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1D BOLTZMANN EQUATIO’N_ IN A PERIODIC BOX
KUNG-CHIEN WU

ABSTRACT. We study the nonlinear stability of the Boltzmann equation in the 1D periodic
box with size 1/e, where 0 < ¢ « 1 is the Knudsen number. The convergence rate is
(14¢)~1/21In(1 4 t) for small time region and exponential for large time region. Moreover,
the exponential rate depends on the size of the domain (Knudsen number). This problem
is highly nonlinear and hence we need more careful analysis to control the nonlinear term.

1. INTRODUCTION -

1.1. The 1D Boltzmann equation. The 1D Boltzmann equation for the hard sphere
model reads

61F+§1BEF= éQ(F, F),
F(szvg) = Fo(l',g),

where Q(-,-) is the so-called collision operator given by

Qo) = 5 [ 1= 9O0h(E) — 9(Eh(e) + 9€IH(ED + EDMENIE - &) - O

with

1)

U={(€.0) R xS : (£~£&) 220}
and
\ék,:g_[(f—g*)’ﬂ]ﬂ: EL:§*+[(£_§*)Q]Q
Here ¢ is the Knudsen number, the microscopic velocity ¢ € R? and the space variable
z € Ti, the 1D periodic box with unit size. In order to remove the parameter ¢ from the
equation, we introduce the new scaled variables:

then after dropping the tilde, the equation (1) becomes
' { OF +£08,F = Q(F,F), (t,z,§) eR* x T}, xR?,

F(Oaz7£) = FO(‘T>€)7
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where T} /- denotes the 1-dimensional periodic box with size 1 /€. The conservation laws of
mass, momentum and energy can be formulated as :

(3) % /T%/E /R {1,5,.|§[%}F(t, z,8)dédz = 0.

It is well-known that the Maxwellians are steady state solutions to the Boltzmann equation.
Thus, it is natural to linearize the Boltzmann equation (2) around a global Maxwellian

w(f) = (273)3/2 exp (_|2§|2) 7

with the standard perturbation F(t, z,€) and Fy(z, &) to w as

F=w+w'f, Fy=w+nuw'?f,, n<l.
Then after substituting into (2), we have the 1D Boltzﬁlann equation near Maxwellian
(0 +&8f =LF+T(1, ), (t2,6) R x Tl x R?,
f(0,z,8) =nfo(z,§),
Lf = w2 [Q(w,w'/?f) + Qw2 f,w)],
| (/) = w™2Q(u 2 £, w2 ).

The null space of L is a five-dimensional vector space with the orthonormal basis {x;}%,,
where

4)

1 .
{X07 Xis X4} = {w1/27 giw1/2a %(IEP - 3)w1/2} y U= 17 27 3.

Assuming the initial density distribution function Fy(z,£) has the same mass, momentum
and total energy as the Maxwellian w, we can further rewrite the conservation laws (3) as

6 [ [ o ofueler}ne dedz —o.
1/e

This means that the initial condition fy(z,£) satisfies the zero moments condition.

1.2. Review of Previous Works. There have been extensive investigations into the rate
of convergence for the nonlinear Boltzmann equation, let us mention some of them. In
the context of perturbed solutions, the first result was given by Ukai [10], where spectral
analysis was used to obtain the exponential rates for the Boltzmann equation with hard
potentials on the torus. .

The so called L? — L™ framework has been developed by Guo [4]. The name is self-
descriptive: the coercive property of the linearized collision operator is captured in L2
space, whereas the weighted L* estimate is derived by careful analysis of the iterated
Duhamel formula to control the bilinear perturbation. This idea can also be applied to the
Boltzmann equation near rotational Maxwelloian [5] or relativistic Boltzmann equation [9].
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Besides those methods mentioned above for the study of rates of convergence, the en-
tropy method, which has general applications in existence theory for nonlinear equations.
By using this method, as well as an elaborate analysis of functional in€qualities, time-
derivative estimates and interpolation, Desvillettes and Villani [1] first obtained the almost
exponential rate of convergence of solutions to the Boltzmann equation on the torus with
soft potentials for large initial data, under the additional regularity conditions that all
the moments of f are uniformly bounded in time and f is bounded in all Sobolev spaces
uniformly in time. By finding some proper Lyapunov functionals, defined over the Hilbert
space, Mouhot and Neumann [6] obtained exponential rates of convergence for some kinetic
models with general structures in the case of the torus.

For the 1D Boltzmann equation, we need to mention the method of Green’s functions,
it was found by Liu and Yu [7, 8] to expose pointwise large time behavior of solutions to
the Boltzmann equation and get detailed information on how varies types of fluid-kinetic
waves propagate. In Liu and Yu’s paper, they got the nonlinear stability of the Boltzmann
equation in the 1D whole space case.

Under the same setting of this paper, the 3D case can be found in [12]. However, in ‘1D
case, the nonlinear effect is much stronger than the 3D case.

1.3. Main result. Before the presentation of the main theorem, let us define some nota-
tions in this paper. For the microscopic variable £, since we consider the one-dimensional
problem, by a shift of the variables £, and &3, we can restrict the functional space to

={r: [ toxpae=o, [ i <ool.

11z = ([ 1) ™

The Sobolev space of functions with all its s-th partial derivatives in L? will be denoted
by H{. The Lg inner product in R? will be denoted by (-,-)¢ and the weighted sup norm
is denoted by

and we denote

(1+1€)?

||f||ng>ﬁ = ::ng 1£(€)

For the space variable z, we have the similar notations. In fact, L2, 1 < p < oo is the
classical Banach space with norm

Itz = ([ 1fraz)”,

1/e

and the Sobolev space of functiorns with all its s-th partlal derivatives in L2 will be denoted
by HZ. We define the sup norm by

Il = sup |f(z)].

ze']l‘l/E
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In this paper, if f € LLg% N L} L, we define the triple norm ||| - |||s by
iANs = I fllzgere, + 1 fllazg, -

For simplicity of ﬁotations,‘hereafter, we abbreviate “ < C'” to “ <”, where C is a positive
constant depending only on fixed number.
In the following, we describe our main result.

Theorem 1. Assuming that 0 < ¢ < 1, 8 > 5/2. Then there exists n > 0 such that if
Fo(z,8) = w+ nw? fo(z,€) with fy € L”Lg°ﬂ, 1 < p < oo and satisfies the zero moments

condition (5), there exists a unique solution F(t,z §) = w+w'/?f(t,z,¢) to the Boltzmann
-equation (2) such that :

Iflleores, S me™™ t(l +6)7 2 In(1+1)l[|follls

€6 "

for some constant @ > 0.

1.4. Method of proof and plan of the paper. Motivated by [7], we want to estimate
the "main part” of the solution carefully. More precisely, we decompose our solution as
the fluid part and non-fluid part, then one can estimate the leading part of the fluid and
non-fluid parts separately, which are the "main part” of the solution. Once the estimate
of the leading parts completes, we subtract it and then estimate the tail part. This careful
analysis will help us control the nonlinear term.

The paper is organized as follows: we list some properties of the linearized collision
operator and some basic estimates in section 2, then proof the main theorem in section 3.

2. PRELIMINARIES

Let us review some basic properties of the linearized collision operator L:

Lemma 2. ([3] Grad’s decomposition) The collision operator L consists of a multiplicative
operator v(€) and an integral operator K: Lf = —v(&)f + K f, where

Kf = [ Wi creds.

is the linear integral operator with kernel

L (6P = 1&P?  [E—&P\  lE-&l €1 + 1€ ]2
W(g’g"‘)_ﬂ_vr|s—§*|e",p{‘ BE-&fF 8 } 2 e"p{‘—4 }

and the multiplicative operator V(E) is given by

e? . €l 2 |
y(€) = \/_[26 +2(1¢] + [¢] )/0 e 2du:|.

Moreover, for multiplicative operator v(€), there exist vy, 11 > 0 such that

w(l+¢]) S v(§) <n1 4+,
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for some constants vy, 1 > 0. The integral operator K has smoothing properties in &, i.e.,
there exist constants Cx and Cgr such that

(6). ' 1K fllzgs, < Crolifllzzs 1K fllg,,, < Crllfllzg,
for any 8 > 0.

Lemma 3. (Spectrum of —ineé1k + L [2]) Given §>0,
(i) there exists 7, = 11(8) > 0 such that if ek| > 6,

o - Spec(ek) C {z € C: Re(z) < =7} .

(i) If |ek| < 6, the spectrum within the region {z € C : Re(z) > —7} consisting of
ezactly three eigenvalues {o;(ek)}3_,, '

(8) Spec(ek) N {z € C: Re(z) > —n} = {oj(ek)}oos s
and the corresponding eigenvectors {e;(ek) ?:1. They have the expansions
0;(ek) = iajalek| — ajalekl” + O(lekl?)

9)
ej(ek) = E; + O(|ek])

here a;a > 0, <ej(—5k’),6[ (k) >§ =0, 1<,1<3 and

011— 2, a1 =0, az=-— \/;,
(10) E1=\/%X0+\/;X1+\/gX47

' E2=—\/gX0+\/§X4,
E3=\/%Xo—\/gxl+\@><4‘

More precisely, the semigroup e(="*+L)t can be decomposed as
e(—iwe§1k+L)tf _ e(—i1r5£1k+L)tHlJc.f

3
(11) : » + 1{jek|<s} Z eaj(Ek)t<ej(—Ek), f>£ej (k).
: o
where 1¢y is the indicator function. Moreover, there exist a(r1) > 0, @ > 0 such that
[le(imek+ LT, 2 S et and %Mt < e @Ikt for o]l 1 < § < 3.

Lemma 4 and Lemma, 5 are useful for the estimate of the fluid part.

Lemma 4. If0<e <1, k€Z,a>0,s>0andt is in the short time region, i.e.,

etk 1, then
1 . .
- l Z Iek’se—a]§k|2t ’S e—agzt(l +t)_(1+s)/2 )
1/l |ek|<6,k0
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Let h(z,£) be any function with zero moments condltlon one can define the ﬂuld pro-
jection Py and non-fluid projection IP; as follows:

Bh(m €)= Y €™ ei(—ck), (R)e)ees(ck),

|elc|<6 k#£0

(12)
Poh(z,§) = ZM (2,€), Pih(z,€) = h(z,€) — Poh(s,),
where .
A(€) = =— [ h(- e "*dg.
|T1/5, T!

Let Gt be the solution operator of the linearized Boltzmann equation, i.e., g = Glgy and
g satisfies the equation

{ &g +&0:9=Lg, (t,z,§) eRT xTj, xR?,
g(O,w,ﬁ) =90(x7€)'

We have the following linear and nonlinear estimates:

(13)

Lemma 5. Assuming that 0 < e < 1, 8> 0, we have

(14) G Pogolzzzz, S (14+6) % golzsz,

and

(15) IGEPogoll 2rge, S (1 +8) 746 i golla ge,
Moreover, for the nonlinear estimates, we have

(16) IGEPOT (X1, Xa)llzgorgs, S (1+8) e ™| Xa |l 21ge, | Xa | z22ge,
and

(17) “GZPUI‘(XI,XQ)HLJ%L& <1+ t)_3/46‘_662t||X1I|L§LE?B”XZHLﬁLg’p _

Proof. 1t is obvious.that

3
GiPogo =), Y €M (c;(—ek), (Go)r)es(ck).
J=1 |ek|<6,k#0

For linear estimate (14), applying the zero moments condition (5) and lemma 4, we have

IRl <3 S [ Gl

3=1 |ek|<d;]k|30

1 g2

T E et t“Qo”L;Lw

IT!, | , ¥
1/l |ek|<s; |k|;eo

S (14672 gyl 1y s

N
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For linear estimate (15), applying the zero moments condition (5), Cauchy-Schwarz in-
equality and lemma 4, we have

3

2 ek imek-
_”‘GZPOQO”Lng?ﬁ 5 ” Z Z e%i(ek)t gime z< ( Ek 90 k>€6] sk) s
Jj=1 |ek|<6-|k|¢0 .6

< T /612 Z leaj(Ek)tlzKej(_Ek),(%)k>£l2

7=1 |ek|<8;|k|#0

SIS S @,

§=1 |ek|<8;|k]0

-2 2 ~
ST Y e P @l

|eki<d;|k|£0

1 _ 2
S 2. M laollng, -
1/el k| <85/ k)£0

This means that

”G PoQO“LzLoo SA+t)” 1/4g—ae t“gO”L}_.LEB

For the nonlinear estimate, note that
GIPIT(X1, Xa) = Y emhmeit(e;(—ek), (T(X1, Xa2)), ) ¢
lek|<8,k#0

We need to observe some cancelation properties from
<6j(—€k), (F(Xl, Xz)) >5 .-

One can check that E; are collision invariants of the operator Iforalll < j<3. We then
have

(es(=eh), (0K X)) = (Ei(—h), (P, X)),

where €;(ek) = e;(ek) — E;.
For nonlinear estimate (16), note that e;(ck) decay faster than any polynomial, similar
to the linear estimate, we have

1 —alek)? - -
"GZP{JF(XlaXZ)”L“’LEB ST Z ek k] || (€) 1F(X1’X2)”L;Lg°,,
1/6 |ek|<8,k5£0 '
S A+ 07 ™ Xl nangs 1 Xallzrgs, -

The estimate of (17) is similar and hence we omit the details. This completes the proof of
the lemma. O
Lemma 6 is useful in the estimate of the nonfluid part.
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Lemma 6. Assuming that 0 < ¢ < 1, B > 3/2, then g = GiP.gy has the following

estimates

(18) IGEP1goll s, S € llgollzsr,

and

(19) IGEPgoll 22z, S €™ ligollr2ses, -
Moreover, if 8> 5/2, then

(20) I|G2P1F(X1,X2 ”LNL?, Ct”Xl”Lg’L‘E”ﬁ”XﬂlLI =L,
and

(1) G (X0, Xo)| 1y, € VN Xll 2y [ Xell e, -

The proof of this lemma, is based on the process in section II, part A and part B of [12]

and hence we omit it.

3. PROOF OF THE THEOREM

3.1. Fluid-nonfluid decomposition. Now, we decompose our solutlon as the fluid part

(22) and nonfluid part (23):

) { du+610,u = Lu+PL(f,f), (t7,6) R x T}, x R,
22 ‘
’ U(O,m‘,&) =77P0f0(-757§),
and .
dut + &0ut = Lut +PiD(f, f),  (t,7,8) €RT x T}, x R?,
(23)
ul(07x7 5) = nIPIfO(z7 f) .

This means that

£(t,2,€) = u(t, 2,€) + u' (t,,6).
3.2. Leading fluid part. We define the leading fluid part as follows: _
{ 8tU+518zU:LU+IP’OF(U,U), (t$£)€R+XT1/€XR3,

U(Ov iL‘,f) = n]POfO(x7£) -

In order to solve U, one can design the following iteration' '

(24)

O Unt1 + €10:Uns1 = LUpa + Bol(Un, Up), - (8,7,6) € RY x T}, x R?,

Un+1(07m, é) = UIPOfO($7§) P
Uy=0.
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We have
3 .
Un+1 =7 Z Z ei‘rrskmedj(ak)t<ej(—€k), (fo)k>£ej(5k)
7=1 |ek|<d,k#0
t 3 o
+/ Z Z eiweka:eﬂj(sk)(t—s)<6j(—_Ek‘), (T(U,, Un))k>5(', s)e;j(ek)ds .
0. j=1 |ek| <8 k50

Lemma 7. Assuming that 0 < & < 1, 8> 5/2 and n is small enough, then we have
1Unllzzre, S IULllczrg, + 772(;l + 7‘5)_1/48_,652t||f0||i;Lg§,

sLgs ~
- —ae2
| S (L +8)74e™ (| fol -
and '

Ui, S I0ilzazg, + 721+ 71001 + 0 foll2y
< 01+ 872 In(1 + e ol

Proof. We prove L2LZ, estimate first. The cases for n = 1 can be found in (15). For

n =2, by (17), we have

1
~ae2(t— -
0o, S WUilizsg, + | 00+t 40 i, s
0 ,

4 .
S‘ ”Ul”LgL??ﬁ + 7]2/ e—asz(t—s)(l +t— s)-3/4e—2a523(1 + S)_l/zdsmfo'”%
0

- —ae? - —ae?
S+ )7 4T follls + 77 (1 + £) 4T ol -

For n > 2, we claim our estimate by induction and omit the detail here.
~ On the other hand, in L°Lg estimate, the cases for n = 1 can be found in (14). For
n > 2, by (16), we have

t
1Unllzgeres, S NUillgrg, +/ eI (14t — 8) " Un-172.1g0, ds
0. :

t
S Vhllssers, + 7 / (L 4 ¢ — )T TER(1 4 )72 | ol 3

— —ae? _ ‘ —ae2
S+ )72 (| folllg + n*(L +8) 72 In(1 + £~ || folll3 -
This completes the proof of the lemma. ' O

We apply this iteration scheme to get the following existence and uniqueness of the
leading fluid part. '

Proposition 8. Assuming that 0 < e < 1, 8 > 0 and n small enough. Then there exists
a unique solution U(t,z,£) to the leading fluid part (24) such that

Ul 2eogs, S me (1 + )~ In(1 + 6)[||follls
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for some constant @ > 0.
3.3. Leading nonfluid part. We define the leading nonfluid part as:
OU* + £0,U = LU + PT(U,U), (t,7,6) € RY x T}, x R®,
) { U*(0,2,8) = 1P1folz,€),
where U is the leading fluid part. Then

t
Ut = nGiP fy + / Gr*P, (U, U)(-, s)ds
0

One has the fbllowing proposition:

Proposition 9. Assuming that0 <e <1, 3> 5/2 and 1 small enough. Then there exists
a unique solution UL(t,z,£) to the leading nonfluid part (25) such that

10 i1, S me™® (1 + )7 (L + 1)l oll]s

and

- a€2
N0 Nz, S me™™ (L + &) a1 + &) foll -

3.4. Estimate of the tail part. We define the tail fluid part and tail nonfluid part as
follows:

v=u-U, vt=ult-U*.
Then the tail fluid part v solves the equation

O + &0,v = Lv +Pol(v + vt v + vb) + 2Po'(v + v U4+ UY)
(26) +P DU, Ut) + 2B T (U, U),

v(0,2,§)=0.
On the other hand, the tail nénﬂuid part vt solves the equation
Ot +€10,v = Lot + PiT (v + vt v+ ot) + 2P T (v + o1, U + U)
(27) +P, DU+, U4) + 2P T(U, UY),
v (0,2,8) =0

Similar to the leading fluid part, one can design a iteration to get the followmg existence
and uniqueness of the tail part.
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Proposition 10. Assuming that 0 < ¢ € 1, § >5/2 andn small enough. Then there
ezists a unique solution of the system (v,v") to the tail part (26)-(27) such that )

lollzargs, S nPe ™1 +8)=4In(1 + 0)|||folI13,

ot lzazg, S 72 (1 + 4 1w2(1 + DI fIIE,

[ollzeorgs, S nPe™™ (1 +6)" (L +1)|[| fol 13,

o o ge, S mPe™™ (1 +6)*2 (1L + B[] fol[[3 -
for some constant @ > 0.

With Proposition 8, Proposition 9 and Proposition 10, we have our main theorem.
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