REFINEMENTS OF HÖLDER-MCCARTHY INEQUALITY

MASATOSHI FUJII¹ and RITSUO NAKAMOTO²

Osaka Kyoiku University Ibaraki University

1. Introduction

Throughout this note, a capital letter means a (bounded linear) operator acting on a Hilbert space \mathcal{H} . An operator A is said to be positive, denoted by $A \geq 0$, if $(Ax, x) \geq 0$ for all $x \in \mathcal{H}$.

McCarthy [6] proved the following inequalities: Let A be positive operator acting on a Hilbert space \mathcal{H} . Then

- (i) $(A^{\mu}x, x) \leq (Ax, x)^{\mu} ||x||^{2(1-\mu)}$ for $\mu \in [0, 1]$ and $x \in \mathcal{H}$.
- (ii) $(A^{\mu}x, x) \ge (Ax, x)^{\mu} ||x||^{2(1-\mu)}$ for $\mu > 1$ and $x \in \mathcal{H}$.

Moreover (i) and (ii) are simplified to the following (iii) and (iv), respectively:

- (iii) $(A^{\mu}x, x) \leq (Ax, x)^{\mu}$ for $\mu \in [0, 1]$ and ||x|| = 1.
- (iv) $(A^{\mu}x, x) \ge (Ax, x)^{\mu}$ for $\mu > 1$ and ||x|| = 1.

The inequalities (i) and (ii) are proved by using the integral representation of A and the Hölder inequality. Hence they are called the Hölder-McCarthy inequality. For readers' convenience, we cite a proof of (i) for the case where A is a positive definite diagonal matrix with diagonal entries a_1, \dots, a_n . For $r \in (0, 1)$,

$$(A^{r}x, x) = \sum a_{i}^{r} |x_{i}|^{2} = \sum a_{i}^{r} |x_{i}|^{2r} |x_{i}|^{2(1-r)}$$

$$\leq (\sum a_{i} |x_{i}|^{2})^{r} (\sum |x_{i}|^{2})^{1-r}$$

$$= (Ax, x)^{r} ||x||^{2(1-r)}$$

On the other hand, the following inequality is named as the Young inequality, cf. [2] and [3]: For $A, B \ge 0$,

$$\mu A + (1-\mu)B \geq B \ \#_{\mu} \ A \quad \text{for } 0 \leq \mu \leq 1,$$

where $B \#_{\mu} A = B^{\frac{1}{2}} (B^{-\frac{1}{2}} A B^{-\frac{1}{2}})^{\mu} B^{\frac{1}{2}}$ is the μ -operator geometric mean. Its simplified form is as follows: For $A \geq 0$,

$$\mu A + 1 - \mu \geq A^{\mu} \quad \text{for } 0 \leq \mu \leq 1.$$

It is known that the Hölder-McCarthy inequality (iii) and the Young inequality are equivalent [3] and [2; §3.1.3].

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47B10.

Key words and phrases. Hölder-McCarthy inequality, Young inequality, convexity of functions.

As a refinement of the Young inequality, Kittaneh and Manasrah [4] proposed that

$$(1 - \mu)a + \mu b \ge a^{1 - \mu}b^{\mu} + \min\{\mu, 1 - \mu\}(\sqrt{a} - \sqrt{b})^2$$

for all positive numbers a, b and $\mu \in [0, 1]$. It is simplified as follows:

$$\mu a + 1 - \mu - a^{\mu} \ge \min\{\mu, 1 - \mu\}(1 + a - 2\sqrt{a})$$

for all positive numbers a and $\mu \in [0,1]$. We now understand it as the inequality

$$\mu A + 1 - \mu - A^{\mu} \ge \min\{\frac{1-\mu}{1-\nu}, \frac{\mu}{\nu}\}(\nu A + 1 - \nu - A^{\nu}).$$

As a matter of fact, if we take $\nu = \frac{1}{2}$ and A = aI, where I is the identity operator, then we easily obtain the simplified inequality mentioned above. In succession, Manasrah and Kittaneh generalized refined Young inequalities in [5].

Based on recent results on refinements of Young inequality, Alzer et al. proposed the following estimation [1: Theorem 2.1]: If $0 < \mu < \nu < 1$, $\lambda \ge 1$ and a, b > 0, then

$$\left(\frac{1-\nu}{1-\mu}\right)^{\lambda} < \frac{A_{\nu}^{\lambda} - G_{\nu}^{\lambda}}{A_{\mu}^{\lambda} - G_{\mu}^{\lambda}} < \left(\frac{\nu}{\mu}\right)^{\lambda}$$

holds, where $A_{\tau} = (1 - \tau)a + \tau b$ and $G_{\tau} = a^{1-\tau}b^{\tau}$.

In this paper, we improve the Hölder-McCarthy inequality, whose point is the convexity of the function $f(\mu) = \frac{(A^{\mu}x,x)}{(Ax,x)^{\mu}}$. Moreover we point out that the improved Hölder-McCarthy inequality is equivalent to an improved Young inequality in the sense of Kittaneh and Manasrah.

2. HÖLDER-McCarthy inequality

As an approach to the Hölder-McCarthy inequality, we consider the function defined by the ratio; $f(\mu) = \frac{(A^{\mu}x,x)}{(Ax,x)^{\mu}}$. We first show the convexity of the function.

Theorem 2.1. Let A be a positive operator on \mathcal{H} and $x \in \mathcal{H}$ with $Ax \neq 0$. If $f(\mu) = \frac{(A^{\mu}x,x)}{(Ax,x)^{\mu}}$, then $f(\mu)$ is a convex function on $[0,\infty)$. Moreover if A is invertible, then $f(\mu)$ is a convex function on $(-\infty,\infty)$.

Proof. First of all, we note that $(A^{\mu}x, x)$ is log-convex, i.e.,

$$(A^{\frac{\mu+\nu}{2}}x,x) \le (A^{\mu}x,x)^{\frac{1}{2}}(A^{\nu}x,x)^{\frac{1}{2}}.$$

It is easily checked as follows:

$$(A^{\frac{\mu+\nu}{2}}x,x) \le \|A^{\frac{\mu}{2}}x\| \|A^{\frac{\nu}{2}}x\| = (A^{\mu}x,x)^{\frac{1}{2}}(A^{\nu}x,x)^{\frac{1}{2}}.$$

By this and the arithmetic-geometric mean inequality, we have

$$\frac{1}{2}\left(\frac{(A^{\mu}x,x)}{(Ax,x)^{\mu}}+\frac{(A^{\nu}x,x)}{(Ax,x)^{\nu}}\right)\geq\frac{(A^{\mu}x,x)^{\frac{1}{2}}(A^{\nu}x,x)^{\frac{1}{2}}}{(Ax,x)^{\frac{\mu+\nu}{2}}}\geq\frac{(A^{\frac{\mu+\nu}{2}}x,x)}{(Ax,x)^{\frac{\mu+\nu}{2}}},$$

that is,
$$f(\frac{\mu+\nu}{2}) \leq \frac{1}{2}(f(\mu) + f(\nu))$$
.

Remark 2.2. It is remarkable that the convexity of $f(\mu)$ implies the Hölder-McCarthy inequality. As a matter of fact, if $x \in \mathcal{H}$ is unit vector, then $f(\mu)$ defined in above satisfies f(0) = f(1) = 1. Hence the convexity of it implies the Hölder-McCarthy inequality (iii) and (iv).

Next we propose a refinement of the Hölder-McCarthy inequality:

Theorem 2.3. Let $A \ge 0$, ||x|| = 1 and $\lambda \ge 1$. Then

$$m(\mu,\nu)\left(1-\left(\frac{(A^{\nu}x,x)}{(Ax,x)^{\nu}}\right)^{\lambda}\right)\leq 1-\left(\frac{(A^{\mu}x,x)}{(Ax,x)^{\mu}}\right)^{\lambda}\leq M(\mu,\nu)\left(1-\left(\frac{(A^{\nu}x,x)}{(Ax,x)^{\nu}}\right)^{\lambda}\right)$$

hold for $\mu, \nu \in (0,1)$, where $m(\mu, \nu) = \min\{\frac{1-\mu}{1-\nu}, \frac{\mu}{\nu}\}$ and $M(\mu, \nu) = \max\{\frac{1-\mu}{1-\nu}, \frac{\mu}{\nu}\}$. Moreover two inequalities in above are equivalent.

Proof. It follows from the preceding theorem that $f^{\lambda}(\mu)$ is a convex function by $\lambda > 1$.

If $\nu \geq \mu$, then we have

$$\frac{f^{\lambda}(\mu) - f^{\lambda}(0)}{\mu - 0} \le \frac{f^{\lambda}(\nu) - f^{\lambda}(0)}{\nu - 0},$$

that is,

$$1 - f^{\lambda}(\mu) \ge \frac{\mu}{\nu} (1 - f^{\lambda}(\nu)).$$

Next, if $\mu \geq \nu$, then we have

$$\frac{f^{\lambda}(1) - f^{\lambda}(\mu)}{1 - \mu} \ge \frac{f^{\lambda}(1) - f^{\lambda}(\nu)}{1 - \nu},$$

that is,

$$1 - f^{\lambda}(\mu) \ge \frac{1 - \mu}{1 - \nu} (1 - f^{\lambda}(\nu)).$$

Hence the first inequality is proved. Finally, the equivalence between two inequalities is ensured by permuting μ and ν . Actually, if we do in the first inequality, then we have the second one by $\max\{a,b\} = [\min\{\frac{1}{a},\frac{1}{b}\}]^{-1}$ for a,b>0; the converse is shown by the same way.

We here discuss the previous result under the case $\lambda \in (0, 1]$.

Theorem 2.4. Let $A \ge 0$, ||x|| = 1 and $0 < \lambda \le 1$. If $1 \ge \nu \ge \mu > 0$, then

$$1 - \left(\frac{(A^{\mu}x, x)}{(Ax, x)^{\mu}}\right)^{\lambda} \ge \frac{\mu}{\nu} \left(1 - \left(\frac{(A^{\nu}x, x)}{(Ax, x)^{\nu}}\right)^{\lambda}\right).$$

Proof. It follows from the arithmetic-geometric mean inequality that

$$1 - \frac{\mu}{\nu} + \frac{\mu}{\nu} \left(\frac{(A^{\nu}x, x)}{(Ax, x)^{\nu}} \right)^{\lambda} \ge \left(\frac{(A^{\nu}x, x)}{(Ax, x)^{\nu}} \right)^{\lambda \cdot \frac{\mu}{\nu}} = \left(\frac{(A^{\nu}x, x)^{\frac{\mu}{\nu}}}{(Ax, x)^{\nu \frac{\mu}{\nu}}} \right)^{\lambda} \ge \left(\frac{(A^{\mu}x, x)}{(Ax, x)^{\mu}} \right)^{\lambda}$$
 by $\frac{\mu}{\nu} \in (0, 1)$.

3. HÖLDER-MCCARTHY INEQUALITY AND YOUNG INEQUALITY

We first give an elementary proof to the following known refinement of the Young inequality

Theorem 3.1. Let $A \ge 0$ and $0 \le \mu, \nu \le 1$, and $m(\mu, \nu)$ and $M(\mu, \nu)$ be as in Theorem 2.3. Then

$$m(\mu, \nu)(\nu A + 1 - \nu - A^{\nu}) \le \mu A + 1 - \mu - A^{\mu} \le M(\mu, \nu)(\nu A + 1 - \nu - A^{\nu}).$$

Moreover, two inequalities in above are equivalent.

Proof. It is sufficient to prove the numerical case for the left hand side, i.e.,

$$\mu a + 1 - \mu - a^{\mu} \ge m(\mu, \nu)(\nu a + 1 - \nu - a^{\nu})$$
 for $a > 0$.

If $\mu \geq \nu$, then $\frac{1-\mu}{1-\nu} \leq 1$ and $\frac{\mu-\nu}{1-\nu} + \frac{1-\mu}{1-\nu} = 1$ and so

$$\mu a + 1 - \mu - \frac{1 - \mu}{1 - \nu} (\nu a + 1 - \nu - a^{\nu})$$

$$= \mu a - \frac{\nu (1 - \mu)}{1 - \nu} a + \frac{1 - \mu}{1 - \nu} a^{\nu}$$

$$= \frac{\mu - \nu}{1 - \nu} a + \frac{1 - \mu}{1 - \nu} a^{\nu}$$

$$\geq a^{\frac{\mu - \nu}{1 - \nu}} a^{\frac{\nu (1 - \mu)}{1 - \nu}} = a^{\mu}.$$

If $\nu \geq \mu$, then

$$\mu a + 1 - \mu - \frac{\mu}{\nu} (\nu a + 1 - \nu - a^{\nu}) = 1 - \frac{\mu}{\nu} + \frac{\mu}{\nu} a^{\nu} \ge a^{\mu}.$$

Hence we have the first inequality.

The second inequality and the equivalence between two inequalities are obtained by $\max\{a,b\} = [\min\{\frac{1}{a},\frac{1}{b}\}]^{-1}$ for a,b>0, as in the proof of Theorem 2.3.

Finally, we discuss the equivalence between refined Hölder-McCarthy inequality and refined Young inequality, which is analogous to the result in [3].

Theorem 3.2. Refined Hölder-McCarthy inequality and refined Young inequality are equivalent, i.e.,

(1)
$$1 - \frac{(A^{\mu}x, x)}{(Ax, x)^{\mu}} \ge m(\mu, \nu) \left(1 - \frac{(A^{\nu}x, x)}{(Ax, x)^{\nu}}\right) \quad \text{for unit vectors } x,$$

(2)
$$\mu A + 1 - \mu - A^{\mu} \ge m(\mu, \nu)(\nu A + 1 - \nu - A^{\nu})$$

are equivalent for given $\mu, \nu \in (0,1)$, where $m(\mu, \nu)$ is as in Theorem 2.3.

Proof. Assume that (1) holds and x is a unit vector. If $\nu \geq \mu$, then we have

$$\mu(Ax, x) + 1 - \mu - \frac{\mu}{\nu}(\nu(Ax, x) + 1 - \nu - (A^{\nu}x, x))$$

$$= \frac{\nu - \mu}{\nu} + \frac{\mu}{\nu}(A^{\nu}x, x) \ge (A^{\nu}x, x)^{\frac{\mu}{\nu}} \ge (A^{\mu}x, x)$$

by the (classical) Young inequality and Hölder-McCarthy inequality.

If $\mu \geq \nu$, then

$$\mu(Ax,x) + 1 - \mu - \frac{1-\mu}{1-\nu}(\nu(Ax,x) + 1 - \nu - (A^{\nu}x,x))$$

$$= \left(\left(\frac{\mu-\nu}{1-\nu}A + \frac{1-\mu}{1-\nu}A^{\nu}\right)x,x\right) \ge \left(A^{\frac{\mu-\nu}{1-\nu}}A^{\frac{\nu(1-\mu)}{1-\nu}}x,x\right) = (A^{\mu}x,x).$$

For the reverse implication (2) \Rightarrow (1), we replace A by kA in (2) where $k = (Ax, x)^{-1}$. Thus we have

$$\mu(Ax,x)^{-1}(Ax,x) + 1 - \mu - (Ax,x)^{-\mu}(A^{\mu}x,x)$$

$$\geq m(\mu,\nu)(\nu(Ax,x)^{-1}(Ax,x) + 1 - \nu - (Ax,x)^{-\nu}(A^{\nu}x,x)),$$

which is just arranged as (1), i.e.,

$$1 - \frac{(A^{\mu}x, x)}{(Ax, x)^{\mu}} \ge m(\mu, \nu) \left(1 - \frac{(A^{\nu}x, x)}{(Ax, x)^{\nu}}\right).$$

Note. This paper is based on our recent work [7].

REFERENCES

- [1] H. Alzer, C. M. da Fonseca and A.Kovačec, Young-type inequalities and their matrix analoques, Linear Multilinear Algebra, 63 (2015), 622-635.
- [2] T. Furuta, Invitation to Linear Operators, Taylor & Francis, 2001.
- [3] T. Furuta, The Hölder-McCarthy and Young inequalities are equivalent for Hilbert space operators, Amer. Math. Monthly, 108 (2001), 68-69.
- [4] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (2010), 262-269.
- [5] Y. Manasrah and F. Kittaneh, A generalization of two refined Young inequalities, Positivity, 19 (2015), 757-768.
- [6] C. A. McCarthy, C_p, Israel J. Math., 5 (1967), 249-271.
- [7] M. Fujii and R. Nakamoto, Refinements of Hölder-McCarthy inequalities and Young inequality, Adv. Oper. Theory, 1 (2016), 184-188.

 $^1\mathrm{Department}$ of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp

²Daihara-cho, Hitachi, Ibaraki 316-0021, Japan

E-mail address: r-naka@net1.jway.ne.jp