We consider the backward approximation for time differentiation. For an integer M € N,
(M >> 1), we denote by 7 := L the time-step size. For t,, = mr withm = 0,1,..., M, we set
(U™, p™) = (u(tm), P(tm)). We use yu™ := "=4" to denote the backward approximation.
Given the initial value ug € V}, the finite element approximation problem reads as:
find (uf’,pi") € Vo X Qn, m=1,..., M, such that
(Orup', vn)ay, + ag, (ur', va) + bay, (va, P')
+ E—]-'Ch(u;? *Mpy Up * nh) = (fm’ vh)ﬂha V’Uh € ‘/;h
bﬂh (u;;n7 Qh) = ”hz(szz: Vq}L)Qm qn € th

where f is a continuous extension of f to €, (note that € # Q4), n = 0 for P1b/P1 element
and = 1 for P1/P1 element. We assume f € C([0,T]; L?) so that 7 3 _, ||f~"‘||%2mh) <cC.
" The bilinear form ¢, (-, -) is defined below.

We consider two types of c(-, -) to approximate c(-, -): for any A, pn € Ap = {vp-ny on Ty |
Un € Vh}a

(4.1) (Pein)

ch (A, i) 7= (An, a) T,
Ch()\h? ,u’h) = C}?(Ah,ll/h) = Z lSIAh(mS)/'Lh(mS)y
Sesn

where mg is the barycentre of S. We set || - |2, := ca(:,-). ¢f(-,-) is the barycentre formula
approximating to ¢ (-, ).
We introduce some inequalities for the bilinear forms agq, (-, ) and bq, (-, -)-
(1) Korn’s inequality (cf. [3, 14]): there exists a constant C such that

(42) aq, (v, vn) > Cllvnllfn,) Yo € Va.
(2) Inf-sup condition (cf. [8, 22]): there exists a constant C such that

bﬂh (vh7 qh)

= + Cnh||Vanll 2@, = Cllgnlz@,y  Van € @,
wetr vallv,

(4.3)

where V}, := {vn € Vi |vn=00nT}}.
Proposition 4.1. There exists a unique solution {(u*, py)}M_, C Vi X Qn for (Pen) satis-

fying:

m
e Baga + 27 3 (I = o) + Ik ey + 7021V,
=1

m m
+el2r Z llwh, - nal3, < Cllwnllia,) +CT Z 1112200
=1 ) R Jj=1

(4.4)

Assume that uj, satisfies € ||uf -np||2, < C. And for P1/P1 element, we assume there ezists
a pf) € Qn such that b, (u), gn) = Nh*(VDY, Var)a, for all g, € Q. For P1b/P1 element, we
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assume bg, (v, q) = 0 for all g, € Qn. Then we have:

m .
721006} aga,y + i sy + €l - mallz, + nh? VR,

j=1
m
(@5)  + 2 [V~ P s + €I =)l + e = o)
j=1
<C ( S 1P By + 12y + €Ml - mall2, + nh?llwzu%zmh)) .
j=1

To obtain the error estimate for finite element discretization, we introduce a projection
lemma, which is a direct result from [13, 30] for the stationary case.
Lemma 4.2 ([13, Theorems 4.1 and 5.1 and their proofs]). Let (@™, 7™) be a continuous
extension of (u™, p™) to ) := QU with f™ = U —vAG+Vp™ form=1,...,M. There
ezists a unique (P*a™, PPp™) € Vi, X Q4 such that

agq, (P*a™, vp) + b, (Vn, PPP™) + E—lch(Puﬂm - N, Up, * Np) = (fm — g, vp) Yop € Vi,

ba, (P @™, gn) = nh*(VPPB™, Van)a, Van € Qn.
Moreover, the following error estimate holds.

(i) For the non-reduced integration cy(-,-) = cj (-,),
[1P*a™ — @™ lv;, + | PP™ = p™llQu/r + nRIVPPE™ |12,y < C (A + Ve+h/Ve) .
(ii) For the reduced integration cx(-,-) = cf(-,-),
[P*am™ — @™y, + [1PPB™ = 5™ llQu/m + MV PP ||z20,) < C (h+ Ve +hP/VE),
where B=2if N=2and f=1if N=3.

Remark 4.1. In [13] the above error estimates (i)(ii) are obtained under the implicit assump-
tion that k* := ﬁ Jo, PPP™ da is bounded independently of € and h. In fact, with a careful
examination, we have k' < C(1 + h—:) However, with this a-priori estimate, we can still
obtain the error estimates (i)(ii).

We state the error estimate result for the finite element approximation with penalty. For
(@™,p™) given by Lemma 4.2, we set the error functions:

ep, =y — A, e, =l — P
We make the assumptions on (u,p) and initial error (| — uj||z2(a,):
(Acl) uw € C*([0,T); L*) N C*([0, T); W2"), where r = oo if ci(-,-) = cF(-,) with N = 2,
otherwise r = 2.

(Ae2) |[to — upllr2(n,) < Ch. For P1b/Pl-element, bg, (u), gs) = 0 for all g, € Q.

Remark 4.2 (Regularity assumption for FEM). As stated in Remark 2.1, the assumptions
(Acl) implies nonlocal compatibilty conditions for f(0) and up. But (A1) can be achieved
in time interval (t,,T) for some t, > 0 with smooth f and ug. As an analogue to [25], we
assume (A1) and deduce the error estimate for finite element approximation. We refer the
readers to [11, 18] for the smoothing property and error estimate for finite element method.



Theorem 4.3. Under the assumptions (A.1)(Ac2) we have:

™m
(4.62) leallZz@n +7 D e ullt < Cr + h+ Ve + B2 /e,
|
m ) m ’
(4.65) T thj_1||afei,ul|i=m,,> + tralleflullf, + TZ;tj-luarez,,,nz,,/R
SC(t+h+ e+ [/e),

where B =1 for cy(:,-) = (-,-) with N = 2,3, and cp(-,-) = cf(-,-) with N = 3. It can be
improved to 8 = 2 when ci(-,-) = cf(:,+) and N = 2.

Remark 4.3. In view of the error estimate results (4.6a) and (4.6b), we have the optimal
choice of € and h.
(1) For the non-reduced mtegratlon cn(s ) = (- ~) we choose € = Ch and obtain the
error O(Vh + 7).
(2) For the reduced integration c4(:,-) = cf(-,-), when N = 3 we choose ¢ = Ch and
obtain the error O(v/h + 7); when N = 2, we set ¢ = Ch? and obtain the error
O(h+ 7).

5. THE NUMERICAL EXPERIMENT

We consider (P) in an annular domain Q = {(z,y) | 1 < 2% + 3% < 4} with boundaries
I'={(z,y) |2? +y* =4} and v = {(=,y) | 2> + y* = 1}. f and u are given such that we
have the exact solution:

u(z,y,t) = (( + Dy(a® + 4 = 1), = (€ + Da(2® +4* - 1)), 9(z,9,t) = (* + Day.
It is easy to see that n = 1(z,y)” and u, =0 on I'. In view of g := (I — n ® n)o(u,p)n # 0
on T, we have to add. [, g-vr dT to the right-hand side of (2.3); and (3.1);. Correspondingly,
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we add fr g™ - vt dL'y, to the right-hand side of (4.1);, §™ := (I — 1y ®np) 0 (u(tm), p(Em))nn

is an approximation of g(t,,).

We solve. (P) by the penalty method with finite element approxxmatlon and test both the

non-reduced (¢ (-, -)) and reduced (c(-,-)) integration schemes for the penalty term. In the
following, we show the error of nurherica.l solutions for the case of P1/P1 element. For the
case of P1b/P1 element, the numerical results are almost the same.

First, fixing h and 7, we plot the errors of the non-reduced and reduced schemes in Figure 1,
where N and R stand for the non-reduced and reduced scheme, respectively. From this, we can
observe that the orders of convergence of both the schemes are almost O(¢), which verifies our
theoretical results (see Theorem 3.2). Note that the error is saturated as e decreases because
h and 7 are fixed. Moreover, we observe that for the non-reduced integration scheme, the
convergence fails for ¢ < h, which does not occur for the reduced integration scheme. It
suggests that the reduced scheme is more stable for small ¢ than the non-reduced one.

Next, we plot.the errors depending on h in Figure 2. According to Theorem 4.3 and

Remark 4.3, the optimal choice is to let ¢ = Ch for non-reduced scheme and ¢ = Ch? for

non-reduced scheme (N = 2). We observe that the convergence orders of the non-reduced

scheme are O(h), which is better than our theoretical result O(v/h) (see Remark 4.3). For the -
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FIGURE 1. The errors of velocity in the L? and H* norms and pressure in the
L? norm (denoted by uL?, uH" and pL? respectively) are plotted for different
€ with h and 7 fixed. The slopes represent the order O(e).

reduced scheme, we see that the convergence order of velocity in the H! norm is O(h), which
corresponds to our theoretical result (see Remark 4.3). Moreover, the numerical experiment
shows the convergence order of velocity in the L? norm is O(h?). Because we have fixed
7 = 0.01, the L? error is saturated as h decreases (see Figure 2 (right)).

At last, we verify the errors depending on 7. Theorem 4.3 shows that for fixed ¢ and h, the
convergence orders are estimated to be O(7), which is confirmed by our numerical examples,
see Figure 3. '
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