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Abstract

In this note, we recall a result in [11] together with some examples.

1 Example of function spaces

The following function spaces are fundamental in harmonic analysis and we want
to understarnd them in a unified manner. Here are some example of function
spaces that we envisage.

Lebesgue spaces for 0 < p < oo One of our staring points is the Banach
space LP(R™) for 1 < p < oco. Although it is not a Banach space, we can define
LP(R™) for 0 < p < 1.

Weighted Lebesgue spaces By a weight we mean a measurable function
which satisfies 0 < w(z) < oo for almost all x € R™. Let 0 < p < co and w be a
weight. One defines '

1
p
e = ([ 1f@Pute)dz)”.
Morrey spaces Let 0 < ¢ <p < oco. Define the Morrey norm || x || p by

||fuMg§sup{|B;%-% (/Blf(:v)|qu>a . Bis a ball in R“} (1.1)

for a measurable function f. The Morrey space MZ(R™) is the set of all measur-
able functions f for which | f|| v is finite. Among of them, the author would like



to understand the property of Morrey spaces. Morrey spaces grasp more than
LY(R™) + L=(R™) in general; see [10].

If we start Morrey spaces, we are led to Hardy-Morrey spaces. See [19]

Homogeneous and non-homogeneous Herz spaces Write @y = [—1, 1"
and C; = [-27,29]"\ [-2/71,2771]" for j € Z.

Let 0 < p,q < oo and o € R. The non-homogeneous Herz space K2 (R") is
the set of all measurable functions f for which the norm

1fllxg, = lIxao - fll» + (Z(T"‘IIXC,- -f!lp)q) q

j=1
is finite. The homogeneous Herz space K, oo (R™) is the set of all measurable func-
tions f for which the norm ||fllzg, = (552 w(2llxc, - flp)?) " is finice.

Hardy-Herz spaces, made from Herz spaces, are studied in [13, 17].

Orlicz spaces, Musielak-Orlicz spaces Although we do not define these
spaces, we remark that

2 General function spaces

Let L°(R™) be the space of all measurable functions defined on R”.

Definition 2.1. A linear space X = X(R") c L°(R") is said to be a quasi-
Banach function space if X is equipped with a functional || - ||x : L°(R™) — [0, o0]
enjoying the following properties:

Let f, g, f; € L°(R") (j=1,2,...) and XA € C.

(1) f € X holds if and only if || f||x < oo.
(2) (Norm property):
(A1) (Positivity): ||f]|x > 0.
(A2) (Strict positivity) || f|lx = 0 if and only if f = 0 a.e..
(B) (Homogeneity): [[Afllx = |Al-[If]|x-
(C) (Triangle inequality): For some o > 1, ||f + gllx < (|| fllx + llgllx)-



(3) (Symmetry): [|fllx = [l [f]llx-
(4) (Lattice property): If 0 < g < f a.e., then ||g]|x < || fllx-
(5) (Fatou property): If 0 < f; < fo < --- and 'limfj = f, then 1_i+m Ifillx =
j—oo j—oo
I1£1lx-

(6) For all measurable sets E with |E| < oo, we have ||xg||x < 0.

This framework is not enough in view of the following facts:

Remark 2.2. If a = 1 and the following condition:
For all measurable sets £ with |E| < oo and f € X

holds, we have f - xg € L*(R"); holds, then X is said to be a Banach function
space; see [2]. Note that, we do not postulate this condition in the definition of
quasi-Banach function space. As we have seen in [15], the Morrey space M2(R™)
with 1 < ¢ < p < oo violates this additional condition.

For this reason, we need to introduce the following notion:

Definition 2.3. A linear space X C L°(R") is said to be a ball quasi-Banach
function space if X is equipped with a functional || - ||x : L(R™) — [0, 00]
enjoying (1)—(5) as well as the following properties (6) and (7):
Let f, g, f; € L°(R") (j =1,2,...) and A € C.

(6) For all balls B, we have ||xg|lx < co.

(7) For all balls B and f € X, we have f - xg € L'(R"™).
If « =1, then X is said to be a ball Banach function space.

We recall the notion of the Kéthe dual of a ball Banach function space X. If
[l - || x is a ball function norm, its associate norm || - ||x: is defined on L°(R™) by

lgllx =sup {|If - gllzx : f€LXR™),Iflx <1}, (9€L°(RY).  (21)

The space X' collects all measurable functions f € L°(R") for which the quantity
| fllx is finite. The space X' is called the Kéthe dual of X or the associated space
of X.



3 Hardy spaces

3.1 Classical definitions

Suppose that ¢ € S(R™) satisfies the non-degenerate condition

Y(z) dx # 0.

]R'n,

Using this function, the Hardy norm is defined by;
115 = |jsupl? < I}l ,0<p<oo, feS®RY (3.1)
je p

for f € S'(R™). Here . . .

W = 920
for j € Z. The space HP?(R™) is defined uniquely despite the ambiguity of the
choice of 4. This fact justifies that we can omit ) in the notation || - ||%,.

We have a couple of motivations of investigating Hardy spaces.

e The singular integral operators, which are represented by the j-th Riesz
transform given by

1 i —Yi

R;f(z) = lim —L = f(y)dy, (3.2)
/(@) elo Jrm\B(ze) |7 — Y|

are integral operators with singularity (mainly at the origin). The bounded-

ness of such operators can be characterized by Hardy spaces. For example,

let f € L'(R™). Then the estimate

17l + D IRs e < 00 (33)
j=1
holds if and only if f € H*(R"). The Hardy space HP(R") with0 < p <1
also characterizes LP(R™). But the matters are subtler. So we do not go
into the details.

e Let 1 < p < co. The Hardy space HP(R") is isomorphic to LP(R™), so
that we have a different expression of LP(R™), which in turm yields the
decomposition results for the Lebesgue space LP(R™), for example.

e A spirit similar to above is that the Hardy space H?(R") and the Triebel-
Lizorkin space FI?Q(R") are isomorphic for 0 < p < oo. So the Hardy space
H?(R") can play the model role of Triebel-Lizorkin spaces.

e An experience shows that many other operators can be bounded from
H?(R™) to LP(R™) but are not bounded on LP(R™).



3.2 Our main results

Let us go back to our fundamental setting: Let X be a quasi-ball Banach function
space. So we are going to define HX(R™). Let 9 be a function non-degenerate
in the above sense. We want to define

,0<p<oo, feS'RY (3.4)
X

£ x =

sup |y * f|
JEZ

for f € 8'(R™). Once we can show that different choices of admissible v yield
equivalent norms, we can define H X (R") to be the set of all f € §'(R™) for which
|l £1|%x is defined.

The powered Hardy-Littlewood maximal operator M is defined by:
MO f = [M[|f"]]5, n>o. (3.5)

We write M = M®). In [11], we proposed that the following condition to develop
the theory of HX (R™):

= o 0 o
<Z M(")ij) S (Z | fj |Q) « (3.6)
Jj=1 x Jj=1 x
We formulate the atomic decomposition, the main result in this paper after
giving the definition.

Definition 3.1. Let X be a ball quasi-Banach function space and ¢ € [1, 00].
Assume that d € Z, satisfies d > dx. Then the function a is called an (X, ¢, d)-
atom if there exists () € Q such that supp(a) C @,

@ / atale)dr =0 (37)

lallze < 7=,
Ixellx " Jr

as long as |a| < d.

We also let dx = [% — n} )
For a > 0, we define | f||x= = [|||f]*||x]"/® for a measurable function f, so

that X is a ball quasi-Banach space.

Theorem 3.2 (Reconstruction, [11]). Let s € (0,1], ¢ € (1,00] and dx be as
above. Assume that X is a ball quasi-Banach function space such that the Kdéthe
dual of X'/* is isomorphic to a Banach function space Y such that

1M1y < 1 £lly (3-8)



and, for any [ € L°(R™). Let {a;}2, be a sequence of (X, g, dx)-atoms, sup-
ported on the cubes {Q;}32, C Q, and {\;}32; C [0,00) satisfy that

(e o] }\ s %
> (—;) XQ; < 0. (3.9)
= \lxesllx

X
Then the series f := Y 22| Aja; converges in S'(R™), f € HX(R") and

it 5|13 (5 2) e}
U \xesllx !

' X

where the implicit positive constant is independent of f.

Theorem 3.3 (Decomposition, [11]). Let X be a ball quasi-Banach function
space satisfying d > dx be a fized integer and f € HX(R™). Then there exist a
sequence {a;}%2, of (X, oo, d)-atoms, supported on the cubes {Q;}52; C Q, and
a sequence {\;}32; C [0,00) such that f = > 2, Nja; in S'(R") and

1

o0 AJ )5 2
o llx XQ; Ss f ,
{~_ (HXQij Qf} . I fllex

j=1

where the implicit positive constant is independent of f, but depends on s.

3.3 A reduction from HX to X

By mimicking the proof of HP(R") = LP(R™) [16], we can prove the following
proposition.

Proposition 3.4. If X is a ball Banach function space that admits a predual and
that | M fllx S || fllx for all f € X(R™), then HX (R™) = X (R™) with coincidence
of norms.

Proof. We generalized Proposition 3.4 in [11]. Here for the sake of convenience
for readers we supply a proof. Let f € X. Since

/ £ dz S (1 + 2)"Mf(y)
B(z,1)
for all y € B(1) = {|z| < 1}, we obtain

/ £ dz S (L+ 2)") £ 1x.
B(z,1)



Thus, f € §'(R?). For each j € Z, we have [¢7 x f| S M f; see [7, Proposition
2.7]. Thus,

SIMFlx S Ilx.
b'e
Let f € HX(R™). Then {47 f}22, forms a bounded set in X since f € HX(R").
Thus, if we pass to a subsequence, then {47 x f}32, converges to g € X (R") in the
weak-* topology of X (R™) thanks to the Banach-Alaoglu theorem. Meanwhile,
{17 * f}52, converges to f in §'(R"). Since HX(R") is embedded into S'(R"),
[ =g. Thus, f € X(R"). O

[ fllax =

sup [¢7 * f]
JEZL

Putting together this proposition and our main result, we can obtain decom-
position results for many function spaces; see [1, 9] for some recent works.

4 Main idea of the proof of the main result

4.1 Some problems

One of the attractive ways to prove the main result is to reexamine the book
[16]. We need to show HX (R")N Li..(R") is dense in HX (R™). However, as the
example of the Morrey space M?(R™) with 0 < ¢ < 1 < p < oo shows, this does
not seem to be true. One sufficient condition that makes this argument possible
is the notion of absolute continuity of the norms. A quasi-Banach function space
X is said to have an absolutely continuous quasi-norm, if ||xg;||x J 0 whenever
{FE; }j‘;l is a sequence decreasing to the empty set. In this case, we can also show
that HX (R™) N L°(R™) is dense in H X (R™).

4.2 What does assumption (3.6) implies ?

Assume that X is a ball quasi-Banach function space satisfying (3.6). To consider
the meaning of (3.6), we consider non-homogeneous Herz spaces. Let @ and C;
as before. Then as the inequality

MWW@%@LWWJ(M%

implies, X < Kpo/"(R"). We use this fact to prove the main theorem in [11].
Note that 1 ¢ Kpg”/"(R™).



5 ‘Some problems

5.1 Improvement of our key assumption

We postulated assumption (3.6) because it appeared many times in the proof.

In general, it is demanding that we verify assumption (3.6). Here and below
we write (a) = /1+ |a|? for a € R™. So we propose here replace the operator
M® by

¢ = sup (2) (- = 2)]
ZER™

motivated by the well-known Plancherel-Polya-Nikolski’i inequality:
sup (z) 77 |ip(z — 2)] S M (x) (5.1)
zER™
when supp(F) is contained in a fixed compact set. The operator
S = sup(z) 71|/ (-~ 2)]
zER™

is called the Peetre mazimal operator. For Besov spaces and Triebel-Lizorkin
spaces, we succeeded in this attempt; see [12]. A direct consequence of the
definition of the Peetre maximal operator is that

sup (z) 7 |f(- +a— 2)| < 25(a)7 sup (2) 7 |f(- — 2)|
zZER™ z€ER™
for all a € R™.

We can control sup (z) " 7|f(- + a — 2)| by sup(2)”7|f(- — z)| at the cost of
z€R™ z€R" .

the factor of (a)7.
Although this attempt does not work, we are also interested in the following
parametrized space: ||f|lzx = Hsusz]R" (2)77|f(- = 2)| H . For Besov spaces, the
X

following condition is sufficient: ||f(- + z)||x < ()" f||x for some N € N. See
[14] for more details. '

5.2 The boundedness of the fractional integral operators

Let I, be the fractional integral operator of order a given by
Y
I.f(z) = / i)n:; dy
Rre [T — Y|

Here we igore the problem of the convergence of the integral which will be justified
later. In fact, in many cases “f € X” is a sufficient condition of the integral to
converge for almost all z € R”.



Problem 5.1. Let X, Y be ball Banach function spaces. When is I, : X =Y
bounded ?

5.3 The condition on X for (3.6) to hold

It may be interesting to look for the condition for (3.6) to hold. If X is a Banach
function space, then a beautiful result is known; see [6].

5.4 The characterization of HX(R") in terms of the Riesz
transform

It is not known whether HX(R™) can be characterized in terms of the Riesz
transform. Maybe, the method in [18] can be used.
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