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Abstract

A kinetic transport equation for chemotactic bacteria, i.e., a kinetic chemotaxis equation, cou‐

pled with reaction‐diffusion equations for chemoattractants is considered. The Keller‐Segel type

equation for the population density of bacteria is derived by the asymptotic analysis of the kinetic

chemotaxis equation in the continuum limit, where the ratio of the mean run length of bacteria

to the characteristic length of the system, i.e., the Knudsen number, vanishes. Monte Carlo (MC)

simulations of the kinetic chemotaxis model are performed for the traveling pulse problem with

variation in the Knudsen number. The results of MC simulations are numerically compared with

the Keller‐Segel type equation. It is found that the results of MC simulations approach to that of

the Keller‐Segel type equation as decreasing the Knudsen number. However, a significant difference

still remains for moderately small Knudsen numbers which correspond to the micro scale systems.

This result demonstrates an importance of the kinetic chemotaxis model in the micro scale systems.
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I. INTRODUCTION AND BASIC EQUATION

We consider the chemotactic bacteria who create the run‐and‐tumUle motions, e.g., E.

Coli[1−4], where the bacteria run linearly with a constant speed when rotating their flag‐

ella in counter‐clockwise direction, but occasionally change the running direction (tumble)
when rotating their flagella in clockwise direction. The bacteria also change their tumbling

frequencies according to the variations of chemical attractants along their pathways; they in‐

crease the tumbling frequency when moving toward a lower‐concentration region of chemoat‐

tractants while decrease the tumbling frequency when moving toward a higher‐concentration

region of chemoattractants. This chemotactic behaviors (or chemotaxis) create the biased

random motions searching for the higher concentrations of chemoattractants. The density

of the chemotactic bacteria with a velocity v at a position x and a time t, f(t, x, v) , is

described by the kinetic transport equation incorporating the chemotactic response function

of the bacteria, say the kinetic chemotaxis model. The kinetic transport equation is also

coupled with the reaction‐diffusion equations for chemoattractants. The kinetic chemotaxis

model was first proposed in [5] and has been further developed toward involving the detailed

microscopic mechanism in the chemotaxis [6−9].
In this paper, we consider the kinetic chemotaxis equation incorporating the chemotactic

response function which depends on the temporal variations of chemoattractants along the

pathway of each bacterium. The kinetic chemotaxis equation is coupled with the reaction‐

diffusion equations for two chemoattractants; one is a nutrient consumed by the bacteria,

whose concentration at a position x and a time t is written as N(t, x) , and the other is a

secretion produced by the bacteria, whose concentration is written as S(t, x) . Then, the

kinetic chemotaxis equation is written as

\displaystyle \partial_{t}f(t, x, v)+v\cdot\nabla_{x}f(t, x,v)=$\psi$_{0}\{\int_{|v|=V_{0}} $\Psi$(v')K(v, v')f(v')dv'- $\Psi$(v)f(v)\}
+P[ $\rho$]f (v), (1)

where $\psi$_{0} is the mean tumbling frequency, P[ $\rho$] is the proliferation rate (which may depend

on the local population density of bacteria  $\rho$),  $\Psi$(v) is the chemotactic response function (
defined in Eq. (3)), and K(v, v') is the probability density of the reorientation angle that
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the bacteria with velocity v' get a new velocity v in the tumbling and satisfies

\displaystyle \int_{|v|=V_{0}}K(v, v')dv'=1 . (2)

Note that, in Eqs. (1) and (2), we consider that the bacteria has a constant speed V_{0} , so

that the integration as to velocity v is performed over the surface of the sphere with radius

V_{0} . The response function  $\Psi$(v) describes the bias of tumbling frequency of the bacteria

with a velocity v and defined as

 $\Psi$(v)=1-\displaystyle \frac{$\chi$_{S}}{2}\tanh(\frac{1}{ $\delta$}\frac{D\log S}{Dt}|_{v}) -\frac{$\chi$_{N}}{2}\tanh(\frac{1}{ $\delta$}\frac{D\log N}{Dt}|_{v}) , (3)

where $\delta$^{-1} is the stiffness parameter in the response, $\chi$_{\mathcal{S}} and $\chi$_{N} are the modulations in the

responses to S and N , respectively, and \displaystyle \frac{D}{Dt}|_{v} is the material derivative with velocity v , i.e.,

\displaystyle \frac{D}{Dt}|_{v}=\partial_{t}+v\cdot\nabla_{x}.
The concentrations of chemoattractants S (which is produced by the bacteria) and N

(which is consumed by the bacteria) are described by the following reaction‐diffusion equa‐

tions:

\partial_{t}S(t, x)=D_{S} $\Delta$ S-aS+b $\rho$ , (4)

\partial_{t}N(t, x)=D_{N} $\Delta$ N-cN $\rho$ , (5)

where  D_{S} and D_{N} are the diffusion constants, a is the degradation rate of S, b and c are

the production rate of S and consumption rate of N by the bacteria, respectively, and  $\rho$ is

the population density of bacteria, which is calculated as

 $\rho$(t, x)=\displaystyle \frac{1}{4 $\pi$ V_{0}^{2}}\`{I}_{|v|=V_{0}}f(t, x, v)dv . (6)

In non‐dimensional form, we scale the microscopic velocity v by the constant speed of

bacteria V_{0} , the space x by an arbitrary characteristic length L_{0} , the time t by a characteristic

time t_{0} (which is given in Eq. (8), and the proliferation rate P by t_{0}^{-1} . We also introduce

a non‐dimensional parameter k which is defined by the ratio of the mean run length of

bacteria, V_{0}$\psi$_{0}^{-1} , to the characteristic length, i.e.,

k=\displaystyle \frac{V_{0}$\psi$_{0}^{-1}}{L_{0}} . (7)

The non‐dimensional parameter k corresponds to the Knudsen number in the rarefied gas

dynamics. The macroscopic equations can be derived from the kinetic equation by the

asymptotic analysis when k is small.
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When we take the characteristic time t_{0} as

t_{0}=L_{0}/(kV_{0}) , (8)

the non‐dimensional form of the kinetic chemotaxis equation is written as

k^{2}\displaystyle \frac{\partial\hat{f}}{\partial\hat{t}}+k\hat{v}\cdot\nabla_{\mathrm{i}}\hat{f}=\int_{|\hat{v}|=1} $\Psi$(\hat{v}')\hat{K}(\hat{v},\hat{v}')\hat{f}(v')d $\Omega$(\hat{v})- $\Psi$(\hat{v})\hat{f}(\hat{v})+k^{2}\hat{P}[\hat{ $\rho$}]\hat{f}(\hat{v}) . (9)

Hereafter ```\wedge, , indicates the non‐dimensionalized quantities. The density f and population

density  $\rho$ are both scaled by a reference population density  $\rho$_{0} and where \hat{ $\rho$} is given by the

integration of \hat{f} as

 $\rho$\hat{} (î, \hat{x} ) =\displaystyle \frac{1}{4 $\pi$}\int_{|\hat{v}|=1}\hat{f}(\hat{t},\hat{x}, \hat{v})d $\Omega$(\hat{v}) . (10)

The non‐dimensional equations for S and N are written as

\displaystyle \frac{\partial\hat{S}}{\partial\hat{t}}=\hat{D}_{S}\hat{ $\Delta$}\hat{S}- â  s+ $\rho$ , (11)

\displaystyle \frac{\partial\hat{N}}{\partial\hat{t}}=\hat{D}_{N}\hat{ $\Delta$}\hat{N}-\hat{c}\hat{N}\hat{ $\rho$} , (12)

where S is scaled by t_{0}$\rho$_{0}b, N by an arbitrary reference quantity N_{0}, D_{S} and D_{N} by L_{0}^{2}/t_{0},
a by t_{0}^{-1} , and c by ($\rho$_{0}t_{0})^{-1}.

The stiffness in the response function $\delta$^{-1} is scaled as

\displaystyle \hat{ $\delta$}=\frac{ $\delta$}{V_{0}/L_{0}} . (13)

Equation (13) also prescribes the characteristic length L_{0} as L_{0}\sim \mathcal{O}(V_{0}$\delta$^{-1}) . This indicates

that the characteristic length L_{0} considered in this paper corresponds to the length scale

which is generated by the chemotactic response of the bacteria moving with a constant speed

V_{0}.

In the following text, we solely use the non‐dimensional quantities defined in this section

and omit ```\wedge, , in the notations of non‐dimensional quantities.

II. ASYMPTOTIC ANALYSIS

The continuum equations to describe the population density of chemotactic bacteria,

e.g., the Keller‐Segel equation [10, 11], are derived by the asymptotic analysis of the kinetic

chemotaxis equation.[12−14] In this section we derive the Keller‐Segel type equation for the
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population density of bacteria by the asymptotic analysis of the kinetic chemotaxis model

Eq. (9) in the continuum limit k\rightarrow 0 . In the following text, we solely consider the uniform

scattering, i.e.,  K=1/4 $\pi$, and small modulation parameters in the response function as

 $\chi$ s=k$\phi$_{S}, $\chi$_{N}=k$\phi$_{N} . (14)

Thus, the kinetic chemotaxis equation is written as

k^{2}\displaystyle \partial_{t}f+kv\cdot\nabla f=\frac{1}{4 $\pi$}\int_{|v|=1} $\Psi$(v')f(v')d $\Omega$(v')- $\Psi$(v)f(v)+k^{2}P[ $\rho$]f(v) , (15)

with

 $\Psi$(v)=1-k\displaystyle \{\frac{$\phi$_{S}}{2}\tanh(\frac{k\partial_{t}\log S+v\cdot\nabla\log S}{ $\delta$})+\frac{$\phi$_{N}}{2}\tanh(\frac{k\partial_{t}\log N+v\cdot\nabla\log N}{ $\delta$})\}.
(16)

By substituting the expansions  f=f_{0}+kf_{1}+k^{2}f_{2}+\cdots and  $\Psi$=1-k$\Psi$_{1}-k^{2}$\Psi$_{2}+\cdots,

we obtain the following equation,

kv\cdot\nabla f_{0}+k^{2}(\partial_{t}f_{0}+v\cdot\nabla f_{1})

=\displaystyle \frac{1}{4 $\pi$}\'{I} f_{0}(v')d $\Omega$(v')-f_{0} (v )

+k\displaystyle \{\frac{1}{4 $\pi$}\'{I}_{[f_{1}(v')-$\Psi$_{1}(v')f_{0}(v')]d $\Omega$(v')-[f_{1}(v)-$\Psi$_{1}}(v)f_{0}(v)]\}
+k^{2}\displaystyle \{\frac{1}{4 $\pi$}\int[f_{2}(v')-$\Psi$_{1}(v')f_{1}(v')-$\Psi$_{2}(v')f_{0}(v')]d $\Omega$(v')

-[f_{2}(v)-$\Psi$_{1}(v)f_{1}(v)-$\Psi$_{2}(v) f_{0}(v)]+P[$\rho$_{0}]f_{0}(v)\}+\mathcal{O}(k^{3}) . (17)

For the k^{0} terms in Eq. (17), we find that f(v) is constant as to v , so that, from Eq.

(10), we obtain

f_{0}(t, x,v)=$\rho$_{0}(t, x) . (18)

The equation for $\rho$_{0}(t, x) is obtained by integrating Eq. (15) as to v
, i.e.,

\partial_{t}$\rho$_{0}+\nabla\cdot J_{1}=P[$\rho$_{0}]$\rho$_{0} , (19)

where

J_{1}=\displaystyle \frac{1}{4 $\pi$}\int_{|v|=1}vf_{1}(v)d $\Omega$(v) . (20)

For k^{1} terms in Eq. (17), we have

v\displaystyle \cdot\nabla$\rho$_{0}=\frac{1}{4 $\pi$}\int_{|v|=1}[f_{1}(v')-$\Psi$_{1}(v')$\rho$_{0}]d $\Omega$(v')-[f_{1}(v)-$\Psi$_{1}(v)$\rho$_{0}] . (21)
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By integrating the above equation multiplied by v , we obtain

J_{1}=-\displaystyle \frac{1}{3}\nabla$\rho$_{0}+U[\nabla S, \nabla N]$\rho$_{0} , (22)

where

U[\displaystyle \nabla S, \nabla N]=\frac{1}{4 $\pi$}f_{|v|=1}v$\Psi$_{1}(v)d $\Omega$(v) . (23)

Here we use \displaystyle \int_{|v|=1}v_{ $\alpha$}v_{ $\beta$}d $\Omega$(v)=\frac{4 $\pi$}{3}$\delta$_{ $\alpha \beta$} , where $\delta$_{ $\alpha \beta$} is the Kronecker delta.

From Eq. (16), $\Psi$_{1} is written as

$\Psi$_{1}(v)=\displaystyle \sum_{F=S,N}\frac{$\phi$_{F}}{2}\tanh(\frac{v\cdot\nabla\log F}{ $\delta$}) . (24)

Thus, U[\nabla S, \nabla N] is calculated as

U[\displaystyle \nabla S, \nabla N]=\sum_{F=S,N}\frac{$\phi$_{F}}{8 $\pi$}\int_{|v|=1}v\tanh(\frac{v\cdot\nabla\log F}{ $\delta$})d $\Omega$(v) , (25a)

=\displaystyle \sum_{F=S,N}\frac{$\phi$_{F}}{4}|\nabla\nabla 1loogg
F

F|\displaystyle \int_{-1}^{1}w\tanh(\frac{w|\nabla\log F|}{ $\delta$})dw . (25b)

Finally, we obtain the reaction‐diffusion‐drift equation for the population density $\rho$_{0} , i.e.,

\displaystyle \partial_{t}$\rho$_{0}+\nabla(U[\nabla S, \nabla N]$\rho$_{0})=\frac{1}{3} $\Delta \rho$_{0}+P[$\rho$_{0}]$\rho$_{0} , (26)

where U[\nabla S, \nabla N] ,
which is written in Eq. (25), represents the drift generated by the

chemotactic responses of bacteria.

III. NUMERICAL RESULTS

In this section, presented are the numerical results obtained in [15], where the traveling

pulse of the population density of bacteria in a micro channel is investigated by Monte Carlo

(MC) simulations for the kinetic chemotaxis model. The MC results are also numerically

compared with the Keller‐Segel type equation obtained by the asymptotic analysis of the

kinetic chemotaxis model. The geometry of MC simulation is shown in Fig. 1, where the

uniform lattice‐mesh system is used to calculated the chemoattractants S and N , i.e., Eqs.

(11) and (12), by a finite volume scheme and MC particles (which represent each bacterium)
are distributed in each lattice site. The MC particles are initially accumulated in the vicinity

of x=0 while the concentration of nutrient N is uniformly distributed as N=1 and that
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FIG. 1: The geometry of Monte Carlo simulation. The motions of bacteria are calculated by

the MC particles while the concentrations of chemoattractants are calculated by the finite volume

scheme on the uniform lattice‐mesh system. The specular reflection condition for the MC particles

and the non‐flux condition for chemoattractants are considered at left‐ and right‐side walls in the

channel while the periodic conditions are considered for both MC particles and chemical cues in y

and z directions. [Figure 1 in [15] is reused.]

TABLE I: The values of parameters.

of secretion S is uniformly zero initially. For more details in the MC method, one can refer

[15]. In the following of text, we only consider the non‐proliferation case, P[$\rho$_{0}]=0.
The Monte Carlo simulations are carried out with variations in k , i.e., k=0.02 , 0.01, 0.005,

0.002, and 0.001, whereas the values of other parameters are fixed as shown in Table I, where

the parameters� values are chosen so as to correspond to the experimental measurements

in [? ] . The drift‐diffusion equation for the population density of bacteria, i.e., Eq. (26)
with P=0 , is \mathrm{n}_{\backslash }umerically calculated with the finite volume method in the one‐dimensional

extent, where flux U , Eq. (25) (x component), is also calculated at each time step by using

the Simpson�s integral method according to the gradients of chemoattractants obtained at

the previous time step. To obtain the accurate results for small values of k (or large tumbling
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FIG. 2; Comparison of the population densities of bacteria for different values of k and for the

asymptotic limit at time t=0.5.  $\epsilon$ in the figure corresponds to  k in the text. [Figure 12 in [15] is

reused.]

frequencies $\psi$_{0} ) in Monte Carlo simulations, the time‐step size  $\Delta$ t and particle number M are

set sufficiently small and sufficiently large, respectively, as At =1\times 10^{-4} and M=226560.

For the numerical accuracy tests, please refer [15].

Figure 2 shows the snapshots of the population density of bacterial obtained by the

MC simulations with variation in k and that obtained by the finite volume calculation

of Eq. (26) and (25). It is seen that the results of MC simulations are asymptotically

close to the asymptotic solution in the continuum limit as k decreases; the snapshot of the

populati�on density for k=0.001 obtained by the Monte Carlo simulation almost coincides

with the asymptotic solution in the continuum limit. However, significant deviations from

the asymptotic solution are still observed for moderately small values of k
, i.e.,  $\epsilon$>0.01\sim.

Figure 3 shows the convergence of the traveling speed \hat{V}_{\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}} scaled by k in the continuum

limit  $\epsilon$\rightarrow 0 . It is seen that as increasing the stiffness parameter $\delta$^{-1} , the results obtained

with Eq. (3) converges to those obtained with the sign response function and the result of

the sign response function converges to that obtained by the analytical formula in Ref. [17]
in the continuum limit k\rightarrow 0 . This also demonstrates that the MC method can accurately

reproduce the ànalytical result of the traveling speed obtained in Ref. [17].
It should be noted that the parameter k depends not only on the biological properties

of bacteria but also on the characteristic length L_{0} of the system. Thus, the parameter

k becomes significant when we consider, for example, the cluster formation of bacteria in
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FIG. 3: The traveling speed of the population pulse vs. the inverse of k for different stiffness

parameters. For $\delta$^{-1} \rightarrow \infty , the hyperbolic tangent in Eq. (3) is replaced with the sign function

\hat{X}/|\hat{X}| . The left arrow shows the traveling speed for $\delta$^{-1} \rightarrow \infty in the continuum limit obtained

by the analytical formula in [17].  $\epsilon$ in the figure corresponds to  k in the text. [Figure 13 in [15] is

reused.]

the micro devices, in which the characteristic length L_{0} should be small. In fact, the mean

tumbling frequency $\psi$_{0} and constant speed V_{0} of bacteria are measured as $\psi$_{0}=3.0[1/\mathrm{s}] and

V_{0} =25 [ $\mu$ \mathrm{m}/\mathrm{s}] in [16]. Thus, when we consider a micro system with characteristic length

L_{0} = 500 [ $\mu$ \mathrm{m}] , the non‐dimensional parameter k is calculated as k=0.017 . We remark

that the deviation between the kinetic and Keller‐Segel equations is obviously observed in

both population density profile and traveling speed for the above value of k . The deviations

observed for moderately‐small values of k indicate that the kinetic chemotaxis model can

take on a significance in the investigation on the micro scale systems. This result also

demonstrates the restriction of the continuum model (e.g., Keller‐Segel type equation) and

the importance of the kinetic chemotaxis model in the investigation on the micro‐scale

systems with moderately‐small values of k.
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