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Abstract

We introduce the function spaces L,(0 < p < 00) and the natural quasi-
metrics on them based on the Sugeno integral for a fuzzy neasure. It is proved
that for every 0 < p,q < 0o, L, = Lq holds.

1 Introduction

We study the metric and quasi-metric structures of the function spaces L, for a fuzzy
measure. The definition of L, for 0 < p < co depends on the integration for a fuzzy
measure. In fact, many definitions of the fuzzy integrals are proposed such as the
Choquet integral[l], Sugeno integral[12, 18], Shilkret integral[17], Imaoka integral[9],
pan-integral[14], Lehrer integral(concave-integral)[11], convex-integral[10], and so on.
In this note, we shall consider L,(0 < p < o0) spaces for the Sugeno integral. In the
case where p = 1,00, the function spaces Lg, Lo, are defined without utilizing the
fuzzy integral.

Definition 1 /8, 4, 5, 7, 8, 16, 19] Let T be a set. A function p(s,t) : T X T —
[0, +00) is called a quasi-metric
<

1. p(s,t) >0, p(s,t)=0 <= s=t, s,t €T

2. p(s,t) =p(t,s), st €T, and

3. 3K > 1 ; p(s,t) < K (p(s,u) + p(u,t)), s,t,u €T.
In the case where K =1, then p is called a metric.

Definition 2 [1, 2, 12, 15, 18] Let (X, B(X)) be a measure space on a set X, that
is B(X) is a o-algebra on X. A set function p : B(X) — [0,+00] is called a fuzzy
measure

<

1. p(0) =0,
2. AC B, A, B € B(X) = u(A) < u(B).

A fuzzy measure p is called subadditive(or j is a submeasure)
<~
(AU B) < p(A)+ u(B) for every A, B € B(X).
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A fuzzy measure p is called weakly subadditive
—
Jk>1; w(AUB) < p(A) + ku(B) for every A, B € B(X).

A fuzzy measure p is said to be continuous from below
<
w(An) T u(A) for any A,, A € B(X) such that A, T A.

A fuzzy measure p is said to be continuous from above
<~
w(By) | w(B) for any B,, B € B(X) such that B, | B with u(By) < +oo.

Definition 3 [12, 18] A set N € B(X) is called the strongly null set
<
w(AUN) = u(A) for every A € B(X).

Lemma 4 [12, 18] Assume p is subadditive or weakly subadditive. Then N is a
strongly null set if and only if p(N) = 0.
A function f: (X, B(X)) — (—o0, +00) is called measurable if for every real number

r, it holds that {f > r}:={z € X | f(z) > r} € B(X).

Let p : (X,B(X)) — [0,+00] be a fuzzy measure and f : (X, B(X)) — [0,400)
be a non-negative measurable function. Then the Sugeno integrals[l, 18] of f with
respect to u are defined by

(Su) /deu = supr Ap{f>r}).

2 The space L, of all real measurable functions

Let (X.B(X)) be a measure space and p is a fuzzy measure on (X.B(X)). Denote
by Lo the set of all real valued measurable functions f : (X, B(X)) — (—o0,+00).
For f,g € Ly, we set

do(f,9) = inf arctan {r + u({z € X | |£(x) — g(x)] > r})} .

Lemma 5 Assume p is weakly subadditive. Then do(f,g) is a translation invariant
quasi-metric on Lo. Furthermore if p is subadditive, then do(f,g) is a metric.

Remark that for h € Lo, do(h,0) = 0 if and only if u(|f| > r) = 0 for every r > 0.
So that we have the following lemma.

Lemma 6 Assume p is weakly subadditive. If do(h,0) = 0, then do(f £ h,g) =
dolf,g) for every f,g € Lo.
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We set
No = {h€Ly]| do(h,0) =0}, and
Ly = Lo/No.

By the above lemma, dy induces naturally the quasi-metric JO on Ly by

do(f +No, g+ No) = do(£,9).

In the sequel we shall identify the equivalence class f + Ny with f, and also the
quasi-metric dy with dp.

3 Sugeno L, space L,(Su) (0 < p < 00)

In this section we introduce the L, space L,(Su) with respect to the Sugeno integral
for 0 < p < co. We shall show that if p is weakly subadditive, then L,(Su) is a
quasi-metric space. Furthermore for every 0 < p, ¢ < 0o, we have L,(Su) = L,(Su)
as a set and the quasi-metrics on these two spaces define the same topology.

Let p be 0 < p < oco. For a measurable function f : (X, B) — (—o0,+00), we set

1

F@rAmvv>np,
>0

Il

|l
L, = {f| |flp <+oo}, and
Op = {f€£p| If|p=0}-

Lemma 7 Assume that u is a weakly subadditive fuzzy measure. Then we have for
p=1

r

1
If+9lp < 2k7 (|flp+1glp), fr9 € Ly,
and for 0 <p <1

If +glp < (20)7 (Iflp + lgls), f.9 € Lp.
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mmrA#ﬂf+gP>r)=mmrAu(U+ﬂl>Tﬂ
>0 r>0
1 12
supr Ap | < |f] > zre pUS gl > =P
r>0 2 2
1 1
supr A | |f] > =re ) +kp|lg) > zre
>0 2 2
11 1
supr Ap | |f] > =7 +sup7"/\k,u lg| > =r>
>0 2 2
p P p ps
swp (25:) wn (117> ) s (25,) wkw (b > 37)

2 sup (5) (> 53) oup () o it > )|
2 [Ifl5 + klgl] < 27K [|F15 + 9]

where we have used the inequality a A (b+c) < aAb+aAc. So that we have for

p=1,

and for 0 <p <1,

Proof

lefly =

If +glp < 287 (|f]p + lgln) ,

If + glp < 26525 (| ], + glp) = 2K)% (1] + lglp) -

Lemma 8 We have

leflp < Max{|c|,1}|f|, for real number c and f € L,.

supr A p([ef[” > )
r>0

p
suprAﬁt(Ul |dp)

s (1) 1 (> )

If || > 1, then we have

sup (17725 ) o (191> 22) < leesup () o (101> 125 ) = el

If |e| <€ 1, then we have
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So that we have the assertion.
Lemma 9 Assume that h € O,, that is, |h|, = 0. Then we have
u(lh) >r)=0 for every r > 0.
In particular, if p is continuous from below then h = 0 p-almost everywhere, that is
u(lh| > 0) = 0.
Proof By the definition of | |, we have the assertion.
Lemma 10 Let p be o weakly subadditive fuzzy measure. Then we have
|f £ 0l = [l
for every f € L, and h € O,.

Proof By Lemma 4 and Lemma 9, for every r > 0 it follows that the subset N(r) :=
{|h| > r} is a null set. Let 0 < e < 1 be arbitrarily fized. Then we have

w(|f £hP>r) = ,u(|fﬂ:h| >7~71:)

p (({If +h| > 77} N(ers)) U N(er:’lv))
p({|f £ h| > rs} N N(ers)°)

u(|f £ h| > 7’%, Ihl < 57‘%)
u(lfl > (1 —e)rs)

u(|fIP > (1—e)Pr).

mmIA

IA

So that we have

IA

rAp(f£hP>T) < rAp(fP> (1 —e)r)

o - nulsr > 0 -epn)

1 p

Taking sup,>q in the left hand side, we have

IA

|fihws(r§5?vm

Letting € | 0, we have the assertion.
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Definition 11 Let p be a weakly subadditive fuzzy measure. We set
Ly: = Lp/Op
1f+Oplp: = [flp for f+0Op€ Ly

By Lemma 10, the value || f+O, ||, does not depend on the choice of the representative
f of the equivalence class f + O,. In the sequel we identify the equivalence class
f+ O, with f and write

1flle=1f + Oplp for f € Ly
Then || f||, determines a translation invariant quasi-metric on L, as follows.

Theorem 12 Let u be a weakly subadditive fuzzy measure. Then the space (Ly, || f||p)
is a linear space. The function v,(f,q) := ||f — gllp is a quasi-metric satisfying :

1. yp(cf,0) < Max{|c|, 1}7,(f,0) for a real number ¢ and f € L,

2. in the case where p > 1,

W(f,9) < 2 (3(£,1) + 7k, 9)) for f,9,h € Ly,
3. in the case where 0 <p <1,

W(f,9) < (28)2 O, ) + (1, 9)) for f,9.h € Ly,

4. v(f+h,g+h)=(f,q) for f,g,h € L, (translation invariance of -y).

Proof The assertions 1 and 2 follow from Lemma 8 and Lemma 7. The translation
invariance is clear.

Definition 13 We say the pair (Ly, || fll,) the Sugeno L, space and denote it by
Ly(Su).

Remark 14 L,(Su) is a topological additive group but not necessarily a topological
linear space. The linear topological structure of L,(Su) shall be studied in [7, 13].

Theorem 15 For every 0 < p,q < oo, we have L, = L,. Furthermore v, and v,
determine the same topology.

Proof We shall prove L1(Su) = L,(Su) set theoretically and topologically. By the
definitions, we have

1fll; =supr Ap(|fIP >r) =supr? Ap(|f| >r)
r>0 >0
and

I £1l1 =St>1§7"/\u(|f| >7).



By the inequality a? Ab < (a Ab)P + a A b, we have

AR < NFIE + 1171
which shows L1(Su) C Ly(Su) and the identity map i : L(Su) — L,(Su) is contin-
uoUus.

Conversely by the inequality (a A b)? < (a? Ab)? + a? A b, we have

171 < IFIE + [ £2.

Remark 16 L;(Su) is also realized as o truncated Lo, space My and we have
Li(Su) # Lo in general. If p is weakly subadditive , continuous from above and
w(X) < 400, then we have Ly = Ly, see [7, 13].

4 L. space
A measurable function f is called essentially bounded if

Ja>0 ; p(|fl>a)=0.

For an essentially bounded function f, we set

|fleo = inf{a > 0] u(|f] > a) = 0}.

Proposition 17 Assume p is continuous from below. Then the following conditions
are wquivalent.

|f'oo=a

<

(1) u(|f| > a) =0 and
(2) for every b < a, u(|f| > b) > 0.

Proof (<) is clear.

(=)

Assume p(|f| > a) > 0. Then we have {|f| > a+ 1} 1 {|f]| > a}, so that p({|f| >
a+ 1) T u({lf] > a}) > 0 by the continuity from below. Therefore there exists ng
such that p({|f| > a + ;=}) > 0, which implies |f|o > a+ = > a. This contradicts
to |fleo = a.

If there exists b < a satisfying p(|f| > b) = 0, then it must be |f|ooleb < a, which
also contradicts to |fle = a.

We set
Lo = {f| f is essentially bounded}, and
O = {f€Lx| |flo=0}.
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Lemma 18 If h € O then for every a > 0 it follows that u(lh| > ) = 0.

Lemma 19 Assume that p is weakly subadditive. Let f € Lo and h € Ou. Then
we have |f £ hloo = | floo-

Proof Assume |f|oo =a. Let e > 0 and o > a be arbitrarily fized. We have
{Ilf £hl >a+e} C{|f| >a}U{|h| >}
Since {|h| > €} is a strongly null set, we have

p({lf £hl > a+e}) <p({lfl >a})=0.
So that we have

If £hlew <a+e

for every € > 0 and a > a, which implies |f £ hloo < a =|f|oo-
Conversely, assume that |f £ hlew =b. Let € >0 and B > b be arbitrarily fized. We
have

{I71>B+e} c{If £hl>BYU{|A| > €}

Since {|h| > €} is a strongly null set, we have

u{Lfl > B+e) < p{If + bl > BY) = 0.

So that we have

|flo < B+e
for every e > 0 and B > b, which implies |floo < b=|f £ hloo-

Definition 20 Let p be a weakly subadditive fuzzy measure. We set
Ly: = Lo/0Os
”.f+ooo”oo: = |f|00 forf"‘oooELoo-

By the preceding Lemma, the value ||f + Oulloc does not depend on the choice of
the representative f of the equivalence class f + Ou. In the sequel we identify the
equivalence class f 4+ O with f and write

”f“oo =|f+ Oooloo for f € L.

Then || f|| determines a norm on L.

Theorem 21 ||f||s s a norm on Lu.
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Proof For every e > 0, we have

p(F1 > Iflloo +€) =0, (gl > llgllo +€) = 0.

Since {|f + gl > || flloo + llglloc + 26} C {|f] > [|flloo + €} U{lgl > llgllec + €}, by the
weak subsdditivity of p, we have

plF + 91> Iflloo + llglloo +28) < ullf] > [[flloo + &) + kgl > llglloo +€) =0,

which implies

£+ glloo < [ fllco + ll9lleo + 2.

Letting € | 0 we have the triangle inequality.

We show ||cf|lo = |¢| - | flloo- Remark that p(|f| > &) = 0 if and only if p(lcf| >
lela) = 0. This implies {|c|la | u(|f] > o) = 0} = {B | u(lcf| > B) = 0}. Conse-
quently it follows that

le] - | flleo = inf{lclar | u(|f] > @) = 0} = inf{B | u(lcf[ > B) = 0} = [[cflloo-
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