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Cubature formulas for great antipodal sets on
complex Grassmann manifolds
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( joint work with Hirotake Kuriharaf)

Abstract

Great antipodal subsets of compact symmetric spaces are defined
by Chen-Nagano [Trans. Amer. Soc. Math. (1988)] as finite subsets
satisfying certain geometric properties with maximum cardinalities. In
this paper, we give a formulation of Delsarte theory for finite subsets of
compact synimetric spaces, and as its application, we show that great
antipodal subsets of complex Grassmannian manifolds give cubature
formulas for certain functional spaces.

1 Main results

Throughout this paper, we use the following symbol for complex Grassnan-
nian manifolds:

Gry(C") := {k-dimensional complex linear subspaces of C"} (k < n/2).

Let us consider the standard Hermitian inner-product (, ) on C*. Then
the unitary group U(n) of C* acts on Gri(C") transitively. Furthermore, for
each point p of Gry(C"), the isotropy subgroup of U(n) at p is isomorphic to
the Lie group U(k) x U(n — k).

For each point p € Gri(C"), the point symmetry on Gri(C") at p will
be denoted by s,. That is, s, is the isometry on Gri(C") induced by the
involution o, on C* = p @ p* with oy, = id, and 0|1 = —id,..
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A finite subset X of Gr,(C") is said to be antipodal if X satisfies the
following geometric property:

s;(y) =y for any 7,y € X.

It is known that the cardinality of any antipodal subset is bounded by (7).
An antipodal subset X of Gr;(C") is said to be great if #X = (2) By fixing
an orthonormal basis B = {ey,...,e,} of C", we obtain a great antipodal
subset

Xp := {Spanc{e;,,..., e } | {#1,-..,%} is a k-subset of {1,...,n}}

of Gri(C™). It is also known that any great antipodal subset of Gry(C") is of
the form of Xp for some orthonormal bases B of C*, and thus great antipodal
subsets of Gr(C") are unique up to U(n)-conjugations. See [3] or Section 3.1
for the details of great antipodal subsets of complex Grassmannian manifolds.

In this paper, we study analytic properties of the great antipodal subsets
of Gri(C™). In order to state our main results, we set up our notation of some
functions as follows: For each pair V = (vi,...,v), W = (wy,...,wx) €
(C™)* of the sets of ordered k-vectors in C*, we define the k-by-k matrix
Ayw by

(Avw)ij = (vi, w;).
Furthermore, for such (V, W), we also define the function fyy on Gry(C?)
by
fow(p) := (det Ay p) - (det Ayyp)  for each p € Gri(C")

where P is an ordered basis of the k-dimensional vector subspace p of C®
(then fyw(p) does not depend on the choice of P). Remark that fyy =0
if ¥V or W are linearly dependent. We put

M := Spanc{ fyw : Grg(C*) = C | V, W are sets of orderedk-vectors in C"}.

Then dim¢ H = (Z)2

We remark that the functional space H on Grg(C") defined above is a
subrepresentation of the left regular representation of U(n) on C*°(Grx(C")).
As a finite-dimensional U (n)-representation, H can be decomposed as the di-
rect sum of irreducible U(n)-representations Vp, . .., Vi such that the highest
weight of V] is of the form

,...,1,0,...,0,—1,...,—1)
l -2 i
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for each I.
As a main result of this paper, we show the following analytic property
of the great antipodal subset X of Gr;(C"):

Theorem 1.1. Let X be a great antipodal subset of Gri(C") and H the
(finite-dimensional) functional space on Gri(C") defined above. Then the
following “cubature formula” holds:

1 1
vol(Gr(C™)) /Grk(cn) fapcr,cm) = X Z f(z) foranyfeH (1)

zeX

where pcrcry s a U(n)-invariant Haar measure on Gri(C™) and vol(Gr;(C"))
is the volume of Gr(C™) with respect to pgr,(cry- Furthermore, any great an-
tipodal subset X has the minimum cardinality as a finite subset of Gry(C")
such that the formula (1) holds.

Remark 1.2. For same (k,n), there ezists a finite subset X of Grg(C™) such
that the formula (1) holds for any f € H, the cardinality of X is (}) but not
antipodal (see [6]).

In Section 2, we give a fomulation of Delsarte theory for finite subsets
of compact symmetric spaces. Theorem 1.1 is proved as an application of
our Delsarte theory. In Section 3, we give a proof of the first harf part of
Theorem 1.1. The details will be reported elsewhere.

2 Delsarte theory on compact symmeric spaces

Let G be a connected compact Lie group and ¢ an involutive automorphism
on G. Fix a closed-open subgroup K of G° := {g € G | o(g) = g}. Then
the compact homogeneous space M := G/K has a structure of Riemannian
symmetric space.

For the case where M is of rank one, Delsarte theory for finite subsets X
of M shows that the spherical Fourier transform on M gives a correspondence
between a certain geometric data of X C M and a certain analytic data of
X C M. The survey of Delsarte theory for finite subset of rank one compact
symmetric space of rank one can be found in [2]. In this section, even for the
case where M is of higher rank, we give a formulation of Delsarte theory for
finite subsets of M.
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2.1 Spherical Fourier transforms

In this subsection, we set up our notation for spherical Fourier transforms
on M in a form that we shall need.

By definition, G acts on M = G/K transitively. Let us consider the
diagonal G-action on M x M and write Zys := (diag G)\(M x M) for the
quotient space of M x M by the diagonal G-action. The quotient-map from
M x M onto Zy; will be denoted by

dM:MXM—»IM.

Remark 2.1. The space Ip; can be identified with the double coset space
K\G/K. Furthermore, let us fir a mazimal totally geodesic flat submanifold
T of M. Then we can define the Weyl group W acting on T and Zyp; can be
identified with the quptient space W\T'. We omit the details here.

Example 2.2. Fiz an integer n and k with 1 < k < n/2. Let G = U(n) and
K =U(k)xU(n—k) and then M := G/K can be identified with Grx(C"). For
each p € Gri(C"), we denote by Proj, : C* — C™ the orthogonal projection
from C" onto p (C C"). Furthermore, for each pair (p,q) of elements in
Gr(C™), we define the endomorphism P,q on C* by

B, 4 := Proj, o Proj, € Endc(C").

Let us put a,(P,q) the s-th largest eigenvalue of the endomorphism P, 4 for
each s = 1,...,k. Then one can prove that 0 < ay(Ppq) < 1 for any s =
1,...,k and we have

IG!'k(C") = {Ot= (ali"wak) € [Oal]k | Q2022 Olk}
with
dary(cn) : Gre(C™) X Grg(C") - Zgr,cm,
(p,9) = (1(Ppg), - - - ar(Ppg))

(See also the concept of “principal angles” explained in [1]).

In this paper, let us denote by C*°(M) the set of all complex valued C*°-
functions on M. Then the left regular representation L : G — GLc(C*®(M))
defined by

(Lef)(p) == f(g7'p)  for each f € C°(M), and pe M
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gives a infinite-dimensional C-linear representation of G. We define the set
Jm by

JIm ={V € C®(M) |V is an irreducible G-subrepresentation of C*°(M)}.

Remark 2.3. We give some facts related to the set Jy; below. Details can
be found in [9).

A finite-dimensional irreducible representation p: G — GLc(W) of G is
said to be K -spherical if

W5 = {w e W | plg)w = w for any g € G} # {0},

where W is the representation space of p. It is known that dime¢ W < 0o and
dime WX = 1 for any spherical unitary irreducible representation p : G —
GLc(W) since G is compact and (G, K) is a symmetric pair.

We denote by G the set of all equivalent classes of irreducible representa-
tions of G and put

Gk :={[p] € G| p is K-spherical}.

Then the set Jar can be identified with @K. In particular, by the Peter—
Weyl theorem, the left reqular representation L : G — GL¢c(C*®(M)) is

multiplicity-free and the subrepresentation @y, 5, V of L is dence in C*°(M).

Example 2.4. Let us consider the setting in Ezample 2.2. Then M ~
Gri(C"). In this situation, one can identify Jgr,cn) as

Jonemy 2 {v=(n,...,) € (Zzo)k i >, > >}

such that the highest weight of the irreducible U(n)-representation V, (the
subspace of C®(Gri(C™)) corresponding to v) is

(1/1,V2,...,Vk,O,...,O,—Vk,...,—V1) € Z".

Let us fix V € Ju. To define the spherical Fourier transform on M, we
fix our terminology of the reproducing kernel Ky and the spherical function
Qv : Iy = C of V as follows:

For each p € M, we define the “delta function” 6,‘,’ in V by

(f,8) = f(p) for cach f €V,
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where (, ) is the L2-innerproduct on C™(M) with respect to the probability
G-invariant Haar measure W‘c‘;rlk_(cn_”Grk(C") on M. Then the reproducing
kernel Ky : M x M — C of V is defined by

Kv:MxM-C, (pq)w (67,67

prgq

One can easily check that Ky is invariant by the diagonal G-action, that
is, Kv(gp,99) = Kv(p,q) for any p,q € M and any g € G. Therefore,
Ky induces a function Qv on Zy := (diag G)\(M x M), that is, for each
(p,q) € M x M, we put

Qv(dx(p,9)) == Kv(p,q).

In this paper, such the function Qv on Zy, is called the spherical function for
VeTu.

It should be noted that 157 := {(p,p) € M x M | p € M} is an element of
In = (diag G)\(M x M) since G acts on M transitively, and one can easily
show that Qy (1) = dimg V for any V € Jy.

Throughout this paper, we use the following notation:

Cz,, := the complex vector space with its basis Zyy,

CI™ .= the set of all complex functions on the set Jas.

Let us give the definition of the spherical Fourier transform on M in a
form that we shall need as follows:

Definition 2.5. For each ¢ = (¢a)acz,y € Cz,,, we put
$(7) =Y ¢aQv(a) for each V € Ju.

a€ly

Throughout this paper,
Cpy =+ C™, ¢ ¢
is called the spherical Fourier transform on M.

Example 2.6. As in Example 2.2 and 2.4, let us consider M = U(n)/(U(k) x
U(n — k)) =~ Gri(C™) and then

Tencry > {a=(ay,...,a) €0, 1]" lon > a2 >+ > g},
Jancry =2 {v=(n,...,1n) € (Zso)f |1 > 15> --- > 13}
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We put vy = (1,...,1,0,...,0) € Jar,(cn) for each 1 = 0,...,k. Then, by

k~1
(5], the spherical functzon Qv on Igr,(cm corresponding to v, € Jar(cry can

be written as

n+1 ) n—l+1 k—r
Qm( ) (n 20 + 1)( Z( 1 - r N r JN=r/ )(l—r) Z i, 0, - .

—k:
(n+ 1 " =0 (r) 1<) <ig<-<ir<k

for each a = (au, ..., ax) € Lgr,(cn)-

Remark 2.7. A “spherical Fourier transform” on M gives an isomorphism
between Lo(Zar) and Lo(Ju) for certain measures on Iy and Ty (see [9]).
It should be noted that the domain Cz,, of our transform is not a subset of
Ly(Zyrr). We omit the details here.

2.2 Delsarte theory

Let us fix a finite subset X of M. We shall define the vectors Ax € Czg,
and Ex € C/ reflected to a geometric property and a analytic property of
X C M as follows:

(Ax)a: (#X) o l(@,y) € X x X | dy(z,y) =a} for each o
R S S
Ex(V) := fg‘l/%} T for each V € Ju

Theorem 2.8 (Delsarte theory for finite subsets of compact symmetric
spaces). For any finite subset X of M, the following equation holds:

Z; = I£X|21

where 74'; is the spherical Fourier transform of Ax € Cr,, (see Definition
2.5) and |Ex|? € CI™ is defined by |Ex|?(V) = |Ex(V)|? for each V € Tr.

A proof of Theorem 2.8 will be reported elsewhere.

Remark 2.9. By definition, |Ex|? is non-negative function on Jns. Thus
by Theorem 2.8, the spherical Fourie transform Ax should be non-negative.
This is the key idea of “Delsarte’s linear programming method” (see [4]). We
omit the details here.
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3 Main theorem as an example of Delsarte
theory

In this section, we apply Theorem 2.8 for the great antipodal subset of
Grk(C").

3.1 Great antipodal subsets of compact symmetric spaces

First, we recall the definition of great antipodal subsets of compact symmetric
spaces as follows.

Let M be a compact symmetric space as in Section 2. For each p € M,
we denote by s, : M — M the point symmetry at p on M. A subset X of M
is said to be antipodal if s,(y) = y for any z,y € X. Any antipodal subset
of M is finite and

#oM = sup{#X | X is an antipodal subset of M}
is also finite. An antipodal subset X of M is said to be great if #X = #.M.

Fact 3.1 (cf. Takeuchi [8], Sdnchez [7] and Tanaka—Tasaki [10]). Let us as-
sume that M = G/K is a symmetric R-space. Then the following holds:

o Great antipodal subsets of M are unique up to G-conjugations.

o #oM = dimg oy @, Hi(M;Z/2Z), where Hi(M;Z/2Z) is the i-th ho-
mology group of M with coefficients Z/2Z.

Example 3.2. Let M = Gr(C") as in Section 1. Then M = Gri(C")
s a compact Hermitian symmetric space and hence a symmetric R-space.
Therefore, by Fact 3.1, great antipodal subsets of M = Gri(C™) are unique up
U (n)-conjugations. Concretely, as we mentioned in Section 1, #2 Gr(C") =
() and a great antipodal subset of M = Gry(C™) is of the form Xz for some

k
orthonormal bases B of C™.

3.2 Delsarte theory for the great antipodal subsets of
complex Grassmannian manifolds

Fix a great antipodal subset X of Gri(C"). As we mentioned in Example
2.2, we can consider Zg;,(cr) as

{a=(a1,...,0) €[0,1]F oy > 2 > -+ > e}



and the map dg;,(c») can be written by

dGrk(C") : Grk(C") X Grk(C") —» IGrk(C"),
(,q) = (1(Ppg)s - - - ak(Ppg)),

where P, is the composition of othrogonal projections Proj, and Proj, onto
p and g, respectively, and a,(P,,) is the s-th largest eigenvalue of the endo-
morphism P, 4 € End¢(p) foreach s=1,... k.

Then one can easily compute that for each a = (a4, ..., k) € Zgr,(cn),

k\(n—k
2ipk=s  fa=(1,1,...,1,0,...,0) for s=0,...,k
(AX)Q= * 8 k—s

0 otherwise.

Let us give a proof of the first half part of Theorem 1.1 as follows: As in
Example 2.4, the set Jgr,(cr) can be identified with

{v=(n,....0) € Zx0)* |1 >1n > --- > 11}

and denote by V, the functional space on Grx(C™) corresponding to v =
(v1,-- -, ) € Jare(cr)- Let us put

= 1,...,1,0,...,0 € r.(C"
v = ( l ) € Ton(cm)

k—l

for each { = 0,...,1. Since by Theorem 2.8 and Example 2.6, one can
compute that

1Ex (V)2 = Ax (Vi)
= Z QW (a)(AX)a

@€IGr,(c™)
_(n—2+1)(H)? N (o)
= oy 1) n—k ;( 1) = (T) aezék:(cn) 15i1<i§.<i’5k 0y Oy -
_(n-21+1) "“) N i [y A W] )
nr D ,2_2‘ o= 2 ()

=0
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for each | = 1,...,1. (To prove the equation above, we need some formu-
las for binomial coefficients. We omit the details here.) This implies that
Ypex f(@)=0foranyl=1,...,kand f €V,,.

Recall that, as a representaion of U(n), the functional space H defined
in Section 1 can be decomposed as H = @;;0 V... Here, V., is the set of all
constants on Gry(C") and V,, L V,, for I =1,...,k, and thus

/ fdpcr,cry =0
Gry(Cn)

for any f € V,, for l = 1,..., k. Therefore, the equation (1) in Theorem 1.1
holds. We omit the details of the last part of Theorem 1.1 (see also [6]). The
details will be reported elsewhere.
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