Forcing a morass with finite side conditions

Tadatoshi Miyamoto

2017, March, 24

Abstract

We report a forcing poset that forces what we call a morass-type matrix. A condition of the poset is represented by a pair of a finite symmetric system of Aspero-Mota and a finite function from the finite symmetric system into the least uncountable cardinal. The finite function is a restriction of a rank function associated with a type of suitable countable symmetric system that contains the finite symmetric system. It is similar to forcing a club subset of the least uncountable cardinal by finite conditions that accompany finite ∈-chains of elementary substructures. A difference between these two posets is whether cardinals can be preserved or not. Note that the forced matrix entails not just a club but a simplified morass of D. Velleman.

Notation

Let (X,R,\cdots) be a structure, where $X\neq\emptyset$ is a set or a proper class, R is a binary relation, and so forth. Let Y be a non-empty, say, set with $Y\subseteq X$. We write (Y,R,\cdots) or even Y for a substructure $(Y,R\cap(Y\times Y),\cdots)$ of (X,R,\cdots) . Let κ be a regular cardinal. Let $H_{\kappa}=\{x\mid \text{ the transitive closure of }x\text{ is of a size }<\kappa\}$. We say N is a countable elementary substructure of (H_{κ},\in) , if (X,\in) is a countable elementary substructure of (H_{κ},\in) . We use N, M, X, Y, Z and so forth for countable elementary substructures of (H_{ω_2},\in) . We use N, M, A and so forth for sets of countable elementary substructures of (H_{ω_2},\in) . When we write $X=_{\omega_1}Y$, this abbreviates $X\cap\omega_1=Y\cap\omega_1$. When we write $X\geq_{\omega_1}Y$, this means $X\cap\omega_1\geq Y\cap\omega_1$. Similarly for $X>_{\omega_1}Y$.

Introduction

We would like to explicate an idea behind our main forcing poset P by a prototype forcing poset Q. We first state well-known facts to avoid confusion.

Proposition. Let X, Y, and Z be countable elementary substructures of (H_{ω_2}, \in) .

- (1) If $x \in X$ and x is a countable set, then $x \subset X$.
- (2) $X \cap \omega_1$ is a countable ordinal. Namely $N \cap \omega_1 < \omega_1$.
- (3) If $Y \in X$, then $Y \subset X$.
- (4) If $Z \in Y \in X$, then $Z \in X$. (transitive)
- (5) $X \notin X$. (irreflexive)

Proof. (1): We may assume that x is non-empty. Since

$$(H_{\omega_2}, \in) \models \text{``}\exists e : \omega \longrightarrow x, e \text{ is onto"},$$

we have an enumeration $e:\omega\longrightarrow x$ with $e\in X$. Then

$$x = \{e(n) \mid n < \omega\} \subset X.$$

- (2): We show that $X \cap \omega_1$ is transitive. Let $\alpha < \beta \in X \cap \omega_1$. We want $\alpha \in X \cap \omega_1$. Since $\beta \in X$ and β is countable, we have $\beta \subset X$ by (1). Hence $\alpha \in X \cap \omega_1$.
 - (3): Since $Y \in X$ and Y is countable, we have $Y \subset X$ by (1).
 - (4): Let $Z \in Y \in X$. Then $Z \in Y \subset X$ by (3). Hence $Z \in X$.
 - (5): We assume the axiom of regularity.

Let \mathcal{N} be a non-empty set of countable elementary substructures of (H_{ω_2}, \in) . We know that (\mathcal{N}, \in) is a poset in the strong sense (irreflexive and transitive). We consider objects that generalize the countable ordinals. We say \mathcal{N} is a continuous \in -chain, if

- (\in -chain, or, linear) If $Z, W \in \mathcal{N}$, then either $Z \in W$, Z = W, or $W \in Z$.
- (partitioned) If $Z \in \mathcal{N}$, then either $\mathcal{N} \cap Z = \emptyset$, $\exists Z_1 \ \mathcal{N} \cap Z = \{Z_1\} \cup (\mathcal{N} \cap Z_1)$, or $\bigcup (\mathcal{N} \cap Z) = Z$.

Let \mathcal{N} be a continuous \in -chain. Then the structure (\mathcal{N}, \in) is a well-ordered one. Hence it makes sense to calculate the order types o.t. (\mathcal{N}, \in) and o.t. $(\mathcal{N} \cap Z, \in)$ for each $Z \in \mathcal{N}$. We have o.t. $(\mathcal{N}, \in) \leq \omega_1$. If \mathcal{N} is of a size finite, then it is clear that there are no differences between two concepts \in -chain (i.e, linear) and continuous \in -chain.

Let us next provide a prototype forcing poset Q that forces a club subset of ω_1 . This Q is a variant to forcing a club subset of ω_1 by finite conditions due to J. E. Baumgartner.

Definition. Let $p = (\mathcal{N}^p, f^p) \in Q$, if

(ob) \mathcal{N}^p is a finite \in -chain of countable elementary substructures of (H_{ω_2}, \in) and $f^p : \mathcal{N}^p \longrightarrow \omega_1$.

(wit) There exists a continuous \in -chain \mathcal{M} of countable elementary substructures of (H_{ω_2}, \in) such that \mathcal{M} is of a size countable, $\bigcup \mathcal{M} \in \mathcal{M}$ (a top element), $\mathcal{N}^p \subseteq \mathcal{M}$, and for each $Z \in \mathcal{N}^p$, $f^p(Z) = \text{o.t.}(\mathcal{M} \cap Z, \in)$.

For $p,q\in Q$, let $q\leq p$ in Q, if $\mathcal{N}^q\supseteq \mathcal{N}^p$ and for each $Z\in \mathcal{N}^p$, $f^q(Z)=f^p(Z)$.

Theorem. (1) Let $p \in Q$, N^* be a countable elementary substructure of (H_{θ}, \in) , θ is any sufficiently large regular cardinal, and $p, Q \in N^*$. Then

$$q = (\mathcal{N}^p \cup \{N^* \cap H_{\omega_2}\}, f^p \cup \{(N^* \cap H_{\omega_2}, N^* \cap \omega_1)\})$$

is (Q, N^*) -generic. Hence Q is proper.

(2) Let G be Q-generic over the ground model V. Let

$$\dot{\mathcal{N}} = \bigcup \{\mathcal{N}^p \mid p \in G\},$$

$$\dot{f} = \bigcup \{f^p \mid p \in G\}.$$

Then $\dot{\mathcal{N}}$ is a continuous \in -chain of countable elementary substructures of $(H^V_{\omega_0 V}, \in)$ such that

$$\text{o.t.}(\dot{\mathcal{N}}, \in) = \omega_1,$$

$$\bigcup \dot{\mathcal{N}} = H^V_{\omega_2^V},$$

and that for each $Z \in \dot{\mathcal{N}}$,

$$\dot{f}(Z) = \text{o.t.}(\dot{\mathcal{N}} \cap Z, \in).$$

In particular, ω_2^V gets collapsed.

We intend to force a simplified morass of [V] along this line of thought. Since we need to preserve ω_2 , we resort to ideas from [A-M], [B-S], and [T]. This research was motivated by a talk by Borisa Kuzeljevic, Independence Results in Mathematics and Challenges in Iterated Forcing (UEA, Norwich, UK) 2015.

Preparation

We summarize two similar forcing posets P_{finite} and $P_{\text{countable}}$.

Definition. Let $p = \mathcal{N}^p \in P_{\text{finite}}$, if

- (ob) \mathcal{N}^p consists of countable elementary substructures of (H_{ω_2}, \in) and \mathcal{N}^p is of a size finite.
- (iso) For any $N, M \in \mathcal{N}^p$, if $N =_{\omega_1} M$, then there exists an (necessarily unique) isomorphism $\phi : (N, \in \mathcal{N}^p \cap N) \longrightarrow (M, \in \mathcal{N}^p \cap M)$ such that ϕ is the identity on the intersection $N \cap M$.
- (up) If $N_3, N_2 \in \mathcal{N}^p$ with $N_3 <_{\omega_1} N_2$, then there exists $N_1 \in \mathcal{N}^p$ such that $N_3 \in N_1$ and $N_1 =_{\omega_1} N_2$.

For $p, q \in P_{\text{finite}}$, let $q \leq p$ in P_{finite} , if $q \supseteq p$.

This notion of forcing due to, say, Aspero-Mota forces somewhat less than a morass that we call a matrix.

Theorem. ([AM]) (1) P_{finite} is proper and (CH) has the ω_2 -cc.

(2) Let G be P_{finite} -generic over the ground model V and in V[G], let

$$\dot{\mathcal{N}} = \bigcup G$$
.

Then $\dot{\mathcal{N}}$ satisfies the following. And simply say that $\dot{\mathcal{N}}$ is a matrix.

- (ob) $\dot{\mathcal{N}}$ consists of countable elementary substructures of $(H_{\omega_2}^V, \in)$.
- (iso) For any $N, M \in \dot{\mathcal{N}}$, if $N = \omega_1 M$, then there exists an (necessarily unique) isomorphism $\phi : (N, \in \dot{\mathcal{N}} \cap N) \longrightarrow (M, \in \dot{\mathcal{N}} \cap M)$ such that ϕ is the identity on the intersection $N \cap M$.
- (up) If $N_3, N_2 \in \dot{\mathcal{N}}$ with $N_3 <_{\omega_1} N_2$, then there exists $N_1 \in \dot{\mathcal{N}}$ such that $N_3 \in N_1$ and $N_1 =_{\omega_1} N_2$.
- (stat) $\dot{\mathcal{N}}$ is stationary in $[H_{\omega_2}^V]^{\omega}$ and so \in -directed.

There is a way to get a quagmire of [K] by further forcing a club subset of the stationary set $\{N \cap \omega_1 \mid N \in \mathcal{N}\}\$ of ω_1 ([M1]).

The following has its roots in [BS].

Definition. Let $p = \mathcal{N}^p \in P_{\text{countable}}$, if

- (ob) \mathcal{N}^p consists of countable elementary substructures of (H_{ω_2}, \in) such that \mathcal{N}^p is of a size countable and $\mathcal{N}^p = \bigcup \mathcal{N}^p \in \mathcal{N}^p$ (a top element).
- (iso) For any $N, M \in \mathcal{N}^p$, if $N =_{\omega_1} M$, then there exists an (necessarily unique) isomorphism $\phi : (N, \in \mathcal{N}^p \cap N) \longrightarrow (M, \in \mathcal{N}^p \cap M)$ such that ϕ is the identity on the intersection $N \cap M$.
- (up) If $N_3, N_2 \in \mathcal{N}^p$ with $N_3 <_{\omega_1} N_2$, then there exists $N_1 \in \mathcal{N}^p$ such that $N_3 \in N_1$ and $N_1 =_{\omega_1} N_2$.
- $(\operatorname{par}) \, \mathcal{N}^p = \operatorname{zero}(\mathcal{N}^p) \cup \operatorname{suc}_1(\mathcal{N}^p) \cup \operatorname{suc}_2(\mathcal{N}^p) \cup \operatorname{lim}(\mathcal{N}^p), \text{ where for } N \in \mathcal{N}^p,$

$$\begin{split} N \in \operatorname{zero}(\mathcal{N}^p) & \text{ iff } \quad N \cap \mathcal{N}^p = \emptyset, \\ N \in \operatorname{suc}_1(\mathcal{N}^p) & \text{ iff } \quad \exists \, N_1 \,\, \mathcal{N}^p \cap N = \{N_1\} \cup (\mathcal{N}^p \cap N_1), \\ N \in \operatorname{suc}_2(\mathcal{N}^p) & \text{ iff } \quad \exists \, N_1 \exists \, N_2 \,\, N_1 =_{\omega_1} \,N_2, (N_1, N_2) \models \Delta, \\ \mathcal{N}^p \cap N = \{N_1, N_2\} \cup (\mathcal{N}^p \cap N_1) \cup (\mathcal{N}^p \cap N_2), \end{split}$$

where $(N_1, N_2) \models \Delta$ abbreviates that for $h \in N_1 \cap N_2 \cap \omega_2$, $t_1 \in (N_1 \cap \omega_2) \setminus N_2 \neq \emptyset$, $t_2 \in (N_2 \cap \omega_2) \setminus N_1 \neq \emptyset$, we have

$$h < t_1 < t_2 < \omega_2.$$

$$N \in \lim(\mathcal{N}^p)$$
 iff $N = \bigcup(\mathcal{N}^p \cap N)$.

For $p, q \in P_{\text{countable}}$, let $q \leq p$ in $P_{\text{countable}}$, if $N^p \in \mathcal{N}^q$ and

$$\mathcal{N}^q \cap N^p = \mathcal{N}^p \cap N^p$$

Since $\mathcal{N}^p = \{N^p\} \cup (\mathcal{N}^p \cap N^p) \text{ holds, } q \leq p \text{ in } P_{\text{countable}} \text{ iff } \mathcal{N}^q \supseteq \mathcal{N}^p \text{ and } \mathcal{N}^q \cap N^p = \mathcal{N}^p \cap N^p.$

Theorem. ([M2]) (1) $P_{\text{countable}}$ is proper, σ -Baire, and (CH) has the ω_2 -cc.

(2) Let G be $P_{\text{countable}}$ -generic over the ground model V and in V[G], let

$$\dot{\mathcal{N}} = \bigcup G$$
.

Then $\dot{\mathcal{N}}$ satisfies the following. And simply say that $\dot{\mathcal{N}}$ is a morass-type matrix.

- (ob) $\dot{\mathcal{N}}$ consists of countable elementary substructures of $(H_{\omega_2}^V, \in)$.
- (iso) For any $N, M \in \dot{\mathcal{N}}$, if $N = \omega_1 M$, then there exists an (necessarily unique) isomorphism $\phi : (N, \in \dot{\mathcal{N}} \cap N) \longrightarrow (M, \in \dot{\mathcal{N}} \cap M)$ such that ϕ is the identity on the intersection $N \cap M$.
- (up) If $N_3, N_2 \in \dot{\mathcal{N}}$ with $N_3 <_{\omega_1} N_2$, then there exists $N_1 \in \dot{\mathcal{N}}$ such that $N_3 \in N_1$ and $N_1 =_{\omega_1} N_2$.
- (par) $\dot{\mathcal{N}} = \operatorname{zero}(\dot{\mathcal{N}}) \cup \operatorname{suc}_1(\dot{\mathcal{N}}) \cup \operatorname{suc}_2(\dot{\mathcal{N}}) \cup \operatorname{lim}(\dot{\mathcal{N}})$, where for $N \in \dot{\mathcal{N}}$,

$$\begin{split} N \in \operatorname{zero}(\dot{\mathcal{N}}) &\quad \text{iff} \quad N \cap \dot{\mathcal{N}} = \emptyset, \\ N \in \operatorname{suc}_1(\dot{\mathcal{N}}) &\quad \text{iff} \quad \exists \, N_1 \, \dot{\mathcal{N}} \cap N = \{N_1\} \cup (\dot{\mathcal{N}} \cap N_1), \\ N \in \operatorname{suc}_2(\dot{\mathcal{N}}) &\quad \text{iff} \quad \exists \, N_1 \exists \, N_2 \, \, N_1 =_{\omega_1} N_2, (N_1, N_2) \models \Delta, \\ \dot{\mathcal{N}} \cap N = \{N_1, N_2\} \cup (\dot{\mathcal{N}} \cap N_1) \cup (\dot{\mathcal{N}} \cap N_2), \\ N \in \lim(\dot{\mathcal{N}}) &\quad \text{iff} \quad N = \bigcup(\dot{\mathcal{N}} \cap N). \end{split}$$

(stat) $\dot{\mathcal{N}}$ is stationary in $[H_{\omega_2}^V]^\omega$ and so \in -directed.

There is a construction to get a simplified $(\omega_1, 1)$ -morass out of this morass-type matrix N. Let us modify the assumption in section 6 of [M2] from $LD(2) + \Delta$ to $LD(\leq 2) + \Delta$.

Theorem. ([M2]) Any morass-type matrix entails a simplified $(\omega_1, 1)$ -morass.

Main Forcing

Here is the main forcing poset P that adds a morass-type matrix by finite side conditions. We know that any morass-type matrix entails a simplified $(\omega_1, 1)$ -morass. For a condition $p \in P$, its main body is a function f^p . The domain \mathcal{N}^p of f^p serves as a non-linear finite side condition.

Definition. Let $p = (\mathcal{N}^p, f^p) \in P$, if

- (ob) $\mathcal{N}^p \in P_{\text{finite}}$ and $f^p : \mathcal{N}^p \longrightarrow \omega_1$.
- (wit) There exists $\mathcal{M} \in P_{\text{countable}}$ such that $\mathcal{N}^p \subseteq \mathcal{M}$ and for all $N \in \mathcal{N}^p$,

$$f^p(N) = \rho^{\mathcal{M}}(N).$$

We refer to this situation (wit) as $p \in P$ witnessed by \mathcal{M} . Here, $\rho^{\mathcal{M}}$ is the rank function of the well-founded structure (\mathcal{M}, \in) . Since $\mathcal{M} \in P_{\text{countable}}$, we know that for all $M \in \mathcal{M}$,

$$\rho^{\mathcal{M}}(M) = \text{o.t.}(\{N \cap \omega_1 \mid N \in \mathcal{M} \cap M\}, <).$$

For $p, q \in P$, let $q \leq p$ in P, if $\mathcal{N}^q \leq \mathcal{N}^p$ in P_{finite} and for each $N \in \mathcal{N}^p$, $f^q(N) = f^p(N)$.

Hence, $q \leq p$ in P iff $f^q \supseteq f^p$. Note that there may exist many \mathcal{M} s in $P_{\text{countable}}$ for p and none of them are retained as parts of p. Hence, if we fix any choice \mathcal{M}^p of \mathcal{M} for p and any choice \mathcal{M}^q of \mathcal{M} for q, we do not expect to have $\mathcal{M}^q \leq \mathcal{M}^p$ in $P_{\text{countable}}$.

We next summarize on copying and pasting elements of P_{finite} and $P_{\text{countable}}$.

Lemma. (Copying and Pasting) Let X_1 and X_2 be two isomorphic countable elementary substructures of (H_{ω_2}, \in) such that the isomorphism $\phi_{X_1X_2}: (X_1, \in) \longrightarrow (X_2, \in)$ is the identity on the intersection $X_1 \cap X_2$.

(1) Let $\mathcal{N} \in X_1 \cap P_{\text{finite}}$ and let

$$\mathcal{N}' = \phi_{X_1 X_2}[\mathcal{N}] = \{\phi_{X_1 X_2}(Z) \mid Z \in \mathcal{N}\} = \{\phi_{X_1 X_2}[Z] \mid Z \in \mathcal{N}\}.$$

Then \mathcal{N}' , $\mathcal{N} \cup \mathcal{N}'$, $\mathcal{N} \cup \{X_1\}$, $\mathcal{N}' \cup \{X_2\}$, and $\mathcal{N} \cup \mathcal{N}' \cup \{X_1, X_2\}$ are all in P_{finite} .

(2) Let $\mathcal{M} \in X_1 \cap P_{\text{countable}}$ and let

$$\mathcal{M}' = \phi_{X_1 X_2}[\mathcal{M}] = \{\phi_{X_1 X_2}(Z) \mid Z \in \mathcal{M}\} = \{\phi_{X_1 X_2}[Z] \mid Z \in \mathcal{M}\}.$$

Then \mathcal{M}' , $\mathcal{M} \cup \{X_1\}$, and $\mathcal{M}' \cup \{X_2\}$ are all in $P_{\text{countable}}$. Furthermore, if $(X_1, X_2) \models \Delta$ and X is a countable elementary substructure of (H_{ω_2}, \in) with $X_1, X_2 \in X$. Then $\mathcal{M} \cup \mathcal{M}' \cup \{X_1, X_2, X\} \in P_{\text{countable}}$.

We mention facts on forming conditions in P. We just outline the last Lemma (Dense 3).

Lemma. (Dense 1) Let $p \in P$ witnessed by \mathcal{M} and $Y \in \mathcal{M}$ such that $\mathcal{N}^p \in Y$. Then there exists $q \in P$ witnessed by \mathcal{M} again such that $q \leq p$ in P and $Y \in \mathcal{N}^q$.

Lemma. (Dense 2) Let $p \in P$ witnessed by $\mathcal{M}, Y \in \mathcal{M}$, and $X_0 \in \mathcal{N}^p$ such that $\mathcal{N}^p \cap X_0 \in Y \in X_0$. Then there exists $q \in P$ witnessed by \mathcal{M} again such that $q \leq p$ in P and $Y \in \mathcal{N}^q$.

Lemma. (Dense 3) Let $p \in P$ witnessed by \mathcal{M}^p , $X_0 \in \mathcal{N}^p$, $X_0 \in \operatorname{suc}_2(\mathcal{M}^p)$, $X_1 =_{\omega_1} X_2$, $(X_1, X_2) \models \Delta$, and $\mathcal{M}^p \cap X_0 = \{X_1, X_2\} \cup (\mathcal{M}^p \cap X_1) \cup (\mathcal{M}^p \cap X_2)$. Then there exists $q \in P$ witnessed by \mathcal{M}^p again such that $q \leq p$ in P, $X_1, X_2 \in \mathcal{N}^q$, and

$$\{Z \in \mathcal{N}^q \mid Z \ge_{\omega_1} X_0\} = \{Z \in \mathcal{N}^p \mid Z \ge_{\omega_1} X_0\}.$$

Proof. Let $\rho^{\mathcal{M}^p}(X_0) = i + 1$ and so $\rho^{\mathcal{M}^p}(X_1) = \rho^{\mathcal{M}^p}(X_2) = i$. We have two cases.

Case 1. $\mathcal{N}^p \cap X_0 = \emptyset$: For each $X \in \mathcal{N}^p$ with $X =_{\omega_1} X_0$, let $\mathcal{M}_X^q = \phi_{X_0 X}[\{X_1, X_2\}] \cup \{X\}$. Let

$$\mathcal{N}^q = \{ Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0 \} \cup \bigcup \{ \mathcal{M}_X^q \cap X \mid X \in \mathcal{N}^p, X =_{\omega_1} X_0 \},$$

$$f^q = \rho^{\mathcal{M}^p} [\mathcal{N}^q]$$

Let $q = (\mathcal{N}^q, f^q)$. Then this q works.

Case 2. $\mathcal{N}^p \cap X_0 \neq \emptyset$: Let

$$k = \max\{f^p(W) \mid W \in \mathcal{N}^p \cap X_0\}.$$

Then $k \leq i$ holds. We have two subcases.

Subcase 1. k < i: Let

$$\mathcal{A} = \{ W \in \mathcal{N}^p \cap X_1 \mid f^p(W) = k \},$$

$$\mathcal{B} = \{ W \in \mathcal{N}^p \cap X_2 \mid f^p(W) = k \},$$

$$\mathcal{C} = \mathcal{A} \cup \phi_{X_1 X_2}^{-1}[\mathcal{B}],$$

$$\mathcal{D} = \mathcal{C} \cup \phi_{X_1 X_2}[\mathcal{C}].$$

Then $\phi_{X_1X_2}[\mathcal{C}] = (\phi_{X_1X_2}[\mathcal{A}]) \cup \mathcal{B}$ and so

$$\mathcal{D} = (\mathcal{A} \cup \phi_{X_1 X_2}[\mathcal{A}]) \cup (\mathcal{B} \cup \phi_{X_2 X_1}[\mathcal{B}]),$$
 $X_1 \cap \mathcal{D} = \mathcal{C},$ $X_2 \cap \mathcal{D} = \phi_{X_1 X_2}[\mathcal{C}].$

 $\begin{array}{ll} \textbf{Step 1.} \ \ \text{Let} \ \mathcal{N}^{q_0} = \{Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0\} \cup \bigcup \{\phi_{X_0X}[\{X_1, X_2\} \cup \mathcal{D}] \mid X \in \mathcal{N}^p, X =_{\omega_1} X_0\}. \ \ \text{Then} \\ \mathcal{N}^{q_0} \leq \{X_0, X_1, X_2\} \cup \mathcal{D} \ \text{in} \ P_{\text{finite}}, \ \{Z \in \mathcal{N}^{q_0} \mid Z \geq_{\omega_1} X_0\} = \{Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0\}, \ \text{and} \ \mathcal{N}^{q_0} \subset \mathcal{M}^p. \end{array}$

Step 2. Let us fix any $W_0 \in \mathcal{A} \cup \mathcal{B}$ and let $\mathcal{N}_{W_0}^q = (\mathcal{N}^p \cap W_0) \cup \{W_0\}$. Let

$$\mathcal{N}_{X_0}^q = \{X_0, X_1, X_2\} \cup \bigcup \{\phi_{W_0W}[\mathcal{N}_{W_0}^q \cap W_0] \cup \{W\} \mid W \in \mathcal{D}\}.$$

Then $\mathcal{N}_{X_0}^q \leq (\mathcal{N}^p \cap X_0) \cup \{X_0\}$ in P_{finite} , and $\mathcal{N}_{X_0}^q \subset \mathcal{M}^p$.

Step 3. Let $\mathcal{N}^q = \{Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0\} \cup \bigcup \{\phi_{X_0 X}[\mathcal{N}_{X_0}^q \cap X_0] \mid X \in \mathcal{N}^p, X =_{\omega_1} X_0\}$. Then $\mathcal{N}^q \leq \mathcal{N}^{q_0}, \mathcal{N}^p$ in P_{finite} and $\mathcal{N}^q \subset \mathcal{M}^p$.

Hence, $q = (\mathcal{N}^q, \rho^{\mathcal{M}^p} | \mathcal{N}^q) \in P$ witnessed by \mathcal{M}^p again, $q \leq p$ in $P, X_1, X_2 \in \mathcal{N}^q$, and

$$\{Z \in \mathcal{N}^q \mid Z \geq_{\omega_1} X_0\} = \{Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0\}.$$

Subcase 2. i = k: Let us fix $W_0 \in \{X_1, X_2\} \cap \mathcal{N}^p$ with $f^p(W_0) = k = i$. Let $\mathcal{N}^q_{W_0} = (\mathcal{N}^p \cap W_0) \cup \{W_0\}$. Let $\mathcal{N}^q_{X_0} = \{X_0, X_1, X_2\} \cup \bigcup \{\phi_{W_0W}[\mathcal{N}^q_{W_0} \cap W_0] \mid W = X_1, X_2\}$. Let $\mathcal{N}^q = \{Z \in \mathcal{N}^p \mid Z \geq_{\omega_1} X_0\} \cup \bigcup \{\phi_{X_0X}[\mathcal{N}^q_{X_0} \cap X_0] \mid X \in \mathcal{N}^p, X =_{\omega_1} X_0\}$. Then $q = (\mathcal{N}^q, \rho^{\mathcal{M}^p}[\mathcal{N}^q)$ works.

We prepare a construction in $P_{\text{countable}}$.

Lemma. (Replace) Let $\mathcal{M}^d \in P_{\text{countable}}$, $X_0 \in \mathcal{M}^d$, $\mathcal{M} \in P_{\text{countable}}$ with $X_0 = \bigcup \mathcal{M}$. Then there exists $\mathcal{M}^s \in P_{\text{countable}}$ such that

- $\mathcal{M}^s \leq \mathcal{M}$ in $P_{\text{countable}}$,
- $\{Z \in \mathcal{M}^s \mid Z \geq_{\omega_1} X_0\} = \{Z \in \mathcal{M}^d \mid Z \geq_{\omega_1} X_0\}.$
- If $\rho^{\mathcal{M}^d}(X_0) = \rho^{\mathcal{M}}(X_0)$, then for all $Z \in \mathcal{M}^s$ with $Z \geq_{\omega_1} X_0$,

$$\rho^{\mathcal{M}^s}(Z) = \rho^{\mathcal{M}^d}(Z).$$

L

Proof. We want to replace the part $(\mathcal{M}^d \cap X_0) \cup \{X_0\}$ of \mathcal{M}^d with \mathcal{M} to form a new $\mathcal{M}^s \in P_{\text{countable}}$ that satisfies $X_0 \in \mathcal{M}^s$, $(\mathcal{M}^s \cap X_0) \cup \{X_0\} = \mathcal{M}$, and $\{Z \in \mathcal{M}^s \mid Z \geq_{\omega_1} X_0\} = \{Z \in \mathcal{M}^d \mid Z \geq_{\omega_1} X_0\}$. For each $X \in \mathcal{M}^d$ with $X =_{\omega_1} X_0$, let

$$\mathcal{M}_X^s = \{\phi_{X_0X}(Y) \mid Y \in \mathcal{M} \cap X_0\} \cup \{X\}.$$

Let

$$\mathcal{M}^s = \{ Z \in \mathcal{M}^d \mid Z \geq_{\omega_1} X_0 \} \cup \bigcup \{ \mathcal{M}^d_X \cap X \mid X \in \mathcal{M}^d, X =_{\omega_1} X_0 \}.$$

Then this \mathcal{M}^s works. In particular, $\mathcal{M}^s \cap X = \mathcal{M}_X^s \cap X$ for all $X \in \mathcal{M}^d$ with $X =_{\omega} X_0$.

Lemma. (Generic) Let $p \in P$ and N^* be a countable elementary substructure of (H_{θ}, \in) with $P, p \in N^*$, where θ is a sufficiently large regular cardinal. Let

$$q = (\mathcal{N}^p \cup \{N^* \cap H_{\omega_2}\}, f^p \cup \{(N^* \cap H_{\omega_2}, N^* \cap \omega_1)\}).$$

Then $q \in P$ such that $q \leq p$ and q is (P, N^*) -generic.

Proof. Let $X_0 = N^* \cap H_{\omega_2}$. To see that $q \in P$, let $p \in P$ witnessed by \mathcal{M}^p . We may assume that $\mathcal{M}^p \in N^*$. Let $\langle M_n \mid n < \omega \rangle$ be a $(P_{\text{countable}}, N^*)$ -generic sequence with $\mathcal{M}_0 = \mathcal{M}^p$. Let

$$\mathcal{M}_{\omega} = (\bigcup \{\mathcal{M}_n \mid n < \omega\}) \cup \{X_0\}.$$

Then $\mathcal{M}_{\omega} \in P_{\text{countable}}$ with $X_0 = \bigcup \mathcal{M}_{\omega}$. Since $\mathcal{M}_{\omega} \leq \mathcal{M}^p$ in $P_{\text{countable}}$, we have $\rho^{\mathcal{M}^p} \subset \rho^{\mathcal{M}_{\omega}}$. Hence for all $Y \in \mathcal{N}^q \cap X_0 = \mathcal{N}^p$, we have

$$f^q(Y) = f^p(Y) = \rho^{\mathcal{M}^p}(Y) = \rho^{\mathcal{M}_\omega}(Y).$$

Since $\rho^{\mathcal{M}_{\omega}}(X_0) = X_0 \cap \omega_1$, we have

$$f^q(X_0) = \rho^{\mathcal{M}_{\omega}}(X_0).$$

Hence $q \in P$ witnessed by \mathcal{M}_{ω} .

Let $D \in N^*$ be open dense in P. Let $d \leq q$. We may assume that $d \in D$. Want to find $d' \in D \cap N^*$ and $s \in P$ such that $s \leq d, d'$ in P. Note first that for all $Y \in \mathcal{N}^d \cap N^* = \mathcal{N}^d \cap X_0$, we have $f^d(Y) < f^d(X_0) = N^* \cap \omega_1$. Hence $f^d \cap N^* = \{(Y, f^d(Y)) \mid Y \in \mathcal{N}^d \cap N^*\}$. Since $D, \mathcal{N}^d \cap N^*, f^d \cap N^* \in N^*$ and N^* is an elementary substructure of (H_θ, \in) , there exists $d' \in D \cap N^*$ such that

- $\mathcal{N}^d \cap N^* \subset \mathcal{N}^{d'}$,
- $f^d(Y) = f^{d'}(Y)$ for all $Y \in \mathcal{N}^d \cap N^*$.

Let $d' \in P$ witnessed by $\mathcal{M}' \in P_{\text{countable}} \cap N^*$. Let $\langle \mathcal{M}'_n \mid n < \omega \rangle$ be $(P_{\text{countable}}, N^*)$ -generic sequence with $\mathcal{M}'_0 = \mathcal{M}'$. Let

$$\mathcal{M}'_{\omega} = \left(\bigcup \{ \mathcal{M}'_n \mid n < \omega \} \right) \cup \{ X_0 \}.$$

Then $\mathcal{M}'_{\omega} \in P_{\text{countable}}$ with $\bigcup \mathcal{M}'_{\omega} = X_0$. By Lemma (Replace), we have $\mathcal{M}^s \in P_{\text{countable}}$ such that

- $\mathcal{M}^s \leq \mathcal{M}'_{\omega}$ in $P_{\text{countable}}$
- $\bullet \{Z \in \mathcal{M}^s \mid Z \geq_{\omega_1} X_0\} = \{Z \in \mathcal{M}^d \mid Z \geq_{\omega_1} X_0\}.$

But

• $\rho^{\mathcal{M}'_{\omega}}(X_0) = N^* \cap \omega_1 = f^q(X_0) = f^d(X_0) = \rho^{\mathcal{M}^d}(X_0).$

Hence

• $\rho^{\mathcal{M}^s}(Z) = \rho^{\mathcal{M}^d}(Z)$ for all $Z \in \mathcal{M}^s$ with $Z \geq_{\omega_1} X_0$.

For each $X \in \mathcal{M}^s$ with $X_0 =_{\omega_1} X$, let us write

$$\mathcal{M}_X^s = (\mathcal{M}^s \cap X) \cup \{X\}.$$

Hence we have,

$$\mathcal{M}_{X_0}^s=\mathcal{M}_{\omega}',$$

$$\mathcal{M}_X^s=\{\phi_{X_0X}(Y)\mid Y\in\mathcal{M}_{X_0}^s\cap X_0\}\cup\{X\},$$

where $\phi_{X_0X}: X_0 \longrightarrow X$ is the isomorphism. Let

$$\mathcal{N}^s = \{Z \in \mathcal{N}^d \mid Z \geq_{\omega_1} X_0\} \cup \{\phi_{X_0X}(Y) \mid Y \in \mathcal{N}^{d'}, X \in \mathcal{N}^d, X =_{\omega_1} X_0\}.$$

For each $W \in \mathcal{N}^s$, let

$$f^s(W) = \rho^{\mathcal{M}^s}(W).$$

Let $s = (\mathcal{N}^s, f^s)$.

Claim. $s \in P$ witnessed by \mathcal{M}^s and $s \leq d, d'$ in P.

Proof. Since $\mathcal{N}^d \in P_{\text{finite}}$ and $\mathcal{N}^d \cap N^* \subseteq \mathcal{N}^{d'} \in N^*$, it is routine to have $\mathcal{N}^s \in P_{\text{finite}}$.

We next observe that $\mathcal{N}^s \subseteq \mathcal{M}^s$. We have two cases. Let us first assume $Z \in \mathcal{N}^s$ with $Z \geq_{\omega_1} X_0$. Then $Z \in \mathcal{N}^d \subseteq \mathcal{M}^d$. Since $Z \geq_{\omega_1} X_0$, we have $Z \in \mathcal{M}^s$. Let us next assume that $Z <_{\omega_1} X_0$. Then there is $X \in \mathcal{N}^d$ such that $X =_{\omega_1} X_0$ and

$$Z \in \{\phi_{X_0X}(Y) \mid Y \in \mathcal{N}^{d'}\}.$$

But

$$\mathcal{N}^{d'} \subset \mathcal{M}'_{\omega} \cap X_0,$$
 $\phi_{X_0X}[\mathcal{M}'_{\omega} \cap X_0] = \mathcal{M}^s \cap X = \mathcal{M}^s_X \cap X.$

In particular, $Z \in \mathcal{M}^s$.

We show that $s \leq d'$ in P. But by definition, we have that $\mathcal{N}^{d'} \subseteq \mathcal{N}^s$. Let $Z \in \mathcal{N}^{d'}$. Want $f^{d'}(Z) = f^s(Z)$. But

$$f^{d'}(Z) = \rho^{\mathcal{M}'}(Z) = \rho^{\mathcal{M}'_{\omega}}(Z) = \rho^{\mathcal{M}^s_{X_0}}(Z) = \rho^{\mathcal{M}^s}(Z) = f^s(Z).$$

Hence $s \leq d'$ in P.

We show that $s \leq d$ in P. Let $Z \in \mathcal{N}^d$. We have two cases. Let us first assume that $Z \geq_{\omega_1} X_0$. Then $Z \in \mathcal{N}^s$ by the definition of \mathcal{N}^s . We also have

$$f^d(Z) = \rho^{\mathcal{M}^d}(Z) = \rho^{\mathcal{M}^s}(Z) = f^s(Z).$$

Let us next assume that $Z <_{\omega_1} X_0$. Then there is $X \in \mathcal{N}^d$ such that $X =_{\omega_1} X_0$ and $Z \in \mathcal{M}_X^s \cap \mathcal{N}^d \subseteq \mathcal{N}^s$. We also have

$$f^d(Z) = f^d \left(\phi_{X_0 X}^{-1}(Z) \right) = \rho^{\mathcal{M}_{X_0}^s} \left(\phi_{X_0 X}^{-1}(Z) \right) = \rho^{\mathcal{M}_X^s}(Z) = \rho^{\mathcal{M}^s}(Z) = f^s(Z).$$

Hence $s \leq d$ in P.

Lemma. (CH) P has the ω_2 -cc.

Proof. Let $\langle p_i \mid i < \omega_2 \rangle$ be a sequence of elements of P. For each $i < \omega_2$, let $p_i = (\mathcal{N}^{p_i}, f^{p_i}) \in P$ witnessed by \mathcal{M}^{p_i} and let $M_i = \bigcup \mathcal{M}^{p_i}$. By CH, we may assume that there exist $i < j < \omega_2$ such that

- $(M_i, M_i) \models \Delta$,
- $\phi: (M_i, \in, \mathcal{M}^{p_i} \cap M_i, \mathcal{N}^{p_i}) \longrightarrow (M_j, \in, \mathcal{M}^{p_j} \cap M_j, \mathcal{N}^{p_j})$ is an isomorphism such that ϕ is the identity on the intersection $M_i \cap M_j$.

Hence

• $\rho^{\mathcal{M}^{p_i}}(W) = \rho^{\mathcal{M}^{p_j}}(\phi(W))$ for all $W \in \mathcal{M}^{p_i}$.

Let us fix any countable elementary substructure M of (H_{ω_2}, \in) with $p_i, p_i \in M$. Let

$$\mathcal{M} = \{M\} \cup \mathcal{M}^{p_i} \cup \mathcal{M}^{p_j},$$

$$\mathcal{N}^p = \mathcal{N}^{p_i} \cup \mathcal{N}^{p_j}$$
.

Then $\mathcal{M} \in P_{\text{countable}}$ such that $\mathcal{M} \leq \mathcal{M}^{p_i}, \mathcal{M}^{p_j}$ in $P_{\text{countable}}$. Hence

$$\rho^{\mathcal{M}} \supset \rho^{\mathcal{M}^{p_i}}, \rho^{\mathcal{M}^{p_j}}.$$

Let $p = (\mathcal{N}^p, \rho^{\mathcal{M}}[\mathcal{N}^p)$. Then $p \in P$ witnessed by \mathcal{M} . This p is a common extension of p_i and p_j in P.

Lemma. (CH) Let G be P-generic over V. In V[G], let us define

$$\dot{\mathcal{N}} = \{ \mid \mathcal{N}^p \mid p \in G \}.$$

Then $\dot{\mathcal{N}}$ is a matrix. By this we mean that

(ob) $\dot{\mathcal{N}}$ consists of countable elementary substructures of $(H_{\omega_2}^V, \in)$.

(iso) For any $N,M\in\dot{\mathcal{N}}$, if $N=_{\omega_1}M$, then there exists a (necessarily unique) isomorphism $\phi:(N,\in\dot{\mathcal{N}}\cap N)\longrightarrow(M,\in\dot{\mathcal{N}}\cap M)$ such that ϕ is the identity on the intersection $N\cap M$.

(up) If $N_3, N_2 \in \dot{\mathcal{N}}$ with $N_3 <_{\omega_1} N_2$, then there exists $N_1 \in \dot{\mathcal{N}}$ such that $N_3 \in N_1$ and $N_1 =_{\omega_1} N_2$.

(stat) $\dot{\mathcal{N}}$ is stationary in $[H^V_{\omega_2}]^{\omega}$ and so \in -directed.

Since $(\dot{\mathcal{N}}, \in)$ is well-founded, the rank function $\rho^{\dot{\mathcal{N}}}$ is well-defined.

Lemma. Let G be P-generic over V. In V[G], let us define

$$\dot{f} = \bigcup \{ f^p \mid p \in G \}.$$

Let $p \in P$, $Z \in \mathcal{N}^p$, and $f^p(Z) = i$. Then there exists $q \leq p$ in P such that

- If i = 0, then $q \Vdash_P "Z \in \text{zero}(\dot{\mathcal{N}})$ and $\rho^{\dot{\mathcal{N}}}(Z) = i$ ".
- If i is successor, then $q \Vdash_P "Z \in \operatorname{suc}_1(\dot{\mathcal{N}}) \cup \operatorname{suc}_2(\dot{\mathcal{N}})$ and $\rho^{\dot{\mathcal{N}}}(Z) = i$ ".
- If i is limit, then $q \Vdash_P "Z \in \lim(\dot{\mathcal{N}})$ and $\rho^{\dot{\mathcal{N}}}(Z) = i$ ".

In particular, $\dot{\mathcal{N}}$ is a morass-type matrix and \dot{f} coincide with the rank function $\rho^{\dot{\mathcal{N}}}$ of the well-founded structure $(\dot{\mathcal{N}}, \in)$.

Proof. By induction on $i < \omega_1$. Let $p \in P$, $Z \in \mathcal{N}^p$, and $f^p(Z) = i$.

Case. i = 0: We claim $p \Vdash_P "Z \in \text{zero}(\dot{\mathcal{N}})$ and so $\rho^{\dot{\mathcal{N}}}(Z) = 0$ ".

Proof. Suppose not. Let $q \leq p$ in P and $W \in Z \cap \mathcal{N}^q$. Then

$$f^{q}(W) < f^{q}(Z) = f^{p}(Z) = 0.$$

This would be a contradiction.

Case. i = i + 1: We have two subcases.

Subcase 1. For all $q \leq p$ and for all \mathcal{M} such that $q \in P$ witnessed by \mathcal{M} , we have $Z \notin \operatorname{suc}_2(\mathcal{M})$: Let $p \in P$ witnessed by \mathcal{M}^p . Since $\rho^{\mathcal{M}^p}(Z) = f^p(Z) = i+1$, we must have $Z \in \operatorname{suc}_1(\mathcal{M}^p) \cup \operatorname{suc}_2(\mathcal{M}^p)$. Since we are in Subcase 1, $Z \notin \operatorname{suc}_2(\mathcal{M}^p)$. Hence $Z \in \operatorname{suc}_1(\mathcal{M}^p)$. Let $\mathcal{M}^p \cap Z = \{Z_1\} \cup (\mathcal{M}^p \cap Z_1)$ and so $\rho^{\mathcal{M}^p}(Z_1) = i$. By Lemma (Dense 2), there exists $p' \leq p$ in P such that $p' \in P$ witnessed by \mathcal{M}^p again and $Z_1 \in \mathcal{N}^{p'}$. Note that $f^{p'}(Z_1) = i$. By induction, we may assume, by extending p', that $p' \Vdash_{P} p' \hat{\mathcal{N}}(Z_1) = i^n$.

We claim $p' \Vdash_P \mathring{\mathcal{N}} \cap Z = \{Z_1\} \cup (\mathring{\mathcal{N}} \cap Z_1)$ and so $Z \in \text{suc}_1(\mathring{\mathcal{N}})$ ". Hence $p' \Vdash_P \mathring{\mathcal{N}}(Z) = i + 1$ ".

Proof. Let $p'' \leq p'$ in P, $p'' \in P$ witnessed by $\mathcal{M}^{p''}$, and $W \in \mathcal{N}^{p''} \cap Z$. Suffices to show that either $W = Z_1$ or $W \in Z_1$. Since $\rho^{\mathcal{M}^{p''}}(Z) = f^{p'}(Z) = f^p(Z) = i+1$, we must have $Z \in \text{suc}_1(\mathcal{M}^{p''}) \cup \text{suc}_2(\mathcal{M}^{p''})$. Since we are in Subcase 1, $Z \notin \text{suc}_2(\mathcal{M}^{p''})$. Hence $Z \in \text{suc}_1(\mathcal{M}^{p''})$. But $\rho^{\mathcal{M}^{p''}}(Z) = i+1$, $Z_1 \in \mathcal{N}^{p''} \cap Z \subseteq \mathcal{M}^{p''} \cap Z$, and $\rho^{\mathcal{M}^{p''}}(Z_1) = f^{p'}(Z_1) = f^{p'}(Z_1) = i$. Hence

$$W \in \mathcal{N}^{p''} \cap Z \subseteq \mathcal{M}^{p''} \cap Z = \{Z_1\} \cup (\mathcal{M}^{p''} \cap Z_1).$$

In particular, $W = Z_1$ or $W \in Z_1$.

Subcase 2. There are $q \leq p$ in P and \mathcal{M}^q such that $q \in P$ witnessed by \mathcal{M}^q and $Z \in \operatorname{suc}_2(\mathcal{M}^q)$: Let $Z_1 =_{\omega_1} Z_2$, $(Z_1, Z_2) \models \Delta$, and $\mathcal{M}^q \cap Z = \{Z_1, Z_2\} \cup (\mathcal{M}^q \cap Z_1) \cup (\mathcal{M}^q \cap Z_2)$. Then by Lemma (Dense 3), there is $q' \leq q$ in P, $q' \in P$ witnessed by \mathcal{M}^q again, $Z_1, Z_2, Z \in \mathcal{N}^{q'}$, and $f^{q'}(Z_1) = f^{q'}(Z_2) = i < i + 1 = f^{q'}(Z) = f^q(Z)$. By induction, we may assume, by extending q' twice, that $q' \models_P u = \rho^{\mathcal{N}}(Z_1) = \rho^{\mathcal{N}}(Z_2)^n$.

We claim $q' \Vdash_P \mathring{\mathcal{N}} \cap Z = \{Z_1, Z_2\} \cup (\mathring{\mathcal{N}} \cap Z_1) \cup (\mathring{\mathcal{N}} \cap Z_2)$ and so $Z \in \text{suc}_2(\mathring{\mathcal{N}})$ ". Hence $q' \Vdash_P \mathring{\mathcal{N}}(Z) = i + 1$ ".

Proof. Let $q'' \leq q'$ in P, $q'' \in P$ witnessed by $\mathcal{M}^{q''}$, and $W \in \mathcal{N}^{q''} \cap Z$. Suffices to show that either $W = Z_1$, $W = Z_2$, $W \in Z_1$, or $W \in Z_2$. Since $Z_1, Z_2, Z \in \mathcal{N}^{q''} \subseteq \mathcal{M}^{q''}$, we have $Z_1, Z_2, Z \in \mathcal{M}^{q''}$. But

$$\rho^{\mathcal{M}^{q''}}(Z_1) = \rho^{\mathcal{M}^{q''}}(Z_2) = f^{q''}(Z_1) = f^{q''}(Z_2) = i,$$

$$\rho^{\mathcal{M}^{q''}}(Z) = f^{q''}(Z) = f^p(Z) = i + 1,$$

and $(Z_1, Z_2) \models \Delta$. Hence $Z \in \operatorname{suc}_2(\mathcal{M}^{q''})$ and

$$W \in \mathcal{N}^{q''} \cap Z \subseteq \mathcal{M}^{q''} \cap Z = \{Z_1, Z_2\} \cup (\mathcal{M}^{q''} \cap Z_1) \cup (\mathcal{M}^{q''} \cap Z_2).$$

In particular, $W = Z_1$, $W = Z_2$, $W \in Z_1$, or $W \in Z_2$.

Case. *i* is limit: We claim $p \Vdash_P "Z = \bigcup (\dot{\mathcal{N}} \cap Z)$ and so $Z \in \lim (\dot{\mathcal{N}})$ ".

Proof. Let $q \leq p$ in P, $q \in P$ wintnessed by \mathcal{M}^q , and $e \in Z$. Want to find $r \leq q$ in P such that there is $Y \in \mathcal{N}^r \cap Z$ with $e \in Y$. Since $i = f^p(Z) = f^q(Z) = \rho^{\mathcal{M}^q}(Z)$ is limit, we must have $Z \in \text{lim}(\mathcal{M}^q)$. Hence $Z = \bigcup (\mathcal{M}^q \cap Z)$ and so there is $Y \in \mathcal{M}^q \cap Z$ such that $e, \mathcal{N}^q \cap Z \in Y$. By Lemma (Dense 2), there is $r \leq q$ in P such that $Y \in \mathcal{N}^r \cap Z$.

We claim $p \Vdash_P {}^{\circ} \rho^{\dot{\mathcal{N}}}(Z) = i$ ".

Proof. Suppose not. We argue in two cases.

Case 1. There are $q \leq p$ and j < i such that $q \Vdash_P "\rho^{\dot{N}}(Z) = j$ ": Let $q \in P$ witnessed by \mathcal{M}^q . Since $i = f^q(Z) = \rho^{\mathcal{M}^q}(Z)$ is limit, we must have $Z \in \lim(\mathcal{M}^q)$. Hence there are $Y \in \mathcal{M}^q \cap Z$ and k such that $i > \rho^{\mathcal{M}^q}(Y) = k \geq j$ and $Z \cap \mathcal{N}^q \in Y$. By Lemma (Dense 2), we have $q' \leq q$ in P such that $Y \in \mathcal{N}^{q'}$ and $q' \in P$ is witnessed by \mathcal{M}^q again. By induction there is $q'' \leq q'$ such that $q'' \Vdash_P "\rho^{\dot{N}}(Y) = k$ ". Since $Y \in Z$, we have $q'' \Vdash_P "\rho^{\dot{N}}(Z) > k \geq j$ ". But $q'' \leq q' \leq q$ in P and $q \Vdash_P "\rho^{\dot{N}}(Z) = j$ ". This would be a contradiction.

Case 2. There are $q \leq p$ in P and j such that j > i and $q \Vdash_P {}^{\rho} {}^{\mathcal{N}}(Z) = j^n$: Take $q' \leq q$, $W \in \mathcal{N}^{q'} \cap Z$, and k such that $q' \Vdash_P {}^{\mu} {}^{\mathcal{N}}(W) = k \geq i^n$. By induction, we may assume, by extending q', that $f^{q'}(W) = k$. But $k < f^{q'}(Z) = f^p(Z) = i$. This would be a contradiction.

Theorem. (CH) Let G be P-generic over V. Then there exists a simplified $(\omega_1, 1)$ -morass that is entailed from the morass-type matrix $\dot{\mathcal{N}} = \bigcup \{ \mathcal{N}^p \mid p \in G \}$ in V[G].

References

[A-M] D. Aspero, M. Mota, Forcing consequences of PFA together with the continuum large, *Transactions of the American Mathematical Society*, vol.367 (2015), no.9, pp.6103-6129.

[B-S] J. Baumgartner, S. Shelah, Remarks on superatomic Boolean algebras, Annals of Pure and Applied Logic, 33 (1987) pp.109–129.

[K] A. Kanamori, Morasses in combinatorial set theory, Surveys in Set Theory, London Mathematical Society Lecture Notes Series, 87 (1983) pp.167–196.

[M1] T. Miyamoto, Forcing a quagmire via matrices of models, a note, 2013.

[M2] T. Miyamoto, Matrices of isomorphic models and morass-like structures, a note, 2013. http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/pdf/1895-09.pdf

[T] S. Todorcevic, Directed sets and cofinal types, Transactions of the American Mathematical Society, vol.290 (1985), no.2, pp.711–723.

[V] D. Velleman, Simplified morasses, Journal of Symbolic Logic, vol.49 (1984) no.1, pp.257–271.

miyamoto@nanzan-u.ac.jp

Mathematics

Nanzan University

18 Yamazato-cho, Showa-ku, Nagoya

466-8673 Japan

南山大学 数学 宮元忠敏