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Abstract

We report a forcing poset that forces what we call a morass-type matrix. A condition of the poset
is represented by a pair of a finite symmetric system of Aspero-Mota and a finite function from the finite
symmetric system into the least uncountable cardinal. The finite function is a restriction of a rank function
associated with a type of suitable countable symmetric system that contains the finite symmetric system. It
is similar to forcing a club subset of the least uncountable cardinal by finite conditions that accompany finite
€-chains of elementary substructures. A difference between these two posets is whether cardinals can be
preserved or not. Note that the forced matrix entails not just a club but a simplified morass of D. Velleman.

Notation

Let (X, R,---) be a structure, where X # 0 is a set or a proper class, R is a binary relation, and
so forth. Let Y be a non-empty, say, set with Y C X. We write (Y, R,---) or even Y for a substructure
(Y,RN(YxY),--) of (X, R,---). Let & be a regular cardinal. Let H, = {z | the transitive closure of z is of
a size < k}. We say N is a countable elementary substructure of (Hy, €), if (X, €) is a countable elementary
substructure of (Hy,€). We use N, M, X, Y, Z and so forth for countable elementary substructures of
(Huy, €). We use N, M, A and so forth for sets of countable elementary substructures of (H,,, €). When
we write X =,,, Y, this abbreviates X Nw; = Y Nw;. When we write X >, Y, this means X Nwy > Y Nws.
Similarly for X >, Y.

Introduction

‘We would like to explicate an idea behind our main forcing poset P by a prototype forcing poset Q. We
first state well-known facts to avoid confusion.

Proposition. Let X, Y, and Z be countable elementary substructures of (H,,, €).
(1) If z € X and z is a countable set, then z C X.
(2) X Nwy is a countable ordinal. Namely N Nw; < w;.
(3) Y e X, thenY C X.
(4) If Z €Y € X, then Z € X. (transitive)
(5) X ¢ X. (irreflexive)

Proof. (1): We may assume that z is non-empty. Since
(Huz, €) E “Je:w — z, e is onto”,
we have an enumeration e : w — z with e € X. Then

z={e(n) |n<w}cCX.

(2): We show that X Nw, is transitive. Let a < 8 € X Nw;. We want o € X Nw;. Since B € X and 8
is countable, we have 8 C X by (1). Hence o € X Nwjy.

(3): Since Y € X and Y is countable, we have Y C X by (1).
(4: Let ZeY e X. Then ZeY C X by (3). Hence Z € X.

(5): We assume the axiom of regularity.
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Let NV be a non-empty set of countable elementary substructures of (H,,,€). We know that (N, €) is
a poset in the strong sense (irreflexive and transitive). We consider objects that generalize the countable
ordinals. We say N is a continuous €-chain, if

e (e-chain, or, linear) If Z,W € N, then either Z€ W, Z =W, or W € Z.
o (partitioned) If Z € NV, then either NNZ =0,3Z, NNZ={Z1}UNNZ),ot UNNZ) = Z.

Let NV be a continuous €-chain. Then the structure (N, €) is a well-ordered one. Hence it makes sense
to calculate the order types o.t.(NV, €) and 0.t.(N' N Z, €) for each Z € N. We have o.t.(N,€) <w;. N
is of a size finite, then it is clear that there are no differences between two concepts €-chain (i.e, linear) and
continuous €-chain.

Let us next provide a prototype forcing poset Q that forces a club subset of w;. This Q is a variant to
forcing a club subset of w; by finite conditions due to J. E. Baumgartner.

Definition. Let p = (NP, fP) € Q, if
(ob) NP is a finite €-chain of countable elementary substructures of (H.,,€) and f? : NP —s w;.

(wit) There exists a continuous €-chain M of countable elementary substructures of (H,,, €) such that
M is of a size countable, | JM € M (a top element), N? C M, and for each Z € N?, fP(Z) =
ot.(MnNZe).

For p,g € Q, let ¢ <p in Q, if N9 D N'? and for each Z € NP, f4(Z) = fP(2).

Theorem. (1) Let p € @, N* be a countable elementary substructure of (Hp, €), 8 is any sufficiently
large regular cardinal, and p, @ € N*. Then

g=NPU{N*NH,}, fPU{(N* 1 Hyy, N* Nw1)})

is (@, N*)-generic. Hence @ is proper.
(2) Let G be Q-generic over the ground model V. Let

N=JN*?|pea},
f=Ulrirecy
Then A is a continuous €-chain of countable elementary substructures of (H‘L’2 v, €) such that
0.t.(N, €) = wy,
UN =By,

and that for each Z € N, . .
» f(Z) =0t N NZe).

In particular, wy gets collapsed.
u]

We intend to force a simplified morass of [V] along this line of thought. Since we need to preserve ws,
we resort to ideas from [A-M], [B-S], and [T]. This research was motivated by a talk by Borisa Kuzeljevic,
Independence Results in Mathematics and Challenges in Iterated Forcing (UEA, Norwich, UK) 2015.



Preparation

We summarize two similar forcing posets Papite and Peountable-
Definition. Let p = NP € Prpite, if
(ob) NP consists of countable elementary substructures of (H,,, €) and NP is of a size finite.

(iso) For any N,M € N?, if N =,, M, then there exists an (necessarily unique) isomorphism ¢ : (N, €
NPNN) — (M, e, NP N M) such that ¢ is the identity on the intersection N N M.

(up) If N3, No € NP with N3 <,,, N, then there exists N; € NP such that N3 € N; and N; =, N».
For p,q € Phnite, let ¢ < p in Panite, if ¢ 2 p.
This notion of forcing due to, say, Aspero-Mota forces somewhat less than a morass that we call a
matrix.
Theorem. ([AM]) (1) Phnite is proper and (CH) has the wa-cc.
(2) Let G be Pypite-generic over the ground model V' and in V[G], let

N=Jec

Then N satisfies the following. And simply say that A is a matrix.
(ob) N consists of countable elementary substructures of (HY,€).

(iso) For any N,M € _./\7 , if N =,, M, then there exists an (necessarily unique) isomorphism ¢ : (N, €
,NNN)— (M,e,N N M) such that ¢ is the identity on the intersection N N M.

(up) If N3, Nz € N with N3 <,,, Na, then there exists N; € A such that N3 € Ny and Ny =, Na.
(stat) A is stationary in [HY,]* and so e-directed. '

[m)

_ There is a way to get a quagmire of [K] by further forcing a club subset of the stationary set {NNw; | N €
N} of wy (IM1]).
The following has its roots in [BS].
Definition. Let p = N? € Peountable, if

(ob) NP consists of countable elementary substructures of (H,,, €) such that AN'? is of a size countable
and N? = [JNP € NP (a top element).

(iso) For any N,M € N?,if N =,, M, then there exists an (necessarily unique) isomorphism ¢ : (N, €
,JNPNN) — (M,€,N? N M) such that ¢ is the identity on the intersection N N M.

(up) If N3, N; € N? with N3 <., N», then there exists Ny € NP such that N3 € N; and N =, Ns.
(par) NP = zero(NP) U sucy (NP) U suca(N?) Ulim(N?), where for N € NP,

N € zero(N?) if NNNP =,
N esuc;(N?) iff INi NPNN ={N}UN?NDNy),
N esuco(NP) iff IN1IN; Np =, Na, (N1, Na) = A,
NPNN = {Ny,Na} U (NP N Ny) U (NP N N),

where (N7, N2) = A abbreviates that for A € N1NN2Nwa, t1 € (N1Nw2)\Na # 0, t2 € (N2Nw2)\ N1 # 0,
we have
h <t <ty <ws.



Nelm(N?) iff N=|JWPNN).
For p, ¢ € Peountable, let ¢ < p in Peuntable, if N € N'? and

NIN NP = NP NP,

Since NP = {N?} U (M? N N?) holds, g < p in Prountable iff N¢ 2 NP and N4 N N? = N'? 0 N”.

Theorem. ([M2]) (1) Peountable is proper, o-Baire, and (CH) has the wp-cc.
(2) Let G be Peountable-generic over the ground model V' and in V{G], let

N=lJ6.

Then A satisfies the following. And simply say that A/ is a morass-type matrix.
(ob) N consists of countable elementary substructures of (HY,, €).

(iso) For any N, M e_N , if N =, M, then there exists an (necessarily unique) isomorphism ¢ : (N, €
A NNN) — (M,e,N N M) such that ¢ is the identity on the intersection N N M.

(up) If N3, N, € N with N3 <w; N2, then there exists N; € N such that N3 € Ny and Ny =y, Na.
(par) N = zero(N) U suc; (N) U suca(N) U lim(A), where for N € N/,

N czero(N) iff NNN =0,

Nesuc;(N) iff INy NN ={N}UNNNy),
N esucg(N) iff IN,INy Ny =, Np, (N1, Na) |= A,
N NN ={N;, N} UN N Np)UWN N Ny),
Nelm(N) iff N=JWNN).

(stat) N is stationary in [HY.]“ and so €-directed.
o

There is a construction to get a simplified (w;,1)-morass out of this morass-type matrix N. Let us
modify the assumption in section 6 of [M2] from LD(2) + A to LD(< 2) + A.

Theorem. ([M2]) Any morass-type matrix entails a simplified (w;, 1)-morass.

Main Forcing

Here is the main forcing poset P that adds a morass-type matrix by finite side conditions. We know
that any morass-type matrix entails a simplified (wq,1)-morass. For a condition p € P, its main body is a
function fP. The domain NP of fP serves as a non-linear finite side condition.

Definition. Let p = (N?, f?) € P, if
(ob) NP € Panite and fP : NP — w;.
(wit) There exists M € Peountable such that NP C M and for all N € NP,

FPN) = PM(N).
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We refer to this situation (wit) as p € P witnessed by M. Here, pM is the rank function of the
well-founded structure (M, €). Since M € Peountable, We know that for all M € M,

pPM(M) =ot.({Nnwi | Ne MNM},<).

For p,g € P, let ¢ < pin P, if N9 < NP in Pppite and for each N € NP, f9(N) = fP(N).

Hence, ¢ < pin P iff f? O fP. Note that there may exist many Ms in Peoyntable for p and none of them
are retained as parts of p. Hence, if we fix any choice MP of M for p and any choice M? of M for g, we do
not expect to have M? < MP? in P,ountable-

We next summarize on copying and pasting elements of Pgpite and Peountable-

Lemma. (Copying and Pasting) Let X; and X5 be two isomorphic countable elementary substructures
of (H,,, €) such that the isomorphism ¢x, x, : (X1, €) — (X2, €) is the identity on the intersection X; N Xo.

(1) Let N € X1 N Phnite and let
N = ¢x,5,IN] = {¢x:x,(Z) | Z e N} = {¢x:x,12) | Z e N}

Then N, NUN', N U {X1}, N U{X2}, and N UN" U {X;, X,} are all in Papite-
(2) Let M € X1 N Peountable and let

M = DX, X, [M] = {¢X1X2 (2)|ze€ M} = {¢X1X2 [Z] | Z € M}
Then M’, MU{X1}, and M’U{X,} are all in Peoyntable- Furthermore, if (X1, X2) = A and X is a countable
elementary substructure of (Hy,, €) with X1, X2 € X. Then MU M’ U{X1, X2, X} € Peountable-
We mention facts on forming conditions in P. We just outline the last Lemma (Dense 3).

Lemma. (Dense 1) Let p € P witnessed by M and Y € M such that N? € Y. Then there exists g € P
witnessed by M again such that ¢ < pin P and Y € N7
]

Lemma. (Dense 2) Let p € P witnessed by M, Y € M, and Xy € N? such that NP N Xp € Y € Xp.
Then there exists ¢ € P witnessed by M again such that ¢ < pin P and Y € N9.
a

Lemma. (Dense 3) Let p € P witnessed by MP, Xy € N?, X; € suca(MP), X1 =,, X2, (X1,X2) E A,
and MP N Xy = {X1, X2} U (MPNX;1)U(MPNXy). Then there exists g € P witnessed by MP again such
that ¢ < pin P, X1, Xy € N9, and

{ZGNq | Z >0, Xo}={Z€N7J | Z >., Xo}-
Proof. Let pM”(Xo) = i+ 1 and so p™M” (X1) = pM*(X2) = i. We have two cases.
Case 1. NP N Xy = (: For each X € N? with X =, Xp, let M% = ¢x,x[{X1, X2}] U {X}. Let

NI={Z NP | Z 2y X} U| JIMENX | X €N?, X =, Xo},

f1=pMINC
Let ¢ = (N9, f9). Then this g works.
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Case 2. NPN Xy # 0: Let
k=max{fP(W) | W e N?N Xo}.

Then k < i holds. We have two subcases.

Subcase 1. k < i: Let
A={W eNPNX; | fA(W)=k},

B={WecN"NXy| fA(W)=k},
C = AUgx!x,[B],
D =CU¢x,x,[C).
Then ¢x,x,[C] = (¢x,x,[A]) U B and so

D = (AU ¢x,x,[A]) U (BU ¢x,x,[B]),
XinD=¢_,
XoND = ¢xlxz[c].

Step 1. Let N®© = {Z € NP | Z >,, Xo} U U{éxox[{X1,X2} UD] | X € N?,X =,, Xo}. Then
N®© < {Xo, X1, X5} UD in Pnite, {Z € N® | Z >u, Xo} ={Z € N? | Z >,, Xo}, and N® C MP.

Step 2. Let us fix any Wp € AU B and let NV, = (NP N Wy) U {Wo}. Let
N%, = {Xo, X1, X2} U| H{owow NGy, N1 Wo] U {W} | W € D}.

Then Ng(o < (Np n Xo) 0] {Xo} in Phnite, and N)q(o C MP.

Step 3. Let N = {Z € NP | Z 2w, XQ}UU{(DXO)([N;(O ﬂXo] | X e NP X =u, Xo}. Then
N4 SNQO,_N'P in Pgpnite and N4 C MP,

Hence, ¢ = (N9, pM”[N?) € P witnessed by MP? again, ¢ < p in P, X1, X3 € N9, and

{ZeN|Z >, Xo}={Z€N?|Z >, Xo}

Subcase 2. i = k: Let us fix Wy € {X1, X2} NNP with fP(Wp) = k = i. Let Vjj, = (NPNWo)U{Wo}.
Let N§, = {Xo, X1, X2} U U{bwowNg, N Wl | W = X1, Xz} Let N4 = {Z € NP | Z >,, Xo} U
U{8x0x V%, N Xo] | X € NP, X =, Xo}. Then g = (N9, p™’ [N?) works.

We prepare a construction in Peountable-

Lemma. (Replace) Let M € Poountable, Xo € M, M ¢ Peountable With Xo = | JM. Then there exists
M?® € Peountable such that

. M* < M in Pcountab197
¢ {ZeM* | Z 2, Xo} ={Z € M*| Z 24, Xo}-
o It PM*(Xo) = p™M(Xa), then for all Z € M* with Z 2., Xo,
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Proof. We want to replace the part (M? N Xg) U {Xo} of M? with M to form a new M?® € Pyountable
that satisfies Xg € M?, (M*N Xo) U{Xo} = M, and {Z € M® | Z >, Xo} ={Z € M?| Z >,, Xo}. For
each X € M% with X =u, Xo, let

% ={¢xx(Y) | Y e MN X} U {X}.
Let
M ={ZeM?|Z>, Xo}UU{MggﬂX | X e M% X =, Xo}.

Then this M?® works. In particular, M*NX = M5 NX forall X € M¢? with X =w; Xo-

Lemma. (Generic) Let p € P and N* be a countable elementary substructure of (Hy, €) with P,p € N*,
where 6 is a sufficiently large regular cardinal. Let

g= (NPU{N* 0 Hy,}, fPU{(N* N Hyy, N* Nw1)}).

Then ¢ € P such that ¢ < p and ¢ is (P, N*)-generic.

Proof. Let Xo = N* N H,,. To see that ¢ € P, let p € P witnessed by MP. We may assume that
MP € N*. Let (M, | n < w) be a (Peountable; N*)-generic sequence with My = MP. Let

My = (UiMa [ n < w}) U {Xo}.

Then M,, € Peountable With Xo = |J M,,. Since M,, < MP in P.ountable, we have pM” C pM<. Hence for all
Y e N9n Xy = NP, we have )
FUY) = fP(Y) = pM (V) = pMe(Y).

Since pM«(Xp) = Xo Nw1, we have
F1(Xo) = p™M~(Xo).

Hence ¢ € P witnessed by M,,.

Let D € N* be open dense in P. Let d < q. We may assume that d € D. Want to find d’ € DN N* and
s € P such that s < d,d’ in P. Note first that for all Y € N4 N N* = N4 N Xy, we have f4(Y) < f4(X,) =
N*Nwi. Hence fENN* = {(¥, f4Y)) | Y € N4n N*}. Since D,N4N N*,f4N N* € N* and N* is an
elementary substructure of (Hpy, €), there exists d’ € D N N* such that

e N4 N* C N¥,
o fAY) = f4(Y) for all Y € N¢ N N*.
Let d’ € P witnessed by M’ € Peountable N N*. Let (M), | n < w) be (Peountable, N*)-generic sequence
with My = M. Let
M, = (UM, | n <w)) U{Xo).
Then M, € Peountable With {J M., = Xy. By Lemma (Replace), we have M® € Peountable such that
® M*® < Mj, in Peountable-
e {ZeM* | Z >4 Xo} ={Z € M?| Z >, Xo}.
But
o pPMe(Xo) = N*Nwy = f4(Xo) = f4(Xo) = p™* (Xo).
Hence

o PM(Z) = pMU(Z) for all Z € M® with Z >, Xo.
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For each X € M?® with Xp =,, X, let us write
¥ =WMnX)u{X}.
Hence we have,
%o = Moy
M = {x,x(Y) | ¥ € M, 0 Xo} U{X},
where ¢x,x : Xo — X is the isomorphism. Let
N ={Z €N | Z 2, Xo}U{dx,x(Y) | Y e N4, X e N4, X =, Xo}-
For each W € %, let i
frw) =M w).
Let s = (N, f9).
Claim. s € P witnessed by M* and s <d,d’ in P.
Proof. Since N¢ € Pinite and N4 N N* C N4 € N*, it is routine to have N'* € Panite.

We next observe that N'* C M?®. We have two cases. Let us first assume Z € N® with Z >,,, Xo. Then
Z e N4 C M¢, Since Z 2w, Xo, we have Z € M?. Let us next assume that Z <., Xo. Then there is
X € N such that X =, X, and
Z € {¢xox(Y) | Y e N4}

But )
N M, N X,

dxox M., NXo=M*NX=MinX.
In particular, Z € M®.

We show that s < d’ in P. But by definition, we have that N4 C V. Let Z € N¢. Want f4(2) =
£5(2). But
19(2) = ™ (2) = pMU(2) = M50 (2) = pM(2) = £5(2).

Hence s < d' in P.

We show that s < d in P. Let Z € N'%. We have two cases. Let us first assume that Z >,, Xo. Then
Z € N* by the definition of N'®. We also have

42y = M (2) = M (2) = £°(2).

Let us next assume that Z <,, Xo. Then there is X € N such that X =,, Xp and Z € M% NN¢ C N*.
We also have

£42) = (832 x(2)) = pM*0 (32 x(2)) = PM5(2) = M (2) = £2(2).

Hence s <din P.

Lemma. (CH) P has the ws-cc.

Proof. Let (p; | i < wa) be a sequence of elements of P. For each i < wy, let p; = (NP, fP) € P
witnessed by MP: and let M; = {JMP:. By CH, we may assume that there exist i < j < w2 such that
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o (Mi, M;) = A,
o ¢ : (M, e, MPi 0 My, NPi) —— (M;, €, MPi N M;, NP7} is an isomorphism such that ¢ is the identity
on the intersection M; N M;.

Hence
o pMHW) = pM™ (H(W)) for all W € MPi.
Let us fix any countable elementary substructure M of (H.,,, €) with p;,p; € M. Let
M = {M}UMPUMP,
NP = NPEYNPi,
Then M € Peoyntable such that M < MPi MPi in P.oyntable- Hence

Pi Pj
pM o M M

Let p = (V?, pM[AP). Then p € P witnessed by M. This p is a common extension of p; and p; in P.

Lemma. (CH) Let G be P-generic over V. In V[G], let us define
N=W?|pea})

Then N is a matrix. By this we mean that

(ob) N consists of countable elementary substructures of (HY,, €).

(iso) For any N, M € N, if N =,, M, then there exists a (necessarily unique) isomorphism ¢ : (N, €
,NNN)— (M,e,N N M) such that ¢ is the identity on the intersection N N M.

(up) If N3, N, € N with N3 <w, N2, then there exists N7 € N such that N3 € Ny and N; =y, No.

(stat) N is stationary in [HY,]“ and so -directed.

Since (N, €) is well-founded, the rank fuction pN is well-defined.
Lemma. Let G be P-generic over V. In V[G], let us define

f=U{fPlpeG)
Let p€ P, Z € NP, and fP(Z) = i. Then there exists ¢ < p in P such that
o If i = 0, then ¢ |- p“Z € zero(N) and p”(Z) =",
o If i is successor, then ¢ |-p“Z € sucy(N) Usucy(N) and pN(Z) =1
e If i is limit, then ¢ |-p“Z € lim(N) and gV (Z) = i".

In particular, Nisa morass-type matrix and f coincide with the rank function p"/ of the well-founded
structure (N, €).

Proof. By induction on i < wy. Let p€ P, Z € NP, and fP(2Z) =i.
Case. i = 0: We claim p |- p“Z € zero(N) and so p’V(Z) =0".
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Proof. Suppose not. Let ¢ <pin P and W € Z NN Then

FAW) < f9(2) = 17(2) =

This would be a contradiction.

Case. i = i + 1: We have two subcases.

Subcase 1. For all ¢ < p and for all M such that ¢ € P witnessed by M, we have Z ¢ suca(M):
Let p € P witnessed by MP. Since pM”(Z) = fP(Z) = i + 1, we must have Z € suc;(MP?) U suca(MP).
Since we are in Subcase 1, Z ¢ suca(MP). Hence Z € suc;(MP). Let MPNZ = {Z;} U (MP N Z;) and so

M?(Z1) = i. By Lemma (Dense 2), there exists 7’ < p in P such that p’ € P witnessed by M? again and
Z; € N?'. Note that f?'(Z;) = i. By induction, we may assume, by extending p/, that p’ FreeV(2:) = 4.

We claim p’ Fp“N' N Z = {Z1} U (N N Z;) and so Z € sucy(N)”. Hence p/ H—p“p’v( Z)=i+1".

Proof. Let p” <p'in P, p” € P witnessed by M?”, and W € N?" N Z. Suffices to show that either
W =2Z;or W € Z;. Since pMP (2) = f7"(Z) = f7(Z) =i+ 1, we must have Z € sucy(MP”) Usuca(MP").
Since we are in Subcase 1, Z & suca(MP”). Hence Z € suc; (M?”). But pMP (Z2)=i+1,Z1eN?' NZC
MP' 1N Z, and pM* (2,) = f7"(Z1) = f7(Z1) = i. Hence

WeN ' NZC M NnZ={Z}uM NZ).

In particular, W = Z; or W € Z;.
m]

Subcase 2. There are ¢ < p in P and MY such that ¢ € P witnessed by M? and Z € suca(M3?): Let
2y =w, Z2, (Z1,Z3) E A, and MINZ = {Z1,Z,} U (MTIN Z1) U(MIN Z3). Then by Lemma (Dense 3),
there is ¢’ < ¢ in P, ¢’ € P witnessed by M9 again, Z1, Zs,Z € N9, and f7 (Z;) = fq’(Zz) =i<i+1=
f9(Z) = f9(Z). By induction, we may assume, by extending ¢’ twice, that ¢’ |-p“i = pV(Z;) = pV(2Z2)".

We claim ¢’ |Fp“N' N Z = {Z1, Z2} U(N N Z1)U (N N Zy) and so Z € suca(N)”. Hence ¢’ H—p“p’V(Z) =
i+ 17,

Proof. Let ¢" < ¢' in P, ¢" € P witnessed by M?", and W ¢ N 7" N Z. Suffices to show that either
W=2,,W =2y, W€ Zy,or W€ Zy. Since Z,,Z5,Z € NT C M?", we have Z1,25,Z € M? . But
M(2y) = M (o) = fU(Z0) = 1 (2) =14,

M2y = f7(2) = fP(2) =i+ 1,
and (21, Z5) = A. Hence Z € suca(M?") and

WeN' NZCM NZ={Z,2} UM NZ)UMT NZ).

In particular, W = Zy, W = Z,, W € Z1, ot W € Z,.

Case. i is limit: We claim p|-p“Z = JN N Z) and so Z € im(N)”.

Proof. Let ¢ < pin P, g € P wintnessed by M9, and e € Z. Want to find r < ¢ in P such that there is
Y e N'NZ with e € Y. Since i = fP(Z) = f9(Z) = pM*(Z) is limit, we must have Z € lim(M?). Hence
Z =|J(M?IN Z) and so there is Y € M9N Z such that e, N9NZ € Y. By Lemma (Dense 2), thereis r < ¢
in Psuch that Y e N"N Z.
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We claim p ||—p“pN(Z) =1".

Proof. Suppose not. We argue in two cases.

Case 1. There are ¢ < p and j < ¢ such that ¢ H—p“p’V(Z) = j”: Let ¢ € P witnessed by MY. Since
i = f9(Z) = pM*(Z) is limit, we must have Z € lim(M?). Hence there are Y € M?N Z and k such that
i>pM(Y) =k >jand ZNN9 € Y. By Lemma (Dense 2), we have ¢’ < g in P such that ¥ € A¢
and ¢’ € P is witnessed by M7 again. By induction there is ¢” < ¢’ such that ¢” |- PPMN(Y) = k. Since
Y € Z, we have ¢" |-p“pV(Z2) > k > 7. But ¢" < ¢’ < g in P and q|-p“p"V(Z) = j7. This would be a
contradiction.

Case 2. There are ¢ < pin P and j such that j > 4 and qll—p“pN(Z) =j": Takeq' < q, W e N'NZ,
and k such that ¢ |Fp“pN (W) = k > i". By induction, we may assume, by extending ¢/, that f¢ (W) = k.
But k < f?(Z) = f?(Z) = i. This would be a contradiction.

a

Theorem. (CH) Let G be P-generic over V. Then there exists a simplified (w;,1)-morass that is
entailed from the morass-type matrix N = J{N? | p € G} in V[G].
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