VARIANTS OF THE GROUND AXIOM

TOSHIMICHI USUBA

Definition 0.1. The *Ground Axiom* GA is the assertion that the universe V does not have a proper ground model.

It is known that GA is a first order assertion. Let us say that a transitive model $W \subseteq V$ of ZFC is called a *groud* if there is a poset $\mathbb{P} \in W$ and a (W, \mathbb{P}) -generic G with V = W[G] (V = W is possible).

Fact 0.2 (Reitz [2], Fuchs-Hamkins-Reitz [1]). There is a first order formula $\varphi(x,y)$ such that:

- (1) For every set r, the class $W_r = \{x : \varphi(x,r)\}$ is a groud of V.
- (2) For every ground W of V, there is r with $W = W_r$.

Then GA is the assertion that $\forall r(V = W_r)$.

We consider the following variant of GA, which is suggested by Reitz [2]:

Definition 0.3. Let Γ be a class of posets (e.g., c.c.c. posets, proper posets). GA_{Γ} is the assertion that the universe V does not have a proper ground W such that there is $\mathbb{P} \in \Gamma^W$ and a (W, \mathbb{P}) -generic G with V = W[G].

Note that if Γ is a parameter free definable class, then GA_{Γ} is a first order assertion as well.

In the paper we will consider the following classes of posets:

- (1) c.c.c.,
- (2) productively c.c.c, where the poset \mathbb{P} is productively c.c.c. if for every c.c.c. poset \mathbb{Q} , the product poset $\mathbb{P} \times \mathbb{Q}$ is c.c.c.,
- (3) proper,
- (4) semi-proper,
- (5) ω_1 -stationary preserving, where the poset \mathbb{P} is ω_1 -stationary preserving if for every stationary subset S of ω_1 , the forcing with \mathbb{P} preserves the stationarity of S.
- (6) ω_1 -preserving, where the poset \mathbb{P} is ω_1 -preserving if the forcing with \mathbb{P} preserves the cardinality of ω_1^V .

We prove the following:

Theorem 0.4. The following are consistent:

(1) $GA_{\omega_1\text{-stat. pres.}} + \neg GA_{\omega_1\text{-pres.}}$

- (2) $GA_{\text{semi-proper}} + \neg GA_{\omega_1\text{-stat. pres.}}$
- (3) $GA_{proper} + \neg GA_{semi-proper}$ (under some large cardinal assumption).
- (4) $GA_{c.c.c.} + \neg GA_{proper}$.
- (5) $GA_{prod. c.c.c.} + \neg GA_{c.c.c.}$
- 1. Separating ω_1 -stationary preserving, semi-proper, and proper

We use the following facts which are due to Shelah ([3]):

- Fact 1.1. (1) Namba forcing is ω_1 -stationary preserving, and forces $\operatorname{cf}(\omega_2^V) = \omega$.
 - (2) If CH holds, then Namba forcing does not add new reals.
 - (3) The following are equivalent:
 - (a) Namba forcing is semi-proper.
 - (b) The strong Chang's conjecture holds.
 - (c) There is a semi-proper forcing \mathbb{P} which forces $\mathrm{cf}(\omega_2^V) = \omega$.

Here, the strong Chang's conjecture is the assertion that for every sufficiently large regular θ , every countable $M \prec H_{\theta}$, and every $\gamma < \omega_2$, there is a countable $N \prec H_{\theta}$ such that $M \subseteq N$, $M \cap \omega_1 = N \cap \omega_1$, and $\sup(N \cap \omega_2) > \gamma$.

Note that, if one of (a)–(c) in the fact holds, then Chang's conjecture holds, and $0^{\#}$ exists.

We start the proof. First we prove the consistency of $\mathsf{GA}_{\mathsf{semi-proper}}+\neg \mathsf{GA}_{\omega_1\text{-stat. pres.}}$. Suppose V=L. Let $\mathbb P$ be a Namba forcing notion, and let G be $(V,\mathbb P)$ -generic. Let $c\subseteq \omega_2^V$ be a generic cofinal subset of order-type ω . We see that L[c] is a required model¹. L[c] is an ω_1 -stationary preserving forcing extension of L, hence $\mathsf{GA}_{\omega_1\text{-stat. pres.}}$ fails in L[c]. To show that $\mathsf{GA}_{\mathsf{semi-proper}}$ holds in L[c], take a ground $W\subseteq L[c]$, a poset $\mathbb Q\in W$ which is semi-proper in W, and a $(W,\mathbb Q)$ -generic G with L[c]=W[G]. We see that $c\in W$, hence W=L[c]. Since $L\subseteq W\subseteq L[c]$, we have $\omega_1=\omega_1^W=\omega_1^L=\omega_1^{L[c]}$. Moreover, since CH holds in L, we have $\mathcal P(\omega)\cap L=\mathcal P(\omega)\cap L[c]=\mathcal P(\omega)\cap W$.

Claim 1.2. In W, $\operatorname{cf}(\omega_2^L) = \omega$.

Proof. If $\operatorname{cf}^W(\omega_2^L) = \omega_2^L$, then $\omega_2^L = \omega_2^W$. Hence, in W, \mathbb{Q} is a semi-proper forcing notion which forces $\operatorname{cf}(\omega_2^W) = \omega$. By Fact 1.1, we have that $0^\#$ exists in W, hence so does in L[c]. This is impossible because L[c] is a set-forcing extension of L.

Next suppose $\operatorname{cf}^W(\omega_2^L) = \omega_1$. Because $\operatorname{cf}(\omega_2^L) = \omega$ in L[c], we have that $\operatorname{cf}(\omega_1) = \omega$ in L[c], hence ω_1 is collapsed. This is impossible.

In W, take a club $C = \{x_i : i < \omega_1\}$ in $[\omega_2^L]^{\omega}$. In L[c], C is a club in $[\omega_2^L]^{\omega}$. $c \subseteq \omega_2^L$ is countable, so there is some $i < \omega_1$ with $c \subseteq x_i$. Because x_i is countable in W and

¹The author does not know if L[c] = L[G]. However, since $L \subseteq L[c] \subseteq L[G]$, we have that L[c] is an ω_1 -stationary preserving forcing extension of L.

 $\mathcal{P}(\omega) \cap L = \mathcal{P}(\omega) \cap L[c] = \mathcal{P}(\omega) \cap W$, we have $\mathcal{P}(x) \cap L[c] = \mathcal{P}(x) \cap W$, and $c \in W$. This completes the proof of the consistency of $\mathsf{GA}_{\mathsf{semi-proper}} + \neg \mathsf{GA}_{\omega_1\text{-stat. pres.}}$.

Next we prove $GA_{proper} + \neg GA_{semi-proper}$, but our proof needs some large cardinal assumption.

The mantle M is the class $\bigcap_r W_r$. GA is equivalent to the assertion $V = \mathbf{M}$. It is known that the mantle is a model of ZFC (Usuba [4]).

Suppose V satisfies GA , and there exists a measurable cardinal κ . This is consistent assuming the existence of a measurable cardinal.

Let \mathbb{P} be a Prikry forcing notion associated with a normal measure over κ . Let G be a (V, \mathbb{P}) -generic filter, and c a generic cofinal sequence in κ of order type ω . It is known that V[c] = V[G]. We see that V[c] is a required model.

Prikry forcing is semi-proper, hence $\mathsf{GA}_{\mathsf{semi-proper}}$ fails in V[c]. In order to see that $\mathsf{GA}_{\mathsf{proper}}$ holds in V[c], take a ground $W \subseteq V[c]$, a poset $\mathbb{Q} \in W$ which is proper in W, and a (W, \mathbb{Q}) -generic H with V[c] = W[H]. We see that $c \in W$. V satisfies GA , hence V is equal to its mantle M. Note that the mantle is forcing invariant ([4]). W is a ground of V[c], hence we have that $V = \mathbf{M} \subseteq W$. Because Prikry forcing does not add new reals, we have $\mathcal{P}(\omega) \cap V = \mathcal{P}(\omega) \cap V[c] = \mathcal{P}(\omega) \cap W$. V[c] is a proper forcing extension of W, hence there is $x \in W$ which is countable in W and $c \subseteq w$. We know $\mathcal{P}(\omega) \cap V[c] = \mathcal{P}(\omega) \cap W$, so $\mathcal{P}(x) \cap V[c] = \mathcal{P}(x) \cap W$ and we can conclude that $c \in W$. Finally, since $V = \mathbf{M} \subseteq W \subseteq V[c]$, we have W = V[c].

- Note 1.3. (1) The same proof shows the consistency of $\mathsf{GA}_{\omega\text{-covering}} + \neg \mathsf{GA}_{\text{semi-proper}}$, where a poset $\mathbb P$ satisfies the $\omega\text{-covering property}$ if for every $(V, \mathbb P)$ -generic G and every countable set $x \in [V]^{\omega} \cap V[G]$, there is $y \in V$ which is countable in V and $x \subseteq y$.
 - (2) The author does not know the exact consistency strengths of GA_{proper} + $\neg GA_{semi-proper}$ and $GA_{\omega-covering}$ + $\neg GA_{semi-proper}$.
 - 2. Separating proper, c.c.c., and productively c.c.c.

To proceed our proofs, we will use the approximation property.

Definition 2.1. Let \mathbb{P} be a poset, and κ a cardinal. We say that \mathbb{P} satisfies the κ -approximation property if for every (V, \mathbb{P}) -generic G and every set $A \in V[G]$ of ordinals, if $A \cap x \in V$ for every $x \in V$ with $|x| < \kappa$ in V, then $A \in V$.

Fact 2.2 (Usuba [5]). Let κ be a regular uncountable cardinal, and \mathbb{P} be a κ -c.c. poset. Suppose that, for every κ -Suslin tree T, we have $\Vdash_{\mathbb{P}}$ "T has no cofinal branch". Then \mathbb{P} satisfies the κ -approximation property.

The following is immediate from the above fact, but (2) would be a kind of folklore.

Corollary 2.3. Let κ be a regular uncountable cardinal, and \mathbb{P} a κ -c.c. poset.

- (1) If there is no κ -Suslin tree, or the product poset $\mathbb{P} \times \mathbb{P}$ is κ -c.c., then \mathbb{P} satisfies the κ -approximation property.
- (2) If \mathbb{P} is non-trivial, then the forcing with \mathbb{P} must add new subset of κ .

Now we prove the consistency of $\mathsf{GA}_{\mathsf{c.c.c.}} + \neg \mathsf{GA}_{\mathsf{proper}}$. Suppose V = L. Let \mathbb{P} be any non-trivial ω_2 -closed forcing notion. Take a (V, \mathbb{P}) -generic, and work in V[G]. We check that V[G] is a model of $\mathsf{GA}_{\mathsf{c.c.c.}} + \neg \mathsf{GA}_{\mathsf{proper}}$. Clearly ω_2 -closed forcing is proper, hence we have that $\mathsf{GA}_{\mathsf{proper}}$ fails in V[G]. Next take a ground $W \subseteq V[G]$, a poset $\mathbb{Q} \in W$ which is c.c.c. in W, and a (W, \mathbb{Q}) -generic H with V[G] = W[H]. If $H \notin W$, by Corollary 2.3, there is a subset $x \subseteq \omega_1$ which is in W[H] but not in W. However, since $V = L \subseteq W$ and V[G] is an ω_2 -closed forcing extension of V, we have $\mathcal{P}(\omega_1) \cap L = \mathcal{P}(\omega_1) \cap V[G] = \mathcal{P}(\omega_1) \cap W$. Hence $x \in W$, this is a contradiction. Thus $H \in W$, and we have V[G] = W.

Next we see $\mathsf{GA}_{\mathsf{prod}.\ \mathsf{c.c.c.}} + \neg \mathsf{GA}_{\mathsf{c.c.c.}}$. Suppose V = L, and fix a Suslin tree T. We may assume that T is of the form $\langle \omega_1, \leq_T \rangle$. Let $\mathbb P$ be a c.c.c. forcing T with \geq_T . Let B be a $(V, \mathbb P)$ -generic branch of T, and we see that V[B] is a required model. V[B] is a c.c.c. forcing extension of V, so $\mathsf{GA}_{\mathsf{c.c.c.}}$ fails. Suppose $W \subseteq V[B]$ is a ground such that V[B] is a forcing extension of W via productively c.c.c. poset $\mathbb Q \in W$. By Corollary 2.3, $\mathbb Q$ satisfies the ω_1 -approximation property in W. Now, since $T \in L \subseteq W$ and B is a cofinal branch of T, we have that $B \cap x \in W$ for every countable set $x \in W$. Hence $B \in W$ by the ω_1 -approximation property of $\mathbb Q$, and $V[B] = L[B] \subseteq W$.

Question 2.4. How are GA for classes of other variants of c.c.c. posets? For instance, is $GA_{property\ K} + \neg GA_{prod.\ c.c.c.}$ consistent?

3. Separationg ω_1 -stationary preserving and ω_1 -preserving

In this section we prove the consistency of $\mathsf{GA}_{\omega_1\text{-stat. pres.}} + \neg \mathsf{GA}_{\omega_1\text{-pres.}}$.

First, for a given subset of $[\omega_1]^{<\omega_1}$, we define a poset such that, in the generic extension, the subset of $[\omega_1]^{<\omega_1}$ is coded by disjoint stationary subsets.

Suppose CH, and fix a surjection $\pi: \omega_1 \to [\omega_1]^{<\omega_1}$. Fix disjoint stationary subsets $\vec{S} = \langle S_\alpha : \alpha < \omega_1 \rangle$ of ω_1 . Fix a non-empty set $X \subseteq [\omega_1]^{<\omega_1}$.

Definition 3.1. $\mathbb{C} = \mathbb{C}(\vec{S}, X)$ is the poset consists of bounded closed subsets p of ω_1 such that for every $\alpha < \omega_1$, if $\pi(\alpha) \notin X$ then $p \cap S_\alpha = \emptyset$. For $p, q \in \mathbb{C}$, define $p \leq q$ if p is an end-extension of q.

Note that $\mathbb{C} \subseteq [\omega_1]^{<\omega_1}$.

Lemma 3.2. $|\mathbb{C}| = \omega_1$, hence has the ω_2 -.c.c.

Lemma 3.3. For every $p \in \mathbb{C}$ and $\gamma < \omega_1$, there is $q \leq p$ with $\max(q) > \gamma$.

Proof. Fix $\alpha < \omega_1$ with $\pi(\alpha) \in X$. Take $\delta \in S_\alpha$ with $\max(p), \gamma < \delta$, and set $q = p \cup \{\delta\}$. We have $q \in \mathbb{C}$, $\max(q) > \gamma$, and $q \leq p$.

Let θ be a sufficiently large regular cardinal. The following is immediate from the definition.

Lemma 3.4. Let $M \prec H_{\theta}$ be countable containing all relevant objects. Let $\langle p_n : n < \omega \rangle$ be a descending sequence in $\mathbb C$ such that $p_n \in M$ and for every dense open $D \in M$ in $\mathbb C$, there is $n < \omega$ with $p_n \in D \cap M$. Let $p^* = \bigcup_{n < \omega} p_n \cup \{\sup(M \cap \omega_1)\}$. If $M \cap \omega_1 \notin \bigcup_{\alpha < \omega_1} S_{\alpha}$, or $M \cap \omega_1 \in S_{\alpha}$ for some α with $\pi(\alpha) \in X$, then $p^* \in \mathbb C$ and $p^* \leq p_n$ for every $n < \omega$.

Now the following is immediate from the above lemma.

Lemma 3.5. (1) \mathbb{C} is σ -Bare.

- (2) Let C be (V, \mathbb{C}) -generic.
 - (a) If $\pi(\alpha) \in X$, then S_{α} is stationary in ω_1 in V[C].
 - (b) If $S \subseteq \omega_1 \setminus \bigcup_{\alpha < \omega_1} S_{\alpha}$ is stationary in ω_1 in V, so is in V[C].
 - (c) For $\alpha < \omega_1$, $\pi(\alpha) \in X$ if and only if S_{α} is stationary in ω_1 in V[C].

Next we consider the iteration of $\mathbb{C}(\vec{S}, X)$ of length ω . Fix pairwise disjoint stationary subsets $\langle S_{n,\alpha} : n < \omega, \alpha < \omega_1 \rangle$ of ω_1 such that $\omega_1 \setminus \bigcup_{n < \omega, \alpha < \omega_1} S_{n,\alpha}$ is stationary in ω_1 . For $n < \omega$, let $\vec{S}_n = \langle S_{n,\alpha} : \alpha < \omega_1 \rangle$.

Define a countable support iteration $\langle \mathbb{P}_n, \dot{\mathbb{Q}}_m : n, m < \omega \rangle$ as follows:

- (1) \mathbb{P}_0 is the trivial poset, and $\dot{\mathbb{Q}}_0$ is the \mathbb{P}_0 -name for the poset $\mathbb{C}(\vec{S}_0, \{\emptyset\})$.
- $(2) \mathbb{P}_{n+1} = \mathbb{P}_n * \dot{\mathbb{Q}}_n.$
- (3) $\Vdash_{\mathbb{P}_{n+1}}$ " $\dot{\mathbb{Q}}_{n+1} = \mathbb{C}(\vec{S}_{n+1}, \dot{C}_n)$ ", where \dot{C}_n is a canonical name for a $(V^{\mathbb{P}_n}, \mathbb{Q}_n)$ -generic filter.

Recall that, for a stationary subset $E \subseteq \omega_1$, a poset \mathbb{P} is E-complete if: Let $M \prec H_{\theta}$ be countable such that $M \cap \omega_1 \in E$ and M contains all relevant objects. Let $\langle p_n : n < \omega \rangle$ be a descending sequence in \mathbb{P} such that for every dense open $D \in M$ in \mathbb{P} , there is $n < \omega$ with $p_n \in D \cap M$. Then $\langle p_n : n < \omega \rangle$ has a lower bound.

- **Fact 3.6** (Shelah [3]). (1) If a poset \mathbb{P} is E-complete, then \mathbb{P} is σ -Baire, and for every stationary subset $E' \subseteq E$, \mathbb{P} preserves the stationarity of E'.
 - (2) Every countable support iteration of E-complete forcings is E-complete.

Lemma 3.4 shows that \mathbb{P}_{ω} is $(\omega_1 \setminus \bigcup_{n < \omega, \alpha < \omega_1} S_{n,\alpha})$ -complete, hence \mathbb{P}_{ω} is σ -Baire. Moreover, for each $n < \omega$, \mathbb{P}_{n+1} is $S_{n+1,\alpha}$ -complete for every $\alpha < \omega_1$. In $V^{\mathbb{P}_{n+1}}$, let C_n be a $(V^{\mathbb{P}_n}, \mathbb{Q}_n)$ -generic filter. Then for every $\alpha < \omega_1$, if $\pi(\alpha) \in C_n$ then \mathbb{Q}_{n+1} is $S_{n+1,\alpha}$ -complete, hence preserves the stationarity of $S_{n+1,\alpha}$. Furthermore, if $\pi(\alpha) \in C_n$, then $\mathbb{P}_{\omega}/\mathbb{P}_{n+2}$ is $S_{n+1,\alpha}$ -complete by Lemma 3.4 again. These observations show the following:

Lemma 3.7. Let G be (V, \mathbb{P}_{ω}) -generic. In V[G], for $n < \omega$, let $G_n = G \cap \mathbb{P}_n$ and C_n be $(V[G_n], \mathbb{Q}_n)$ -generic induced by G. Then, for every $n < \omega$ and $\alpha < \omega_1$, $\pi(\alpha) \in C_n \iff S_{n+1,\alpha}$ is stationary in ω_1 in V[G].

Now we construct a model of $\mathsf{GA}_{\omega_1\text{-stat. pres.}} + \neg \mathsf{GA}_{\omega_1\text{-pres.}}$. Suppose V = L. Fix pairwise disjoint stationary subsets $\langle S_{n,\alpha} : n < \omega, \alpha < \omega_1 \rangle$ of ω_1 such that $\omega_1 \setminus \bigcup_{n < \omega, \alpha < \omega_1} S_{n,\alpha}$ is stationary in ω_1 , and fix a surjection $\pi : \omega_1 \to [\omega_1]^{<\omega_1}$. Take a poset \mathbb{P}_{ω} using $\langle S_{n,\alpha} : n < \omega, \alpha < \omega_1 \rangle$. Take a (V, \mathbb{P}_{ω}) -generic G, and work in V[G]. We show that V[G] is a model of $\mathsf{GA}_{\omega_1\text{-stat. pres.}} + \neg \mathsf{GA}_{\omega_1\text{-pres.}}$. Clearly $\mathsf{GA}_{\omega_1\text{-pres.}}$ fails. To see that $\mathsf{GA}_{\omega_1\text{-stat. pres.}}$, take a ground $W \subseteq V[G]$ such that V[G] is an ω_1 -stationary preserving forcing extension of W. Note that $\langle S_{n,\alpha} : n < \omega, \alpha < \omega_1 \rangle, \pi \in W$. For $n < \omega$, let C_n be the $(V[G_n], \mathbb{Q}_n)$ -generic filter induced by G. Then, in V[G], $\pi(\alpha) \in C_n \iff S_{n+1,\alpha}$ is stationary in ω_1 in V[G]. Because $\vec{S}_n \in W$ and V[G] is an ω_1 -stationary preserving forcing extension of W, we have that $\{\pi(\alpha) : S_{n,\alpha} \text{ is stationary in } \omega_1 \text{ in } W\} = C_n \in W$. Hence we have $\langle C_n : n < \omega \rangle \in W$. G can be constructed in W using $\langle C_n : n < \omega \rangle$, thus we have $G \in W$, and W = V[G]. This completes the proof.

Question 3.8. Is $GA_{\omega_1\text{-pres.}} + \neg GA$ consistent?

REFERENCES

- G. Fuchs, J. D. Hamkins, J. Reitz, Set-theoretic geology. Ann. Pure Appl. Logic 166 (2015), no. 4, 464-501.
- [2] J. Reitz, The Ground Axiom. J. of Symbolic Logic 72 (2007), no. 4, 1299–1317.
- [3] S. Shelah, *Proper and improper forcing. Second edition*. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.
- [4] T. Usuba, The downward directed grounds hypothesis and very large cardinals, submitted.
- [5] T. Usuba, The approximation property and the chain condition. RIMS Kokyuroku, No. 1985 (2014), 130–134.

(T. Usuba) FACULTY OF FUNDAMENTAL SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO 3-4-1, SHINJYUKU, TOKYO, 169-8555 JAPAN

E-mail address: usuba@waseda.jp