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INTEGRABLE MODULES OVER AFFINE LIE SUPERALGEBRAS
sl(1[n)®

MARIA GORELIK, VERA SERGANOVA

ABSTRACT. We describe the category of integrable sl(1|n)()-modules with the positive
central charge and show that the irreducible modules provide the full set of irreducible
representations for the corresponding simple vertex algebra.

1. INTRODUCTION

Let g be the Kac-Moody superalgebra sl(1|n)¥,n > 2. Recall that g5 = gl{V. We call
a g-module integrable if it is integrable over the affine Lie algebra sl,,(1), locally finite over
the Cartan subalgebra b C gls) and with finite-dimensional generalized h-weight spaces.

We normalize the invariant form on g in the usual way ((a, @) = 2 for the non-isotropic
roots a). Let Fj be the category of the finitely generated integrable g-modules with
central charge k. This category is empty for k & Z>o. In this paper we study the category
Fi for k € Zso. By [FR] (Theorem C) the irreducible objects in Fj, are highest weight
modules (for & > 0); these modules were classified in [KW]. We describe the blocks in
Fi in Corollary 3.2.1 and Theorem 3.6.5; in Corollary 5.4 we show that Duflo-Serganova
functor provides an invariant for the atypical blocks.

Recall the situation in the usual affine Lie algebra case. Let t be an affine Lie algebra,
V*(t) be the affine vertex algebra with central charge k and Vi(t) denote its simple quo-
tient, Let k£ # 0 be such that V;(t) is integrable (as a t-module). Then the vertex algebra
Vi(t) is rational and regular:

(a) the irreducible integrable t-modules of level k provide the full set of irreducible
representations for Vi(t);

(b) there are finitely many (up to isomorphism) irreducible Vj(t)-modules;
(c) any representation is completely reducible.

For positive energy modules (a), (c) are proven in [FZ]; (b) follows from (a) and the
fact that there are finitely many irreducible t-integrable modules of level k. In [DLM] it
is shown that any module is a direct sum of positive energy modules.
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Let V*(g) be the affine vertex superalgebra (for g = sl(1|n)™,n > 2) and let Vi(g) be
its simple quotient. As a g-module, Vi (g) is integrable if and only if k is a non-negative
integer. In Theorem 6.1 we will show that for k 5 0 (a) holds for positive energy modules:
the irreducible modules in F; provide the full set of irreducible positive energy modules for
Vk(g). Since g has infinitely many irreducible integrable modules of level k (for k € Z),
(b) does not hold; (c) also does not hold. In this paper we classify the blocks of F, and
describe these blocks in terms of quivers with relations.

The results of this paper were reported at the conferences in Uppsala in June 2016 and
in Kyoto in October 2016.

Acknowledgments. We are grateful to V. Kac for helpful discussions.

2. PRELIMINARIES

Let g = sl(1|n)V). Recall that by definition an integrable g-module is integrable over
the affine Lie subalgebra 5[511) C gg and locally finite over the Cartan subalgebra h. Recall
also that b N [s1), s1] acts diagonally on any integrable sI’-module.

Note that Fy is the full subcategory in the thick category O. In particular, it is equipped
with a covariant duality functor D inherited from the contragredient duality in category
O. For any simple object L we have D(L) ~ L. In particular, Ext'(L, L') = Ext}(L/, L)
for any two simple objects L and L'.

2.1. Sets of simple roots. A Dynkin diagram for g is a cycle with n + 1 nodes: there
are two nodes which correspond to the odd isotropic roots and these nodes are adjacent.
The minimal imaginary positive root § is the sum of all simple roots.

We fix a triangular decomposition of gz and consider only triangular decompositions of
g which are compatible with it (i.e., A} is fixed). We denote such sets of simple roots by
%, ¥, etc.

For a fixed set of simple roots ¥ we consider the standard partial order on h* given by
A > pif and only if A — p € ZxoX.

2.1.1. Let Iy be a set of simple roots for A¥ (recall that Il is fixed). For any odd root
B there exists a unique o € IIj such'that {(a,8) = —1 and a unique o € Il such that
(8,a') = 1; the set

T ={B,0' - f}uU (o \ {'}).

is a unique set of simple roots containing S.

2.1.2. Odd reflections. Recall that for an odd root 8 belonging to a set of simple roots %,
the odd reflection 73 gives another sets of simple roots 732 which contains —p3, the roots

32



INTEGRABLE MODULES OVER AFFINE LIE SUPERALGEBRAS sl(1]n)®

a € X\ {B}, which are orthogonal to 8, and the roots o + B for & € £ which are not
orthogonal to 3. One has

At (rgZ) = (AT (D) \ {BH) U {-B}.

Any two sets of simple roots are connected by a chain of odd reflections. We call a
chain “proper” if it does not have loops (i.e. subsequences of the form rgr_g). Two sets
of simple roots are connected by a unique “proper” chain of odd reflections.

Let X be a set of simple roots. One readily sees that the chain rg,r5, | ...75 Y is proper
if and only if B,...,8, € AT(X). Let 8 € T be an odd root and X’ be a set of simple
roots containing B (by above, ¥’ is unique). If 8 € A+(X), then the proper chain which
connects ¥ and ¥’ does not contain the reflections r14; if 8 € —A*(X), then the proper
chain is of the form &' =rg,rg,_, ...75 %, where 8, = B.

2.2. Simple modules. For a set of simple roots ¥ we denote by Lx()) the irreducible
module of the highest weight A with respect to the Borel subalgebra corresponding to 3.
For an irreducible highest weight module L and a set of simple roots ¥ we set pwtsL := A
if L = Ly(\ — ps) (where ps, is the Weyl vector for X, i.e. (pz,a) =1 (resp. 0) for even
(resp. odd) @ € X). If @ € ¥ is an odd root we have

1) pwty 5L = {pwtzL if (‘)\, a) #0,
“ pwtsL+a if (A a)=0.

From (1), it follows that Ls()) is integrable if and only if (A\,a) € Zyxo for every
even o € ¥, and for two odd roots 8,82 € ¥ one has either (A, B; + B2) € Zsp or
(A, B1) = (A, B2) = 0. Since 6 is the sum of simple roots, the central charge of a highest
weight module Lx(A) is (A, )", cx @). In particular, if Ly(\) is not one-dimensional, its
central charge is a positive integer.

2.2.1. We fix a set of simple roots X = {a;}}-,, where ay, a; are odd. Note that (a1, as) =
1. By above, the irreducible objects of Fi are the highest weight modules L where pwty L
satisfies the following condition. If a; = (pwisL, @;), then

(i) a; €Zspfori=00ri=3,...,n;
(ll) a1+ ag € Zsg or aq = ay = 0;
(iii) ap+a1+---+a, =k+n—1

Notice that the numbers {a;}}, determines (up to isomorphism) L as [g, g]-module
(and thus V*(g)-module). For the g-modules L()), L(A+ s6) the numbers {a;}2_, are the
same, however the Casimir element acts on L(\) and on L(\ + s6) by different scalars.

2.2.2. Lemma. Let Ls()) be integrable and all (A, @) € R for all « € &. Then there
ezists a set of simple roots ¥’ such that (A + pg,a) > 0 for every a € &',
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Proof. Recall that (A+ ps,d) = k+n— 1. Note that (£ \ {1, a2}) U{as + $8,an — s} is
a set of simple roots for any s € Z. Therefore without loss of generality we may assume
that

2 0<(A+pma) <k+n-1

If 0 < (A + px, a2), we take &' = &. Assume that (A + pg,a3) <0. Forr=2,...,n+1
set B, := > ;_, a; (Where ayy1 := ap). Then § = fBp11 + o, 50 (2) gives

(A+ p21ﬂ2) < 07 ()‘ +p2113n+1) > 0.

Let s be maximal such that (A+ px, 8s) < 0. For &’ := rg, ... 7,2 the isotropic roots are
—Bs and Byy1. Since (A + ps, —Bs), (A + px, Bs41) = 0, T' is as required. O

2.2.3. Definitions. Let L be an irreducible highest weight module.

Recall that L is called typical if (pwisL,c) # 0 for any (isotropic) odd root o and
atypical otherwise. From (1), it follows that this notion does not depend on the choice of
¥ and, moreover, pwts L does not depend on ¥ for typical L.

We say that L is X-tame if (pwitsL, 8) = 0 for some odd 8 € . Any atypical L (for
sl(1,n)) is tame with respect to some X.

Let 8 be an odd root: We call an odd reflection rg L-typical if for ¥ containing 3 one
has (pwtsL,B) # 0 (by 2.1.1, ¥ is unique). Note that if & and ¥’ are connected by a
chain of odd L-typical reflections, then pwts(L) = pwits/(L).

We say that A € b* is regular if (A, @) # 0 for any even real root and that ) is singular
otherwise.

We say that L is T-regular if pwtsL is regular and that L is regular if it is X-regular
for each ¥. We say that L is X-singular if it is not X-regular and that L is singular if it
is not regular. By 2.2.1, L is ¥-singular if and only if (pwtL,a) = 0 for both odd roots
a € ¥ (in particular, in this case L is X-tame).

2.2.4. Character formulae. If L()) is typical, then ch L()\) is given by the Kac-Weyl char-
acter formula; if L()) is atypical and -tame, ch L(}) is giverr by Kac-Wakimoto formula,

see [S2],[KW].

2.3. Fix ¥ asin 2.2.1.
Lemma. Let L = Ly()) be atypical. Set p = px.

(i) There exists &' such that L is X'-tame and X' is obtained from & by a sequence of
L-typical odd reflections (in particular, pwtsyL = X+ p).

(i) L is E-regular if and only if there exists a unique odd B € A*(X) such that () +
p,B)=0;
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(i4) L is regular if and only if there exists a unique odd B € A*(X) such that (A+p, B) =
0 and that (A + p,a) # 1 for a € Iy such that (8,a) = —1.

Proof. (i) Since L is atypical, (pwis L, 8) = 0 for some odd 3. We can choose 8 € A*(Z).
There exists X" obtained from ¥ by the sequence of odd reflections such that 8 € £".
Therefore we proceed applying the odd reflections to ¥ until we obtain a base ¥/ such that
(pwtsL,a) = 0 for some a € ¥’. All the odd reflections which we applied are L-typical,
so pwts L = pwtsyL. Thus L is ¥'-tame.

(if) Let (A + p,B:) = 0 for distinct odd roots Bi,8: € A¥(Z). Either B + B2 or
p1 — B2 is an even root, so (A + p,a) = 0 for some a € A}. By 2.2.1, @ = a4 + @ and
(A+p,01) = (A + p,az). This gives (ii).

For (iii) assume that L is ©-regular. By (ii) 8 is unique and thus ¥’ containing 3 is ¥’
as in (i). By above, o € ¥’ and rgX contains the odd roots a + 8 and —3. One has

pwirsr L = pwisyL — =X+ p— B.
In particular, (pwt, ;s L, —f) = 0 and
(Pt Lya+ ) = (A+p—B,a+B) =(A+p,a) - 1.
We conclude that L is ¥'-regular if and only if (A+p, @) # 1. In particular, if L is regular,

then (A 4+ p,a) # 1.

Now assume that L is singular and X-regular. Then there exists " # ¥ such that L
is X"-singular. We will assume that X" is the closest.to X, i.e. that L is regular with
respect to any set of simple roots between ¥ and ¥”. Let 3, 8> be odd roots in ¥ such
that (pwtsvL,B;) =0 for i =1,2. Let ¥ =r,,...7r,,X" be a proper chain. Then v; is 5
or B and 7; € At (r, X))\ {-m} fori=2,...,s. Let 1 = 8. By above, L is tame and
rg,L"-regular. Then for i =2,...,s, r, is L-typical, so

puwts L = p’wtrﬁlan = pwtgn L — ;.

One has —f; € A*(Z), f1+ f2 € Il and (—p1, p + f2) = —1. By above, (pwt, L, —f:) =
0, (pwts L, B1 + B2) = 1 as required. 0

3. THE CATEGORY OF INTEGRABLE sl(1|n)()-MODULES WITH POSITIVE CENTRAL
CHARGE

In this section we will describe F, for & > 0.
Fix a set of simple roots X; let oy, as be odd roots in X.

We denote by Msxy()) s Verma module of the highest weight A for the Borel subalgebra
corresponding to ¥'. We write L(p) (resp., M(p), p) for Ls(u) (resp., for Mx(u), px).
Denote by V(1) the maximal integral quotient of the Verma module M (u).
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3.1. Maximal integrable quotient of a Verma module. If )\ + p is typical, then for
any set of simple roots ¥’ one has M()\) = Ms/(X), where A+ p= X +p'.

If A+ p is atypical, then, by Lemma 2.3, there exists ¥’ such that L is ¥’-tame and ¥’
is obtained from % by L-typical odd reflections. In this case, M(A) = Mx:/(X) for X as
above and Msx/(X) is ¥'-tame, i.e. (X + p/,a) = 0 for some isotropic a € ¥'. In other
words, any atypical Verma module is isomorphic to a tame Verma module for a suitable
set of simple roots.

In [S2] the following lemma. is proved (Lemma 14.3).

3.1.1. Lemma. Let L = L()\) be an integrable module.
(1) If (A, ;) =0 fori=1,2, then V(X) = L()).

(ii) Assume that (A, ;) # 0 fori =1 ori=2. Then the character of V()\) is given by
typical formula

chV(X) =} sen(w) ch M(w(X + p) - p),
weW
where W is the Weyl group of g5, and V()\) has a non-trivial self-extension.

If L()) 1is typical, then V(X) = L()\).

If L(X) is atypical and (A, 1) = 0, then V(X) has length two and can be described by
the following exact sequence

0= L(A—a;) > V(A) = L) —0.

3.1.2. Corollary. Let L := L(Aj, L(p) be integrable highest weight modules, p # A
and

®3) Ext!(L(X), L(w)) # 0.

Then L is atypical. In addition,

(2) if (A + p,a1) = 0, then (8) is equivalent to the conditions (A + p,02) # 0 and
u=X—ay1. (In particular, if L is -tame, then it is T-regular).

(%) If L is not -tame, then for ¥’ from Lemma 2.8, L is ¥'-regular and
L=Ly(X), L) = Le(u - B),
where B € &' N AY(Z) is an odd root orthogonal to A+ p= N +p.
(iii) (3) implies Ext'(L()\), L(p)) = C.

Proof. Let N be a non-split extension given by the exact sequence
0— L(p) > N — L()\) — 0.
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Then N is an integrable quotient of M()). From Lemma 3.1.1, we conclude that L is
atypical and that (i), (iii) hold. For (ii) notice that since X' is obtained from ¥ by L-
typical odd reflections, L(A) = Lsy(X) and M()) = Msy(X), where X + o/ = X + p.
Moreover, ' contains § such that (X + p/,8) = 0 and 8 € A*(X). By Lemma 3.1.1,
L(i) = Ly (XN — B) as required. O

3.1.3. Lemma. One hasExt'(L()\),L())) =0 sz = L()) is atypical and Ext*(L()\), L()\)) =
C if L = L()\) is typical.

Proof. Let L be X-atypical, i.e. (A, a1) =0 or (A, a2) =0. A non-trivial self-extension of
L()) induces a non-trivial self extension of L()) in the top degree component. However, an
atypical irreducible g-module does not have self-extension, see [G]. Hence Ext'(L, L) =0
for an atypical irreducible L € F.

Let L = L()) be typical. Consider a non-split exact sequence
0— L(A) > M — L(X\) —0.
Recall that g5 = gl,, contains a central element 2. The \-weight space M) is a non-split
extension of C[z]-modules
0—)CA—)M)\—)C,\'—)0,
where C, is the one-dimensional C[z]-module (z acts by A(z)). Hence we have an injective
homomorphism
Ext'(L()\), L()\)) = C.
By Lemma 3.1.1 we have a self-extension of L()\) = Vg()). Hence the statement. O

3.2. Typical blocks in F;. Recall that s/(1|n)7 has a non-trivial central element z; the

centre of 5[(1|n)%1) is two-dimensional: it is spanned by K and z.

Let L be a typical finite-dimensional sI(1|n)-module of highest weight A and let F(L)
be the block containing L in the category of finitely generated si(1|n)-modules. It is easy
to deduce from [G] that the functor N — Ny provides an equivalence between F(L) and
the category of finitely generated C|[z]-modules with a locally nilpotent action of z — A(z).

Using Corollary 3.1.2 we obtain the following

3.2.1. Corollary. For any typical simple module L := L()\) in F}, there exists a block
Fi(L) of Fr, which has one up to isomorphism simple module L. The functor N — NP
provides an equivalence between Fi(L) and the typical block of the category of finitely
generated sl(1|n)-modules. The functor N — Ny provides an equivalence between Fi(L)
and the category of finitely generated C|z]-modules with a locally nilpotent action of z —
A(2).

The inverse functors are given by the maximal integrable quotients of the corresponding
induced modules U(g) Qu ) — and U(g) Qu) —-
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3.3. Atypical modules. Let L € F; be an atypical irreducible module. Let us describe
L' € Fi such that Ext'(L,L') # 0. By duality, Ezt!(L’, L) # 0, so we can assume that
pwts(L) £ pwts(L’). Using Corollary 3.1.2, we can describe L' is terms of -s such that L
is Y-tame and Y-regular. Below we show that there are exactly two such ¥-s and describe
the pwtsy(L) (with respect to different X's).

3.4. Regular case. Recall that L € Fy, is regular if L is X-regular for every X. By 2.2.1,
an atypical irreducible integrable highest weight module L is regular if and only if for
every Y. there exists a unique B € A;’ (X) such that (pwisL, B8) # 0.

3.4.1. Lemma. Let L be regular and atypical.

(i) The set
S = {y € Al (v, pwtzL) = 0}
does not depend on ¥ and consists of two odd roots: S = {£8}.
In particular, L is S-tame for exactly two sets X.

(it) Let £,%' be two sets of simple roots. One has

[pwtsL if SNA*E)=SnAHE)
@ poipl= {PwtzL+/3 if SNAY(S) = {8}, 5N A*(Y) = {-A}.

(iit) Let L = Ls()\) be =-tame. Then Ls(A+p) are integrable and Ext'(Ls(A£8),L) =
C.

Proof. Fix X. Since L is atypical, S is not empty. Since L is regular and k > 0, S C Ag.
If 8,5 € Ay and B # £, then 8 — ' or S+ ' is an even root. Hence S = {£3}. Recall
that any two sets of simple roots are connected by a chain of odd reflections. One readily
sees that the odd reflections do not change S; this gives (i); (ii) is straightforward. For
(iii) let B € ¥ and let B’ € £ be another odd root and a € ¥ be such that (a,8) = —1.
From 2.2.1, Ly (X £ B) is integrable if and only if (A, a), (), #’) > 1, which follows from
regularity of L, see Lemma 2.3 (iii). From Corollary 3.1.1, Ezt!(Ls(X £ 8),L()\)) = C.
Hence (iii). ]

3.4.2. If L is regular, then ¥’ in Lemma 2.3 is unique (L is tame for two set of simple
roots, connected by an odd reflections which are not L-typical).

3.5. Singular case. Let L be X-singular. By 2.2.1, (pwtsL, 1) = (pwtsL,B:) = 0,
where S, 32 are isotropic roots in X. Let ¥ be the maximal connected component in
{a € 3| (pwisL — ps,0a) = 0} which contains B;,5;. Since L has a non-zero central
charge, ¥ is the set of simple roots of sl(1|m) for some m < n.
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We write _
X= {ala <oy Oy /Bla 1827 Qst1y-- -5 am—-Z},
where the adjacent roots are not orthogonal (and for each %, a; are non-isotropic).

Recall that any sets of simple roots are connected by a unique “proper” chain of odd
reflections (the chain which does not contain subsequences of the form rr_g). Thus, we
can consider ¥s “lying between” X', X" (i.e., the proper chain from ¥’ to X is a subchain
of the proper chain from ¥’ to £").

3.5.1. Let L = Ly()) be as above.

Lemma. (i) There are eractly two sets of simple roots ¥y, Lo for which L is tame
and regular.

One has L1 = g 4o5+..401 - - - ThitasTH D GNd
pwis, L=pwtL+ B+ (Bri+as)+...+(Bi+as+...+ 1)
is orthogonal to the odd root B:= —(f1+as+ ...+ 1) €Ly
(f £ ={B1,Bs,...}, then Ty ;=15 ¥ and B := —By).

One has B3 = Tgytaupit.tams - - - ThatasiTh 2 With the similar formulae for pwts,L
and the orthogonal root ' in Ts.

(i) L is X'-tame if and only if Y is obtained from ¥ by a chain of odd reflections with
respect to the roots in A*(X). In other words, ¥ lies between ¥ and £; or & and L.

(iiz) If L is ¥'-tame, then Ly(\) = Lg/(X).

If L is not ¥'-tame, then pwtsyL = pwts,L, where i =1 or i = 2 is such that —f3; €
AT (D).

Proof. One readily sees that if ¥’ is obtained from ¥ by-a proper chain of odd reflection
Y =ryTy-1...Ty, 3, then 1y = By or vy = B2 and ; € A*(E) foreach i = 1,..., 5. Now
the assertions follow from the observation that the odd reflection r., preserves pwtL if this
reflection is L-typical and preserves the highest weight of L otherwise. O

3.5.2. Corollary. Let L = Ls()) be as above. Then Ext'(L',L) # 0 if and only if
L'~ Lz(Ai), where

A=A+ +Bita)+(rt+as+as)+...+(Br+as+...+a1),
A=A+ P+ (Bt ast1) + (Bot+ o1 +asy2) +.o .+ (B2 + Qsi1 + ... + Om2)

in the above notation.

Proof. Combining 3.1.2 and 3.5.1, we conclude that L’ is isomorphic to Lg, (A — 8) or to
a similar one for ¥5. Let L' = Ly, (A — ). One has

Y= T—pT—(B1+as) - - - T—(ﬂ1+a,+...+a1)21'
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One readily sees that all the reflections except r_(g,4+a,+..40y) = T are L'-tame, so
p’u}tgL’ = p’wtglL' + B and L' = Lz(/\l) for

N=pwtsl! —p=A—B+B+p—p=A_
as required (where p; stands for the Weyl vector for ;). O

3.5.3. Remark. Note that the weight A+ j5; + p is not regular for j < s and is regular
for j = s. One has

A =Tgy .. Tay- (A4 551),
where w.v := w(v + p) — p is the standard p-shifted action.

3.6. Atypical blocks in Fi. Fix a set of simple roots ¥ and an atypical block. As we
will see below, it contains a unique irreducible module Lg()) with (A, ;1) = (A, a2) = 0.
Moreover, every irreducible module in this atypical block is Ls(w.(A + ja;)) for j > 0,
i = 1,2 and w € W such that X + jo; is regular. Let us enumerate these modules as
follows: set A’ := X and for j > 0 set M := w.(M ! + sa;), where s > 0 is minimal such
that this weight is regular; similarly, for j < 0 set M := w.(M~! + sa3), where s > 0 is
minimal such that this weight is regular. Then every irreducible module in the block is
Ls(XN) for a unique j € Z and the non-zero extensions exist only between the adjacent
modules: Exzt!(Ls(M), Le()®)) # 0 if and only if s = j £ 1.

3.6.1. Lemma. For any set of simple roots ' the atypical block contains ¥’ -si’ngular
module. Moreover, this module is unique.

Proof. Let L be a simple module in the block and ¥ be such that L is S-tame. We claim
that it is enough to verify that

(1) the block contains a module which is tame for 73X, where 8 € ¥ is isotropic;
(2) the block contains a unique module Lg()) which is X-singular.

Indeed, since any two sets of simple roots are connected by a chain of odd reflections
(1) implies that any block contains a module tame with respect to any sets of simple roots
¥’ and (2) implies the assertion .

Note that (2) implies (1), since Lx()) is tame with respect 5. Hence it is enough to
verify (2).

Let L = Ly(v) and (a1,v) = 0, where oy € ¥ is odd. Let ag,az € T be such that
(o1, a0) = —1 and (e, 02) =1 (az is 0dd). The integrability of L = Lg(v) implies that
(v,a;) > 0 for ¢ = 0,2. If (v,a2) = 0, L is X-singular. Otherwise, by Lemma 3.4.1,
Ly(v — aq) is integrable and it lies in the same blocks as L; moreover, (v — oy, a2) =
(v, a1)—1. Thus the block contains a module Lg () with (A, a1) = (), @) = 0 as required.

Now let L(\), L(u) be two Z-singular modules which are in the same block and
X # u. Then there exists a set of weights v1,...,v, such that Ext'(L()\), L(»1)) # 0,
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Ext'(L(vi), L(vi1)) # 0 for all i = 1,...,s — 1, and Ext}(L(v,), L(u)) # 0. Without

loss of generality we may assume that L(v4),..., L(v,) are X-regular. By Lemma 3.1.1,
Y-singularity of L(\) implies A < 1y < -+ < v, < u, i.e. A < p. Similarly, E-singularity
of L(v) gives v < A, a contradiction. O

3.6.2. Proposition.  Let B be an atypical block in Fi, and L(\°) € B be a unique
simple module which is L-singular.

There ezists a linear order ), i € Z of all simple modules L* = L()\*) such that

. c i j=itl
Ext(L}, [F) = !
xt (L, 17) {0 otherwise.

For i > 0 one has X < A1 and A~ < \~0+D),
The ext quiver of any atypical block is of the form

Proof. By 3.4.1 and 3.5.2, for any atypical module L()) there exist two weights A such
that Ext'(L()\), L(A+) # 0. By Lemma 3.1.1, Ay > X if L(}\) is E-singular and A_ <
A < A4 otherwise. Now the assertion follows from Lemma 3.6.1. We take A*! such that
Ext'(L(\%), L(A*')) # 0. Suppose that i > 0 and '’ is already constructed. Then X! is
the unique weight such that Ai*! > A" and Ext!(L?, L*1) # 0. If 4 is negative we define
Xi~1 in the similar way. O

3.6.3. Let us show that the above quiver satisfies the relations zy = yz = 0.

Lemma. There is no indecomposable module M in F, such that M/radM =
Ly, radM/rad®?M = Lo, rad?M = L3 for pairwise non-isomorphic irreducible modules
Ly, Ly, L3.

Proof. Take ¥ which contains the maximal possible number of odd roots orthogonal to
pwtsL: if L is regular (resp., singular) take X such that L is X-tame (resp., Z-singular).
Using Lemma 3.4.1 and Corollary 3.5.2, we conclude that for i = 1,3 the differences
pwts(L;) — pwis(Lsz) are linear combinations of 3, where & C T (for regular L, ¥ consists
of one odd root). Consider the subalgebra g C g with the set of simple roots containing
; let d € h be the corresponding element (d acts on gt C g by rId). Let M*P be the
generalized d-eigenspace with the maximal eigenvalue (maximal in a sense that a + s is
not an eigenvalue for j € Zsp). Then M'*P is an indecomposable g-module which satisfies
the same condition as M. This is impossible by [G]. O
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3.6.4. Let us show that the above quiver does not have other relations except zy = yz =
0. This follows from [G]. Indeed, if there is another relation, it is of the form P(z?) = 0
or P(y?) =0 for a non-zero polynomial P and z or y in Ext!(L?, L**'). Take ¥ such that
L', L1 are ¥-tame: L' = L(X),L*! = L(A — B) for B € . Consider the subalgebra
g C g with the set of simple roots containing 8. Define d and M*® as above. Then
(L#)tr, (L#+1)®P are atypical g-modules which satisfy the same relation; this contradicts
to [G] (in the notation of [G], the quiver of the category C, with r larger than degree P
does not have relation given by P).

3.6.5. Theorem. Any atypical block in Fy, is equivalent to the category of finite-
dimensional representations of the quiver of Proposition 38.6.2 with relations zy = yz = 0.

4. THE FUNCTOR F,

In this section we assume that g is a Kac-Moody Lie superalgebra.

Take = € gy satisfying [z,z] = 0. The following construction is due to M. Duflo and
V. Serganova, see [DS]. For a g-module N introduce

F,(N) := Keryz/Imyz.

Let g* be the centralizer of z in g. We view F,(N) as a module over g®. Note that
[z, 9] C g° acts trivially on F,(N) and that g, := F;(g) = g°/[z, g] is a Lie superalgebra.
Thus F,(N) is a g,-module and F is a functor from the category of g-modules to the
category of g,-modules.

In [DS],[S1] the functor F, was studied for finite-dimensional g. However, certain
properties can be easily generalized to the affine case. In particular, F is a tensor functor,
i.e. there is a canonical isomorphism F,(N; @ N») ~ F,(N;) @ F,(Ny).

4.1. Proposition. Let g = g be the affinization of a Lie superalgebra § and assume
that z € g. If g # 0, then g, is the affinization of §,, If §. = O then g, is the abelian
two-dimensional Lie algebra generated by K and d.

Proof. Since
g=CdoCKo@Pier
neEZ

and g ® t" is isomorphic to the adjoint representation of g for every n, the statement
follows. O
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4.2. Let g = g be the affinization of a Lie superalgebra g and assume that z € §. Let
3 (resp., X) be the set of simple roots of § (resp., g).

Let f;,...5, € ¥ be a set of mutually orthogonal isotopic simple roots, fix non-zero
root vectors x; € gg, foralli =1,...,r. Let x := 1 + - - - + z,. It is shown in [DS] that
gz is a finite-dimensional Kac-Moody superalgebra with roots

At :={oaecA|(a,8)=0,a #+Bi=1,...,r}
and the Cartan subalgebra
bo = (B N---NB;)/(Chg, @ -- ® Chy,).

Assume that Al is not empty, then A_l is the root system of the Lie superalgebra g,.
One can choose a set of simple roots ¥, such that A*(X,;) = AT NAL. Let g, C g be
the affinization of g,: the affine Lie superalgebra with a set of simple roots X, containing
¥, such that A*(Z;) C A*.

For example, if § = A(m|n), B(m|n) or D(m|n), then § = A(m—r|n—r), B(m—r|n—r)
or D(m —r|ln—r). If § = C(n), G3 or Fy, then r = 1 and g, is the Lie algebra of type
Cpn-1, A1 and A, respectively. If § = D(2,1;a), then 7 =1 and g, = C.

4.3. Proposition. Let g = g be the affinization of a Lie superalgebra § and assume
that x € §. Let x € g and N be a restricted g-module. If the Casimir element Qy acts
on a N by a scalar C, then the Casimir element Q, acts on the g;-module Fz(N) by the
same scalar C.

Proof. Let us write the Casimir element €y in the following form (see [K3], (12.8.3))

o
Q=2 + K)d+ Q0 +2) Q)

i=1
where Qi) = > v;v? for some basis {v;} in § ® t~* and the dual basis {v’} in § ® ‘.
Similarly we have

Oy, =2V + K)d+ Do +2)_ ().

'i=1
We claim that Q,(¢) = Q(¢)(mod|z, U(g)]). Indeed, we use the decomposition § = g, Gm,
where m is a free C[z]-module. Using a suitable choice of bases we can write

Q(t) = Q(0) + Zusu"

for the pair of dual bases {u,} in m ® t~* and {u°} in m ® ¢’. If i > 0, then ) uu’ is
z-invariant element via the embedding m®@m — U(g). If i = 0, then > u,u® is z-invariant
element via the embedding S%(m) — U(g). Since m®@m and S?(m) are free C[z}-modules,
we obtain in both cases that ) usu® lies in the image of ad z.

Now the statement follows immediately from the fact that [, U(g)] annihilates F,(N).
O
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5. INVARIANTS OF SIMPLE OBJECTS IN THE SAME BLOCK

Now let g = sI(1|n)® with n > 2. Take a non-zero z € gg, where 3 is an odd isotropic
root; then [z,z] = 0.

In this section we will show that for an irreducible modules L, L’ € F; and non-zero
T € gp one has

(i) Fx(L) =0 if and only if L is typical;
(1) if L is atypical, then F,(L) = F,(L') if and only if L and L’ lie in the same block.

5.1. Fix a set of simple roots ¥; let a;, a2 € ¥ be odd roots. Since for any odd root 3 the
orbit W3 contains either ap or —oy, hence for integrable module M, F,(M) ~ F,(M) for

some Y € ga, OF g_o,. Thus, we may assume that € g4, Or € g_o,. Then g, = 5[531
with the set of simple roots

e :={ag,a1 + as + as,ay,..., 05}

Recall that, by Lemma 3.1.1, a Verma module M ()) has at most two integrable quo-
tients: L()\) and N such that N/L(\ — 8) = L(}).

5.2. Proposition.  Let L be an irreducible typical integrable highest weight module.
Then F,(L) =0 for any non-zero = € gg, where B is an odd isotropic root.

Proof. Set A := pwtsL; since L is typical, A does not depend on X.

Let F;(L) # 0 and let v € L be a preimage of a highest weight vector in F(L); we can
choose v to be a weight vector of weight v. Then (v,a2) = 0. Note that if (A, az) ¢ Z,
then such v does not exist. Hence in this case F,(L) = 0.

We assume now that (A, a2) € Z and = € g4, By Lemma 2.2.2, we can (and will)
assume that (A, &) > 0 for each a € I. Let ¥ = {a;}; and o1, o are odd. Set p := px.
Set a; ;== (v + p, ;) for i =0, ...,n. Since F;(L) is g,-integrable, and

I, = {on, 1 + a2+ 03,04,...,0n},
one has

(5) a3 =0, a1+a3>0, a;>0 fori#1,2,3.

Set N:=v+p—araz, p:=A-N.
One has (N, ;) =0fori=1,2and (N,;) > 0fori=0,...,n.

Write A — p— v = 3. kia;. Then k; > 0 for each i (since v € L(A — p)). Since
a1 = (\, 1) + ko — k2, one has ks + a; > 0. Therefore

M E ZZOE‘
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By Proposition 4.3, (v + 2p4,0:) = ||A|? — ||%||- One readily sees that 2(p — p,) =
(n —2)az, so ||pl|* = ||ps||* and ||v + ps||* = |l + pI[*.

This gives ||N|[2 = ||A|[?, that is
(A m) + (XN, ) = 0.

Since (A, a;) > 0 and (XN, ;) > 0 for each ¢ = 0,...,n, we obtain A = ). However,
(XN, a2) =0, a contradiction. ]

5.3. Proposition. Let N be an integrable quotient of an atypical Verma module M()\).
(i) Fo(N) 2 Ly, (Alp,)®°, where s =1 if N = L()) and s =0 or s = 2 otherwise.
(it) Let (X, B) = 0 for an isotropic simple root 8. Then

s=1 if N=L()),
Fy(N) = Ly, ( M|y, )®* where ¢ s=0 ifzegg N#L),
s=2 ifz€gg N#L(N).

Proof. By 3.1, M(X\) = Msx/(X'), where (XN,a) = 0 for some isotropic & € ¥'. Thus
for (i) we can assume that (A, 3) = 0 for an isotropic simple root 3. By above, we have
F(N) = Fy(N), where y in gg or in g_g. Therefore (i) is reduced to (ii). Let us prove (ii).
Clearly, F,(N) is g,-integrable, so completely reducible. Assume that Ker,N contains a.
vector v of weight A — u whose image in F;(N) is a g,-singular vector. Since v € Ker,N
and v € zN, one has (A — p, ) = 0, that is (u,8) = 0. Since p € ZxoX, we obtain
ne Zzozx + Zﬂ.

Using Lemma 4.3 we get ||[A+p— pl|? = ||A+p|[?, that is (A\+p, u) +(A+p—p, 1) = 0.

Since N is integrable and (), ) = 0, we get (A, @) > 0 for each @ € . Thus (A +p, p) >
Oandso (A +p—p,p) <O0.

Taking into account that F,,(N) is g,-integrable (where g, = s[",) and p € ZsoX,+Z,
(A+ p— p,p) > 0 and the equality holds if and only if u € ZB. Therefore u € Z3, that
is p € {0, 8}. Hence

Fy(N) = Lg,(Aly.)®®, where s := dim F,(N\ & N»_p).
Note that N’ := N @ N»_g is a module over a copy of sl(1|1) generated by g.g (one has

z € sl(1|1)). If N = L()\), then N’ is a trivial sl(1|1)-module; and if N/L(A — 8) = L()\)
then N’ is a Verma s[(1|1)-module of highest weight zero. The assertion follows. O

5.4. Corollary. Let L € Fi be an irreducible module. Then F,(L) = 0 if and only if
L is typical. For atypical L, F,(L) is integrable 5[521—m0dule and F,(L) =2 F,(L') if and
only L and L' lie in the same block.
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Proof. Retain notation of Proposition 3.6.2. If I/, [7*! are simple objects in an atypical
block B and j > 0 (resp. j < —1), then there exists a Verma module M (X)) such that its
maximal integrable quotient V()) such that V(\)/L7 = L7+ (resp., V(A\)/L[/*! = [J).
From Proposition 5.3, we get F,(L7) = F,(I’*!), so F,(L) is a non-zero invariant of an
atypical block.

Let us show that this invariant separates blocks. Fix a set of simple roots ¥ and take
T € §_q,. Let A* € b, be the highest weight of F (L), F;(L'). Let us show that L, L’ are
in the same block. Indeed, each block contains a unique ¥-singular irreducible module.
Thus we can (and will) assume that L, L' are E-singular. Let L = L(\), L' = L()'). One
has A* = A|y, = X|y,. Since A, X' are S-singular, A = X, that is L = L’ as required. 0O

5.5. Let us calculate the highest weight of F;(L).

Let L = Ly()) be an atypical integrable module of level k. Write ¥ = {ao} U 3, where
ap is even and X is a set of simple roots for sl(1|n). Let {¢;}7, U {4;} be the standard
notation for s{(1|n); then

' ao=5—61+6n, ] =€1 —51,0[2 =¢51 — &2y +..,0pn =Ep_1 — Ep.

Set ¢; := (A + p,&;) for i =1,...,n and d := (), d;). Note that these numbers determine
L as a module over [g, g].

We claim that either ¢; = ¢ = b and ¢; — b is not divisible by k& + n — 1; there exist a

unique index ¢ such that ¢; — b is divisible by £ +n — 1. One has

Fu(LO)) = Ly (V¥),

where A* has level k and the marks (A\* +p, ¢;) are obtained from (cy, . . ., c,) by throwing
away one element j with ¢; — b divisible by k +n — 1.

Indeed, set L = L(X). By Proposition 5.3, F,(L())) = Ly, (A*) for some A* € b, (and
gz = 5(5,12 1)- By Lemma 2.3, there exists X’ such that L is ¥'-tame and ¥’ is obtained
from ¥ by L-typical odd reflections, so pwtsl = pwiszyL. Let 8 € ¥’ be such that
(pwtsy L, B) = 0. Take y € gg. By above, F;(L) is equivalent to F,(L), where y € gg or
y € g—p. Using Proposition 5.3 we get

F@I(L) = Lﬂy()\llby)’
where X' = A+ p — o' and b, = {h € h N sIV|4(h) = 0}.

Assume that A + p is regular. Then there exists a unique j such that ¢; — b is divisible
by k+n—1. By above, g, has a set of simple roots £, = {a € | (8, @) = 0}. From 5.1
it follows that for each a € I, one has

M +1,0)=N+70,a) =\ +p,a).
Therefore A# + p# has the marks {¢;}; \ {c;} as required.
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Assume that A+p is singular. Then, by 2.2.1, (A+p, @1) = (A+p, a2) = 0 (in particular,
3 = %) and a; + az is the only even positive root orthogonal to A+ p. Thenc; =c; = b
and ¢; — b is divisible by k+n — 1 if and only if i = 1,2. Then z € g,, for j =1 or j =2
and, as above, A* + p# corresponds to {¢;}™; \ {c;}-

6. MODULES OVER Vi(sl(1|n)) FOR k € Z+q

View g = s(1|n)® as the affinization of sl(1|n). Let b be a Cartan subalgebra of sl(1|n)
and IT be the set of simple roots. Then h = b + Cd + CK and II = ITU {ap}.

The modules over affine vertex superalgebra V*(sl(1|n)) have the natural structure of
(g, g]-modules of level k. We say that [g, g]-module M is graded if M = @,z M,, with
(at™)M,, C My, (for a € sl(1|n)).

The positive energy (in the sense of [DK]) V*(sl(1|n))-modules are Z-graded [g, g]-
module of level k with the grading bounded from the below. We also call such [g, g]-
modules also the modules of positive energy.

For such a module we extend the [g, g]-action to the g-action by dv := —mw for v € M,,.

Let V* be the vacuum module of level k (V* := =Ind}, , ., Cx, where Cy is the trivial
g+nt-module with K acting by kId and d acting by zero). Let V}, be the simple quotient
of V¥ and |0) be the highest weight vector of V* (and its image in V;).

6.1. Theorem. As a g-module, Vi is integrable if and only if k € Zxo. The irreducible
positive energy Vi(sl(1|n))-modules are L()\) € Fi, where \(d) € Z.

For k € Z the positive energy Vi(sl(1|n))-module are the positive energy (g, g]-modules
of level k, which are integrable over 5[%1)

6.1.1. Remark. Letk € Zxo.
It is easy to see that Vp(sl(1|n))-modules are the direct sums of the trivial modules.

6.1.2. Proof of Theorem 6.1. Set vk = V¥(sl(1|n)), Vi := Vi(sl(1|n)). We start from
the following lemma (see, for example, [AM], Prop. 3.4).

Lemma. IfI C V*(sl(1|n)) be a cyclic submodule generated by a vector a, then the
V¥(sl(1|n))/I-modules are the V*(sl(1|n))-modules annihilated by Y (a, 2).

From 2.2.1 it follows that Vi(sl(1|n)) is integrable if and only if k € Z>o. Moreover,
from 3.1 it follows that if V* has an integrable quotient, then it is simple (i.e., is Vj).
Let I be a submodule of V* generated by f¥1|0), where f; is a non-zero element in
§-ao- One readily sees that V*/I is integrable, so V4, = V¥/I. By Lemma 6.1.2, Vi-
modules are V* annihilated by Y(f¥*1|0),2). Note that Y (f¥*1|0),2) € V*(sl,) and
Vi(sl,) := V¥(sl,)/I', where I’ is the s[()-submodule of V*(sl,) generated by f5+|0).
Therefore the Vi-modules are exactly the V*-modules which are the modules over V(sl,).
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By [DLM], Thm. 3.7, the Vi(sl,,)-modules are direct sums of irreducible integrable highest
weight [sI{", s[{]-modules of level k. Therefore the positive energy Vi-modules are the
positive energy integrable [g, g]-modules of level k. If such module is irreducible, then,
extending the action of [g, g] to g as above, we obtain an irreducible module in F}. Since
d acts diagonally on each irreducible module in F; the assertion follows. O

6.2. “Bad example”. The following example shows that an indecomposable positive
energy Vi-module may look rather wild.

Recall that § := sl(1|2) is a Z-graded Lie algebra: § = g_; & go @ §1, where go = g5
and §_1 ® g1 = g7. Let z be a central element in g5 = gl,. View C[z] as a module
over go + g1, where z acts by the multiplication and sl, + §; act by zero; let E be the
induced g-module. Let eg be the highest root vector in sl;. One readily sees that e2E = 0.
From [DK], Thm. 2.30 (see also [Z], Thm. 2.2.1), it follows that there exists a Zxo-graded
Vi(sl(1]2))-module N = 3"°  N; with Ny = E. This is a cyclic indecomposable module
with infinite-dimensional graded components. This module is integrable over s[él), but is
not integrable over sI(1|2)") (since z € b acts freely on Np).

The Sugawara construction equips N with an action of the Virasoro algebra {L, }nez,
see [K3], 12.8 for details. The action of Ly to Ny is equal to the action of the Casimir
operator §2 of §. View C[z] as a (§o+ 91 )-submodule of Ny = E. Since sl,+§; act trivially,
the action of €2 is proportional to z(z — 1), so this is a free action. Since (Lo, 8] = 0, Ny
is a free Lg-module.

Defining the action of d on E by zero, we can view N as a g-module, which is an
indecomposable integrable module with a free action of the Casimir element £2; moreover,
this module is bounded (the eigenvalues of d lie in Zo).
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