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Abstract

In this résumé we investigate the strong soluvability of the Stokes and the Navier
Stokes equations in weak L™-space, where the Stokes semigroup is analytic but not
strongly continuous at ¢ = 0. More precisely, the local in time strong solvability is
concerned. To construct a strong solution of the Naiver-Stokes equations in weak
L™-space, we clarify the condition on the external forces, which is inherited from
the strong solvability of the inhomogeneous Stokes equations.

This résumé is based on the joint work with Professor Yohei Tsutsui.

1 Introduction

Let n > 3. We consider the initial value problem of the incompressible Naiver-Stokes
equations in the whole space R".

Ou—Au+ (u-Viu+Vr=f  inR"x (0,00),
divu=0 inR" x (0,00), (N-S)
u(-,0)=a inR"™

Here, u = u(z,t) = (w(z,t),...,ua(z,t)) and m = w(z,t) are the unknown velocity
and the pressure of the incompressible fluid, respectively, a = a(z) = (a1(z), ..., an(z))
andf = f(z,t) = (fi(z,?),. .., fn(x,t)) are the given initial data and the external force,
respectively.

The aim and the background are to prove the strong solvability of the time periodic
problem of (N-S), instead of the initial value problem of (N-S). Indeed, in [9] we construct
a mild solution of (N-S) in BC(R; L™*°(R™)) by the real interpolation approach so-called
Meyer’s method, see Meyer [8]. Let P be the Fujita-Kato projection and L}*(R") =
PL™>*(R™).

Theorem 1.1 ([9]). (i) Let n > 4. There exists €, > 0 with the following property.
Suppose that f € BC(R; L5>(R")) satisfies f(t) = f(t +w) for all t € R with some
period w > 0. If

sup [| f()[|2,00 < &n

teR
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then there exists a time periodic solution u of
¢ ¢
u(t) = / P (s) ds — / etAPy . Vu(s)ds, tER, (IE)

with the same period as f such thatu € BC(R; LM (R")) with Vu € BC(R; L2°(R")).
Moreover, for 3 < p < oo, there ezists €np > 0 with €,, < €, such that if f addition-
ally belongs to BC(R; LP*°(R™)) and satisfies

sup || f(t)]l2.00 < Enp
teR
then the solution u of (IE), obtained above, also satisfies
u€ BC(R; Ly®(R™) and Vue BC(R; L**(R"Y)),

where the exponents r and q satisfy

np

n n
n<r< ) < = —<g< ) <n
STS T, f r<s3, 5 SIS, f p<n,
n n .
n<r<oo if 5 <P, 5Sq< if n<p.

(i) Let n = 3. There exists e3 > 0 with the following property. Suppose that f €
BC(R; L*(R%)) satisfies f(t) = f(t+w) fort € R with some period w > 0. If

sup [|f(#)]lx < es,
teR

then there exists time periodic function u in BC(R; L>*(R?)) with the same period w
such that

¢ ¢
u(t) = / Pe=9)A f(s5) ds — / V - @ APy @ u)(s) ds, teR. (IE*)
Moreover, for 1 < p < oo there exists s, > 0 with €3, < 3 such that if f additionally
belongs to BC(R; LP*(R®)) and satisfies
sup [|f(t)]l1 < esp
teR

then the solution u of (IE*), obtained above, satisfies (IE) and also satisfies
u € BC(R; Ly®(R?) and Vue BC(R; L¥*(R?)),
where the exponents r and q satisfy

3
<q§—p if 1<p<3,

3—p
<g< o if 3<np.

3<r<

[\
NN W

3—-2
.3
3<r<m if ESP’



Here, we note that Yamazaki [11] is firstly obtained the time periodic solution in
L™*°(Q) of (N-S) with weak-mild form. In [11], the regularity and strong solvability is
discussed in terms of the topology of some sum space of the Sobolev spaces with negative
differentiability. So we discuss the strong solvability of (N-S) in the topology of L™>(R™).
Since the Stokes (the heat) semigroup on L™ (R") is not strongly continuous, we may
not expect the strong solvability of the Stokes equations for each f. So we introduce the
restriction on the external forces, not on initial data, as follows:

lii% €2 £(£) = f(t)]lneo =0 for each ¢, (A)

Indeed with the condition (A), we obtain the following theorem.

Theorem 1.2 ([9]). Let n > 3. Suppose that f € BC(R; L™®(R")) and that u €
BC(R; L°(R")) is a time periodic solution of (IE) which satisfies u € BC(R; Ly (R™))
with some r > n and Vu € BC(R; L+®(R")) with some ¢ > %. If Pf is Holder
continuous on R with values in L™ (R™), and if Pf satisfies (A), then the periodic solution

u satisfies the following properties,
(i) uw € BC(R; L2°(R™)) NC' (R; L™ (R")),

(ii) u(t) € {u € LP®R"); 0;00u € L™*R"), j,k = 1,...,n} for all t € R and
Au € C(R; L (R")),

(#3) u satisfies
%(t} _ Au(t) £ Plu-Val(f) =Pf(t)  in L*O(RY), te R,

For the proof of Theorem 1.2, the local in time existence theorem plays an important
role. For such a direction, Kozono-Yamazaki 6] construct a local in time strong solution of
(N-S) in the sum space L™*(Q2) + L™(2), r > n. On the other hand, we try to construct a
local solution which satisfies the differential equation of (N-S) in the topology of L™ (R").

2 Result

Before stating our results, we introduce the following notations and some function spaces.
Let g% (R™) denotes the set of all C*-solenoidal vectors ¢ with compact support in R”,
ie., divg=0in R". L7(R") is the closure of Cg5, (R™) with respect to the L"™-norm || - ||,
1 <r < oo. (+-) is the duality pairing between L"(R") and L" (R"), where 1/r+1/r' = 1,
1 <r <oo. L'(R") and W™ (R™) denote the usual (vector-valued) L"-Lebesgue space
and L"-Sobolev space over R”, respectively. Moreover, S(R™) denotes the set of all of the
Schwartz functions. S’(R™) denotes the set of all tempered distributions. When X is a
Banach space, || - || x denotes the norm on X. Moreover, C(I; X), BC(I; X) and L™(I; X)
denote the X-valued continuous and bounded continuous functions over the interval I C R
and X-valued L" functions, respectively.
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Moreover, for 1 < p < oo and 1 < ¢ < oo let LP4(R™) be the space of all locally
integrable functions with (quasi) norm ||f||,q < 0o, where

1 llpa = (/ow“'{meR";If(w)lwﬂ%f@q’ 1<q<oo,

sup A |{z € R™; |f(z)| > A}, q = oo,
A>0

where |E/| denotes the Lebesgue measure of E C R". For the case ¢ = oo, L»*(R") is a
Banach space with the following norm: with any 1 <r <p

Iflirm = sup 151755 ( [ @) )
0<|E|<co E

Here, we note that || - ||z is equivalent to || - ||n,c0-
To construct a local solution of (N-S), we introduce the following function spaces.

Ir®R") = IFPRY N IoRY ™ and LYP(R™) = (¢ € Coo(RY); divg = 0] ™~
See, Taniuchi [10] and Koba [5].

Theorem 2.1. Let a € L»®(R") and f € BC([0,00); L™*(R")). Suppose f is Holder
continuous on [0,00) with value in L™ (R™) and satisfies (A). There are T > 0 and a
function uw € BC((0,T); L»>®(R™)) with Vt+/?u € BC((0,T); L™= (R")) which satisfies

(i) we BC((0,T); Lr>>(R™) N C*((0,T); L2>(R™)),

(i) u(t) € {u € LP>°(R"); 8;0,u € L™(R"), j,k =1,...,n} for allt € (0,T) and
Au e C((0,T); L™ (R™)),

(iii) u satisfies
‘%‘(t) — Au(t) +Plu-Vul(t) = PA(t)  in LMO(RY), te€ (0,T),
u(t) =~ a weakly x in LY>(R™) ast\,0.

Moreover, if a € LB*(R") N L"(R") for some r > n, then the existence time T > 0 is
erpressed as

27
. 77* r—n
T >min¢ 1, ( ) ,
{ lall- + sup [Pf(s)llnco }
0<s<o0

with some absolute constant n, > 0.

Remark 2.1. (i) if a € L»*°(R") and f € L*(0, 0o; L™*(R"™)) N BC([0, 00); L™ (R™))
satisfy

lallnoo + 1P fllzr 0 00im) + 8UD S[PF (5) n.00 < 1,
sE

then we can take T = oo.
(ii) Along to Koba [5], if a € Ly;° (R™) we also see that lim |lu(t)=alln,00 = 0. Moreover

if a € Lg;”(R™) is small enough and f = 0 then 15lim [lu(®)|In.co = O.



3 Key lemma

In this subsection, we reconstruct a theory of abstract evolution equations with the semi-
group which is not strongly continuous at ¢ = 0. Indeed, the Stokes semigroup is not
strongly continuous on L7*°(R™).
For a while, let A be a general closed operator on a Banach space X and {e‘} a
bounded and analytic on X with the estimates
sup [l€lzce) S N, | A€ [y < %,
0<t<oo t

t>0, (3.1)

where £(X) is the space of all bounded linear operators on X equipped with the operator
norm. Especially, we note that e*4 is strongly continuous in X for ¢ # 0.

Definition 3.1. Let 6 € (0,1]. We call f is the Hélder continuous on [0,00) with value
in X with the order 0, if for every T > 0 there exists K3 > 0 such that

If®) = f(8)llx < Krlt — s/, 0<t<T,0<s<T.
Assumption. Let f : [0,00) — X. We assume for every t > 0

lim e £(8) = f@)lx = 0. (A)

Lemma 3.1. Let a € X and let f € C([0,00); X) be the Hélder continous on [0,00)
with value in X with order 0 > 0 and satisfy Assumption. Then

t
u(t) = eta + / et=94£(s) ds
0

satisfies

%u:Au—kf inX t>0.

Remark 3.1. We note that we need a restriction only on the external force f not on
initial data a. Moreover, Lemma 3.1 does not focus on the verification of the initial
condition. If we have some information of the adjoint operator A* and of the dual space
X*, then we recover the verification of the initial condition with a suitable sense.

4 Outline of proof

The proof of Theorem 2.1 is fulfilled by the standard iteration method developed by Fujita
and Kato [1], Kato [4], Giga and Miyakawa [3] and Giga [2]. The difficulty to construct
a local in time mild solution comes from the lack of the density of Cg%(R™) in Ly>(R").

For this reason, we restrict initial data within Z?‘”(R"). Then once we obtain a local
in time solution in a suitable function spaces, Lemma 3.1 guarantees the mild solution is
a strong solution, i.e., satisfies the differential equations of (N-S), since it is not difficult
to see that the nonlinear term satisfies the assumption (A) by the regularity of the mild
solution.
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5 Application

As is mentioned in the previous section, our motivation is to prove the strong solvability
of the time periodic problem of (N-S), see [9]. For this purpose, to construct a local strong
solution and the uniqueness theorem of the mild solution of (N-S) are essential. So we
introduce the uniqueness theorem in weak L" space proved by Kozono and Yamazaki [7].

Theorem 5.1 ([7]). Let n < r < co. Then there exists a constant k = k(n,r) > 0 with
the following property. Let a € L™*(R™) N L7 (R™). Suppose v is the mild solution on
[0,T) of (N-S) obtained by Theorem 2.1. Suppose w is also a mild solution on [0,T) of

1

(N-S) which satisfies t2~ 3w € BC((0,T); L"(R™)). If
limsup 2~ % |w(t)||, < & (5.1)
t—0

then v=w on (0,T).

Then we only give the sketch of proof of Theorem 1.2. Firstly, we construct a mild
solution of the time periodic solution of (N-S) with suitable regularity. Then solve the
initial value problem of (N-S) where the initial state is the point on the periodic orbit.
Finally, by the uniqueness theorem, we may conclude the time periodic mild solution
satisfies the differential equation of (N-S).
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