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Fractional integrals on martingale spaces
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1 Introduction

In this paper, we review known results on fractional integrals of martingales and
state some new results. We introduce commutator of fractional integral of martin-
gales, and state a characterization of Lipschitz martingales by boundedness of these
commutators on martingale Morrey spaces. We also state a property of sharp func-
tions on martingale Morrey spaces. This paper is an announcement of the authors’
recent results [11].

Let (92, F,P) be a probability space and let {F,},>0 be a nondecreasing se-
quence of sub-o-algebras of F such that F = o(|J, Fn). We suppose that every
o-algebra F,, is generated by countable atoms, where B € F, is called an atom
(more precisely a (F,, P)-atom), if any A C B with A € F, satisfies P(A) = P(B)
or P(A) = 0. Denote by A(F,) the set of all atoms in F,,. We also suppose that
(Q, F, P) is non-atomic.

The expectation operator is denoted by E. Let Ly be the set of all measur-
able functions such that |f[Pxp is integrable for all B € A(F,). If Fy = {Q, 0},
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then Lpioc = Lp. An F,-measurable function g € Lo is called the conditional

expectation of f € Ly o, relative to F,, if
Elgxsxc) = Elfxsxc] forall Be A(F) and G e F,.

We denote by E,f the conditional expectation of f relative to F,. We say a
sequence (fp)n>0 In Ljjoc i & martingale relative to {F, }n>o if it is adapted to
{Fn}n>o and satisfies E,[fn] = f, for every n < m.

2 Definitions, notation and known results

In this section, we give definitions and recall known results.
We first recall the definition of martingale Morrey spaces L, and martingale

Campanato spaces £, »

Definition 2.1. Let p € [1,00) and A € (—00,00). For f € Ly o, let

1
=sup su PdP ,
leys =sp i b (s [1apar)

1 , 1/p
ey =50 s s (g [ 1= BudaP)

n>0 BEA(Fn) P(B

and define

Loy ={f € Lpjoc : 1fllz,x <0}, Lpxr={f € Lpjoc : [|fllc,, < 0}

Then functionals || f|z,, and || f]|¢,, are norms.
We regard martingale BMO spaces and martingale Lipschitz spaces as special

classes of martingale Campanato spaces.
Definition 2.2. Let BMO = £, and Lip(d) = £, 5 for § > 0.

The filtration {F,},>0 is said to be regular, if there exists a constant R > 2
such that

holds for all nonnegative martingales (f,)n>o0-
The following theorem is well-known. See [6], [16] and [7].
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Theorem 2.1. Assume that {F,}n>0 s reqular. Let 1 < p < co. Then,

I fllemo ~ 1 fllz,e  and (| fllLipey ~ 1fllc,s-

Fractional integrals for martingales was first introduced by Chao and Ombe [3]

as follows.

Definition 2.3 ([3]). Let a > 0. For a dyadic martingale f = (f,,)n>o0, its fractional
integral I, f = (({of)n)n>o0 is defined by

Uafn =D 27%(fx = fi-).
k=0

Later, I, is defined for more general martingales. Recall our assumption that
every o-algebra F, is generated by countable atoms. In [9], I, is defined for this
case.

Let

BeA(Fr)

Definition 2.4 ([9]). Let o > 0. For a martingale f = (f,).>0, its fractional
integral I, f = ((Iof)n)n>0 is defined by

(Iaf)n = Z/@]g—l(fk - fk:—l)~
k=0
with convention 8_; = 5 and f_; = 0.

In above two definitions, I, is defined on martingale spaces. In this paper, we

define I, on function spaces.

Definition 2.5. Let a > 0. For f € Ly, its fractional integral I, f with respect
to {Fn}tn>o is defined by

(2.3) Iof = B i(Bnf — Fypaf)

k=0

with convention 8_; = By and E_; f = 0.
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Remark 2.1. As is shown in [9], the series x5 Y peo(Be-1)*(Erf — Ex—1f) converges
in L; for every B € A(Fp) and f € Ly joc. Moreover,

EnlIof] =Y Bt1(Exf — Eerf),
k=0
We recall the following result on the boundedness of I,,.
Theorem 2.2. Assume that {F,}n>o0 s reqular. Let 1 < p < g < o0, o« > 0 and

—1/p<A<0. Ifa+)X <0 and a=1/p—1/q, then there exists a positive constant
C depending only on R and a such that

HafllLgarr < ClFlL,x-
Remark 2.2. Theorem 2.2 extends [3, Theorem 1] in several ways: from dyadic
martingales to more general martingales, from L, spaces to Morrey spaces.
Further, we recall the definition of generalized fractional integrals of martingales,

and the definition of generalized Morrey spaces.

Definition 2.6. Let (,),>0 be a non-increasing sequence of non-negative bounded
functions adapted to {F, }n>0. For a martingale (f,).>0, its generalized fractional

integral I,f = ((I,f)n)n>0 is defined as a martingale by

(I‘yf)n = zn:'Yk—l(fk - fk—l)

k=0

with convention y_; = v and f_; =0.
Definition 2.7. For p € [1,00) and ¢ : (0,1] — (0,00), let
Lps ={J € Lpoc : [IflL,,, < o0},

where

) . 1 v gp 1/p
lsre =t s o (o [ P4P)

Boundedness of generalized fractional integrals is studied extensively in [10].

Theorem 2.3 ([10]). Let 1 < p < ¢ < 00 and ¢ : (0,1] — (0,00). Assume that ¢
is almost decreasing. If there exists a positive constant C such that

(2.4) > (-1 = WO (br) + Yud(ba) < Co(b,)"* for all n >0
k=0

with convention y_1 = yo, then I, is bounded from Ly g to L, 4orq.
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3 Some new properties: fractional maximal func-

tions, sharp functions and commutators.

In this section, we state new properties of fractional maximal functions, sharp
functions and commutators. The proofs of these properties will be given in [11].

For f € L, its fractional maximal function M, f is defined by
(3.1) M,f = sg;g(ﬂn)ﬂEnf[.
Using Theorem 2.2 and the positivity of I, we have the following theorem.

Theorem 3.1. Assume that {F, }n>0 is reqular. Let1 < p < g < oo and —1/p+a =
—1/q. Then M, is bounded from Ly x to Lqq. -

We next recall the definition of sharp functions.

(32) M = sup Byl = Earf]).

n>0

The following theorem is well-known. See [16] and [6].

Theorem 3.2. Let 1 < p < 0o. Then, there exists a positive constant C depending
only on p such that

1 fllz, < ClIM*f]||L,.

Our result on sharp functions is to give an extension of Theorem 3.2 to martin-

gale Morrey spaces.

Theorem 3.3. Assume that {F,}n>o is reqular. Let 1 < py < p < 0o and —1/p <
A<0. If Mf € Ly », then

(3.3) 1Fllz,s < CorrllMP S, s,

where Cp, 5 g is a positive constant depending only on p, A and R in (2.1).

To show Theorem 3.3, we use a good A-inequality which is a martingale version
of Komori-Furuya’s result in [3].
We now introduce commutators. Let p > 1 and let p’ be the conjugate exponent

of p. If f € Lyioc and b € Ly ¢, then the commutator

[b, Ia]f = bIaf - Ia(bf)



is well-defined.
In [3], Chao and Ombe showed the following characterization theorem for dyadic
BMO-martingales.

Theorem 3.4 ([3]). Let1 <p<g<ooanda=1/p—1/q. Let I, be the fractional
integral defined in Defintition 2.3. Then, b belongs to dyadic BMO space if and only
if the commutator [b, 1,] is bounded from L, to L,.

We extend Theorem 3.4 to the following theorem.

Theorem 3.5. Assume that {F, }n>0 is reqular. Letl <p < g < oo, a=1/p—1/q,
d >0 and A < 0. Suppose that § + a+ A < 0. Then, b € Lip(d), b € BMO when
§ =0, if and only if the commutator [b, I,] is bounded from Ly to Lgsiata-

Remark 3.1. In Theorem 3.5, we extend Theorem 3.4 in several ways. We extend
Theorem 3.4 from dyadic martingales to more general martingales, from BMO-

martingales to Lipschitz martingales and from L, spaces to Morrey spaces.

The proof of Theorem 3.5 consists of the use of Theorem 3.3 and some compu-

tations. The detailed proof will be given in [11].
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