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1. Introduction

In this note we present a unified approach to growth estimates of generalized eigen
functions and principle of limiting absorption for the Schrédinger operators. The re-
sults are applicable to short-range, long-range, oscillating long-range and exploding
potentials.

As an example we consider the Schrédinger operator L = —A + ¢(z) with von
Neumann-Wigner type potential

csin br

c(z) = + c(z), z€R",

r

where b, ¢ > 0, r = |z| and c3(z) is a real valued short-range potential: cy(z) =
o(r~17%) (0 < § < 1). Obviously, L is selfadjoint and 0.(L) = [0,00). As for the
growth estimates of generalized eigunctions

—Au+c(z)u = Au, A>0, (1)
the following results is known. Assume that the support of solution u is not- compact.
Kato [1]: Let A > ¢?/4, where ¢ = limsupr|c(z)|. Then for any € > 0
T—00

lim /Y3 /s {18vul? + |u[?}dS = co.

Thus, (¢?, 00) C 0.(L) if L has a uique continuation property.
Mochizuki-Uchiyama [2]: Let XA > bc/y for 0 < v < 2. Then

ligrgg)ioglfﬂ/z /Sr{|6,u|2 + [u|*}dS > 0.
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Thus, (%—c, oo) C 0.(L) if L has a unique continuation property.
For solution of the stationary equation
—Au+c(z)u—Cu= f(z), ¢€{¢€C;Re(>0,+Im¢ > 0}, (2)
we define the vector function § = 8(z, () by
0(z,¢) = Vu+ZK(z,Q)u, Z=z/r,
where : 1 Bk(,0)
n— z
K — r )
(.0 = =ikl O + "3 + T
. ' csinbr 4¢
with k(z,{) =( - 77(07, n(¢) = i-
This function is introduced in Mochizuki-Uchiyama [3] to define the radiation con-
dition for (2) and to show, under the above results of [2], the principle of limiting
absorption in

4 min{2,46} "~/
Jager-Rajto [4]: Let |A — b%/4] > bc/2. If solution u of (1) has no compact
support, then
lim inf /S |6(2, \ + i0)[2dS > 0.

Not only growth estimates of generalized eigenfunctions, this is directly applied to
to show the principle of limiting absorption in

(OE_L)U<I’_2+__I’C__ ) (3)

4 " min{2,40}/ " \4 " min{2,43} ")’

Mochizuki [5], [6]: Let I be any interval in this set and 0 < ¢y < 1. We define
Ly =Ti(l,e) ={(=Axie;A € 1,0 < €< e}

For positive function & = £(r) we define the weighted L2-space L = L}(R") with

norm
1512 = [ €01/ (@)Pdo.

Let p = pu(r) = (1 +7)7*° and ¢ = ¢(r) = 67}(1 + r)° The principle then is
derived as follows: Let R(¢) = (L —¢)™?, ¢ € Ty, be the resolvent of L. Then R(()

continuously extended to I'y. as an operator from Li_, to Li, and we have

sup IR fllw < Cllfllp-, € =C(Ts) >0.
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Moreover, u = R(() f satisfies the radiation condition [|6(-, A % ¢0)||» < oo.
This result is dissatisfactory in the sense that the set (3) vanishes if § goes to 0.
One purpose of this talk is to improve (3) to the set independent of § > 0 as

follows
(0 b? bc) U (b2 N be oo)
4 2 4 2’ ’
Moreover, we can treat general second order elliptic operators in exterior domain

which also cover some exploding potential ¢(z) — —oco as r — 0.

Main tasks will be done under a modification of the radiation conditions.

2. Results

Let 2 C R™ (n > 2) be an exterior domain with smooth boundary 92. We consider
in © the boundary value problem

Lu—C(u=f(z) inQ, Bu=0 on Y (4)

n
L=—Agp+c()=— D {0; +ibj(z)}aju(2){0k + ibr(z)} + c(x)
Jik=1
and Bu|sq = 0 is the Dirichlet or Robin boundary condition. Here ¢ € C, 9; = 9/
0z; and 7 = v/—1. The coefficients are all real and sufficiently smooth, A = (a;x(z))
is uniformly positive definite and c¢(z) > —C(1+71%) (@ < 2). Then L determines a
selfadjoint operator in L*(2) with domain

D(L) = {u € Hp(Q) N L*(Q); —Aqspu + cu € L*(Q), Bulsq = 0}.

Let g = u(r) > 0 be a decreasing weight function verifying

(u.1) w(r) = o(r™'), decreasing and /Ooo u(r)dr < oo.
[Assumptions]
(A1) VHajm(2) = m} = O™ 'p) (£=0,1,2),

(oscillating long-range potentials) c¢(z) = co(r) + ¢1(z) + cz(x) where

(A.2), dteo(r) = O(r™Y), 82cy(r) + aco(r) = O(u) for some a > 0,
(4-3)o ai(z) = O(rp), Vei(z) =O0(u) (£=1,2),

(A4), V x b(z), co(z) = O(p).



(exploding potentials) c(z) = co(r) + c1(z) + co(z) where

(A.2). 1< —(r) <CA+7r*) (0<a<?2), cfr) = —o0 (r— 00),
B _ o) 1 Feo(r) _ o1y
P o) <L o<p<n, 2 _op,
cl(x) _ r Vecl(a:) _ _
(A'3)e Co(’l") - O( ﬂ')’ Co(?") - O(/J‘) (2 - 1v2)1

(A'4)€ ) = O(jj,) °

Remark 1. Oscillating long-range potential co() is generalized to cy() if we require
Vdlco(z) = O(i) (£=0,1), where V =V — £8,.

1 sinbr
r2

This condition is satisfied e.g. by co(z) =
2. For general exploding potential ¢(z) = &(z) + co(z) satisfying (4.2)., put

1 7 . .
co(r) = A c(rx)dSi.

Then ¢;(z) = &é(z) — co(r) may verify (A.3). under the additional assumption
Voke(z) = O(r~tu) (£=0,1).
For oscillating long-range potentials we choose an interval I = [\;, Ag] to satisfy
a " a _ + . 1
M>=-+E" or 0<X <X <-—E", E*=limsup|t-rd,c(z)|.
4 4 r—00 2

For exploding potentials [ is any interval in R. Put My ={(=AxigAel,0<
€ < €} For (z,{) € Q x 'y let

¢— 77(();30(;32‘ 61(93)’ ?7(() = 4(45 -

k(z,¢) =

(in exploding case n(¢) = 1). Then the following estimates hold for (z,() € Qp, xI'+
if R; is chosen sufficiently large.

(K.1) 0 < Cy < Rek(z,{) < C(1+7r%), |Imk(z,{)| < C|Im(|,
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,3 Ok(z,Q)
(K.2) —=<Re e C) < +O(,u) for some B € (0,1),
VAP, _ ety VIR Q) _ _
(K'3) k(x, C) - 0( )’ k(.’l;, C) O(I"’)? ¢ 07 17
as r — oo uniformly in { € ;.
(K.4) ow) = ¢ +5 - Az{k(z, 0 + T}~ (1)

as r — 0o uniformly in ¢ € T';.

For solution u € H_ of (4) let

v n—=1 0k(z()
K($7 C) =1 k(xy C) + i + 4k($, C)
and we define the vector function § = 6(z, () by
0(z,¢) = Vou+ 2K (z,{)u where V, = V + ib(z).

Theorem 1 Under the above Assumption, let u € HZ () solves the eigenvalue
problem

—Agpu+cu—Au=0 in, Bu=0 on 00 (5)
with X\ € I. If the support of u is not compact, then it satisfies
1
lim inf |% - AB(z, A +10)[dS > 0.

t—=oo Jg, /k(.'II, )\)

Assume that there exists a positive decreasing function po(r) < u(r) such that

the functions
eolr) = ([~ atodds) " o) = ([ utsyas)

satisfy for r > R;

, / @o(r) . Ork(z,¢)
(12) Ah(r) < /() and PS< mm{o,Re o }

Definition 1 The solution of (4) is said to satisfy the radiation condition if

[ wo ki Ollute, e < oo, [ 2|z 40(z, ) s < o

ly/k(z, )|
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A solution of (4) which also satisfies the radiation condition is called a radiative
solution.

Let ¢ € I'y. Then the resolvent R(¢) = (L — ¢)™! forms a bounded operator
in L%(Q) which depends continuously on (. Moreover, if f € L?m]l \/E|)—1(Q)’ then

u = R(() f is shown to satisfy the above radiation condition.

Theorem 2 Under the above Assumption, let ( € 'y and f € L?Mol VE)-1 Then
there exists C = C(T'y) > 0 such that

sup "R(C)f"mh/;‘q < C”f”(#oh/;?n—l,
¢els

and as an operator from LZuol VR to Liol il (Q), R(C) is extended continuously to

T.i. Moreover, u = R(A£i0)f becomes an (outgoing (+) or incoming (—)) raditative
solution of (4) with ¢ = \.

Remark 3. In case of exploding potentials, similar results is obtained by Yamada
[7] under slightly stringent conditions on the coefficients. In his case the radiation
conditions are, as in the case of [3], defined by

lleel vz < 00 1€ -Olly < 00

3. A quadratic identity

For the sake of simplicity we restrict ourselves to the equation with a;(z) = d;i:
—Ayu+ c(z)u — (u = f(z) in R, (6)

where A, = V), - V,, with V, = V + ib(x).

For solution u of (6) we put
u, =€e’u, f,=¢ef and 6, = Vyu, + iKu,,
where 0 = o(r) is a positive function of r > 0. (6) is rewritten as
—Vy b5+ (K +20')Z - 0, + qrou = fo, (7)
dko =qx +0" + il;—la’ —0”% - 2Ko' with

QK=C(9?)-C+3TK+§-;—EK—K2.
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For a smooth weight function ® = ®(z) > 0, let us consider the real part of
the equation (6) multiplied by ®Z - 6,. The integrating by parts over Bg; = {z €
R™; R < |z| < t} give the following identity:

Y = pp2_1 2} [1 2 1= g2
[ ol ool - il hds +Re [ @[ g0 ~12 0o}

n—1 2 ne g2, VO - 0P
o )I6oF 20150, + 56,6 0) — T

+B(us, 0,) + (ax.o — qx )o@ E)] dz = Re /Q of,(@ T, ®)

1642

(K -

where

B(ug,0,) = iu,(V x b) - (Z x E) + ud(ﬁK E) + qx 0 U (T E)

Lemma 1 Under the above Assumptions we have

|B(us,62)| = O(w)lk(z, () *[us||6s] as 7 — oo.

4. Outline of the proof of Theorem 1
We choose 0 < 6 <'1 — 8 and put

1 3 28, [ko(r, )\)2_6
900('7:,’\) - \/m; QD(Z‘, ’\) - \/’m )
where ko(r,A) = A — n(A)eo(r). Note that

Ork(z,\) ~ Oko(r,\)
Kz N ko(r, \) = 0. ©)

We define the two functionals of solution u of the homogeneous equation (5).

- 1
Fi) = [ eof |7 -0~ 510 }as,

3 1o, 1
For®) = [, {180 = 510a + 5(0* = D)luol? a5

where o0 = o(r) and 7 = 7(r) are positive smooth functions given later.

Lemma 2 The weight functions @y and @ verify

VSDO _ ark-.
o0 o & T 0W), (10)
2_5 rk..

E=—+(1—5)3 Z+0(u). (11)

@ r 2k
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Lemma 3 u be a solution of (5). Then for each r > Ry and X € I we have

Im[/s .’Z-Vbu,%dS] =0.

Lemma 4 Let r > R;. Then for each solution u of (5) we have
/S ooklu,|2dS < /S ol - 8,|2dS,

Proof of Theorem 1, Part 1 In this part we require an additional assumption that
there exists a sequence 73, — 0o such that Fy(rg) > 0.

We choose ® = g, ( = A+140, f = 0 and o = 0 in identity (8). Then noting

Re(K—n_1> _ Ok

o ) 4k’

(10) and Lemmas 1, 4 we have
SR 2 [ oo (3 + ) 617~ 1z - 0) — O(IoP] ds

= [ @[5+ 2 - 200) (0P 13- 6P

~20(){ 3 -0 - 310 }|as > —20u®) o)

fort > R if Ry > Ry is chosen sufficiently large. By assumption there exists r, > Ry
and hence we conclude

Fg(t) > €_Cf'°: #(s)dsFo('I"n) > 0,

which proves Theorem 1 since we have
1
—=|% - 0°dS > 2F(t).
[, 7% 0rds > 2Fu(t)

Proof of Theorem 1, Part 2 We assume Fy(t) < 0in ¢ > Ry and u does not have
compact support.

We choose @ = ¢, ( = A £140 and f = 0 in identity (8) added by the identity

2L = [ Jeto™ = Dlualas = e [, ol etz )



0 =) (37 = S ol = (0" = 3

where 7 = 7(r) > 0, and differentiate both sides by ¢. Then we have
d -2 _lppe,l o n 2} [1 2 _1=.p9 |2
had 922 (o2 — = (16,12 - |%-6,
dt/Sttp{Iw Oo|” = 5105 1" + 5(0" = Tlucl" dS Re/Stso ~6a " — 12 - 07}
Ok, o Na . p 2 (V‘P) { = oy _ L 2}
TR Vo — )" YYe\*"Ys) T § 00
+4k|0°| +20'|% - 0,° + 2 0,(% - 6,) 2] |
+B(uy,6,) + (cr” + ”T’la' - 20’}{) U (7 - 83) — Tu(3 - 05)

Vo 0k 7 ]
2 vr 2 p oL 2
+(o T)( 5 1k )|%| + (oo 2)[%[ ds.

Here, by use of (11) we have

Lo _iz. 0.2 2 Ok 2 (E){ =g _ L 2}
d ,r{wal |Z - 6,]°} + ik 165]" + " 05( - 0,) 2l00|

1-6 ok 5 Ok
> . (a A 2 {_ T _ } A 2,
> (S22 (1= L) bl + {5 + 85— 0w}
o 20'|1%-6,* + Re{ (a” — 20’%’7‘:’3 + 20’1’\//;)%(:75 . %)}
> 20°|% - 0, + iVEuo|? + 20°Tm{Vku, (% - 0, + iVku,)}
/ / " 9
_-‘-’2-|5 0, + ivVEu, |2 — i("— - a’k) Juo|?,

2\0 2k
o —7Relu,(& - B)] + (0" — T)(gg e T e I
> —%I[:Z 0y + iVku,|* - (;—; - %I - %)[u,ﬁ

with C > 0 chosen to satisfy 27_6 -4 8{: -0(p) < g Moreover, since

< 2
Re ]St ©B(ug,0,)dS < /St ©O(w)|0,|“dS
by Lemmas 1 and 4, it follows that

d

1-6 kY. . (6 Ok ,
aFa,f(t)z/;tga[{ - +(1—5)§}|x~9¢,| +{§;+54k 20(ﬂ)}1oa|
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+ {a’].’i‘ -8, + iVkug|? + 20°'Im [\/Eua(:i -0, + z\/Eu,,)]}

o ro”  0.k\?2 ™ Cr T
(D

2\d" 2k 20’ 2
o228 8k 20"\, o
+5 (55— 0 = 555 + 7w as.

1
Now, let m > 1 and 3 <7< 1—4¢ (without loss of generality we can assume

d< 2 in Theorem 1) and choose o(r) and 7(r) as follows:

3
o(r) = : i%,yrl"’, 7(r) = r " logr. (12)
Then as r — oo, o )

0_’2(2~5_68,k_@+_2i’)
2 r 2k T o'
>m2{21-58—7)—o)}r >0 (13)
since 1 — § >+, and
_(T_2 + g + 1,) > _Csﬂl
20’ r 2) ’
where p; = r~3(logr)? € L'(|R;,0)) and Cs > 0 is independent of m and r > Ry.

Moreover, by Lemma, 3

Im/s ga\/Eua(:Z' -0, + ivkus)dS
t

= 270kt /\)(2—5)/21mfs U@ - VugdS = 0. (14)
't

Summarizing these results, we obtain the following: for any m > 1, there exists
Rs > Ry such that

d 1 - 6 a*rk ~ 2 2
S Fart) 2 /S , ¢{ (T +1-0% )p; 0,% — Cspa|u| }ds >0 (15)

in ¢t > Rs. Here we have used Lemma 4 again to show the last inequality.

By assumption that the support of u is not compact, Rs can be chosen to satisfy

/ |uo[2dS > 0.
SRy
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Then as we see from (13), F, (Rs) goes to co as m — oo. We fix a large m satisfying
F,.(R5) > 0 to conclude F,.(t) >0 for t > Rs.

Finally, we note the identity

Fyr(t) = €282 ko (r, ,\)<2—5)/2{F0(t) +o'Re /S o(F - Vu)udS

1 n—1 o.k

2 ’ 19T 2

- = dS}
+/S,('DO(U 27'+c7 5 +o 4k)/s(t)gol|u|

In this equation we use

. 1d \
Re/St o(Z - Vu)udS — 2d Js, ¢1|ul“dS
_ 1 n—1 9 1 9
=5 . {on+ T lutas < [ 06 )paluptas,

and note that Fy(t) < 0 near infinity by assumption. Then since

0_12 _ 17_ +0_,n_ 1 +0_16'rk

’ -1
2 2% aE TooeT)

becomes negative when ¢ goes large, it follows that

d 2
E/ﬂ(pdul dS >0
for t large enough. This and Lemma 4 establish the conclusion of the Theorem. O

Remark 4. In case of general oscillating potential cy(z) in Remark 1, we have to
divide the proof of Part 2 in two steps. We choose

- @) - N
T Ty T k(@)

with ki (z,A) = A — n(A)ei(x), and define

- 1
Fit) = [, va{1z- 02— 516 }as,

- 1 1
Fur® = [ {12 01 = 510, + 5(0* = T)lusf? 5.

Step 1 Fy(t) < 0int > Ry and u does not have compact support, on the other
hand, there exists a sequence r, — co such that F(r,) > 0.



Step 2 Fi(t) <0in T > Ry and u does not have compact support.
In the proof of Siep I the inequality
[ erle-0Pds < (1+067Y) [ enllol — |z 617}ds
i t

which follows from the assumtion Fy(t) < 0 plays an important role. On the other
hand, in the proof of Step 2 equation (14) is not expected to hold. Instead, we have

20’ /S (p{Im [+Vk(Z - AZ)uod - AB,1) + %li~A00,1l2}dS
t

> —C/S 0o'r2|u,|%dS = —Cm/s or~2ul%dS
't 't

since pvk = r27IXC=9/2{1 + O(r~1)}. Thus, this term can be absorbed in the term
corresponding to (13).

5. Outline of the proof of Theorem 2

We choose the weight function p = u(r) to satisfy (u.1) and also the following:
There exists uo(r) verifying also (u.1) such that

(p.2) p(r) < po(r)
and if we put
o) = ([ utrrar) " and o) = ([wolrlar) ()
then it satisfies for r > Ry
(1-3) wo(r) < ¢(r) and % - Zg—gg > max{,(), —Reir:}.

Remark 5. If = 77172 (0 < § < 1) for 7 > Ry, then ¢ = 0r® and ¢’ = §*r~'+7.
In this case (u.3) is verified from (K.2) if we choose pp = 717 with 0 < § <
min{é, 1 — B}.
If u=r"tQogr)™'7% (0 < § < 1), then ¢ = §(logr)® and ¢’ = §*r~'(logr)~*°.
/

Thus, we have % = o(r™') and (p.3) is satisfied by po(r) = u(r).

Lemma 5 We have for any R > 0,

gg%; = Ho(r)po(r) & L*([R, 00)).
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Proof By definition ¢o(r) — 0o as r — co. So, the assertion holds since we have

" gh(s) oo(r)
ol b

} — 00 as T — oo. [
Lemma 6 Let u be a radiative solution of (6).
(i) IfIm( # 0, then we have u € L*(2) and
|Tm|||ul] < [I£]]-

(i3) There exists C > 0 such that for any R > Ry and ( € Ty,

, polVAllulds < Co(RY™ {13 Ol + s + 11 o}

Proof By the Green formula
Im/ fudzx = —Im/ (z- Vbu)ﬁdS—ImC/ Ju|®dz.
B, Sr Br
This is rewritten as
Im(/ |u|*dx — / ImK|u[*dS = —Im[/ Z - GudS +/ fﬂdx].
B, Sr Sr B
Note here that Im{ and —ImK has the same sign when r is large, say for r > R. O

Lemma 7 Let u be a radiative solution of (6). Then there ezists C = C(I'z) > 0
such that

[ eVErerds < ¢ {Iul,ym o, + 1 1Eviyr.m )

R+1
Proof In the quadratic identity (8) with ¢ = 0 we choose

_ X¢o(r)

where x = x(r) is smooth and satisfy x(r) =0 (r < R) and =1 ((r > R+1). Then

[~ [ |oia-or e }as+re [ o[208 - -0

—z\/_+8k}9|2 % _ gedrk X 20 — 0P
‘Po 2k



“Rev 03 B) + u(VK ) + qrulz - )|de = Re [ _ 2h(@ ).

Since

oo - oo Ork o <f§_ &k){_ 2 1 2}
T{|0| |Z 0|}+R;e4k10|+ % Re2k |z - 6] 2|0|

1 ¢ 6,k) 2 _ (.92 @0 (g2
=(--% i —|z- X0 1
(=2 +Regy )60 ~ 12 0P} + 5 ool (18)

it follows that

- 1 2}
o{lz-0r - gopfas > Re [, o|{2>~ cuflor
/s, 26 ~ 18] dS_RefBM 22— Cpflo

~Cupl0l? ~ ColVEIIul|z - 6] — 1118 do

1
R GO R g e
BRr,r+1 ! 2

Note the identity ¢f, = popa. Then the Schwarz inequality and letting ¢ — oo show
the desired assertion. (]

We need one more lemma, which is not obvious for exploding potentials.

Lemma 8 For ¢ € Ty and f € L, ;,,-1(R") let u = R(¢)f. Then u satisfies the
radiation condition.

Now, as is given in Eidus [8], the Theorem 2 is proved as follows.

Let {¢;, fi} Cc T+ x Lil_l converges to {{o, fo} as j = oo. Since the other case is
easier, we assume that (o = A +0, X € I. Let u; = R((;) fx-

(i) Each u; satisfies the radiation conditions: by Lemma 8.

(i) {ux} is pre-compact in Liol A if it is bounded in the same space, and every
accumulation ug € Liol Al satisfies the radiation conditions: by Rellich compactness
criterion, Lemmas 6 (i1) and 7.

(iii) The boundedness {u;} is proved by contradiction.

In fact, assume that there exists a subsequence, which we also write {u,}, such
that [|u;l,, /5 — 00 as j — oco. Put v; = u;/||u;l,,. Then as is explained above,
{¢;, v} has a convergent subsequence, and if we denote the limit by {\g & 0, v},
then it satisfies the eigenvalue problem (5) with A = A and also

o]l sojv) = 15 18rv0 + Kol gy yig-1 < 00, (19)
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where K, = K(z, Ao £ ¢0). The second inequality implies
lim lllf/ \/’E_lla,"l}() + Ki’l)()'zds =0
T—00 S(T)

since @j(r) ¢ L*([R, 00)) for any R > 0 by Lemma 5. Comparing this with Theorem
1, we see that vy has a compact support in z € R™. Hence, vy = 0 by the unique
continuation property for solutions to (5). But this contradicts to the first equation
of (19).

(iv) If we apply Theorem 1 once more, then {u;} itself is shown to converge. O
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