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1 Introduction
Q : a bounded domain of RY (N > 1).

Ay = div(Vu), Vu=(0u/0z1,0u/dz,,...,0u/dzyN).
1.1 Convex type inequality

Lemma 1 (The classical convex type Kato’s inequality ) Let u € L} (Q) s.t. Au €

LL.(Q), then Alu| and Au™ are Radon measures and we have
Alu| > sgn(u)Au in D'(Q), (1)
Aut > xpu>0Au in D'(2), (2)
where sgn(s) =1 if s >0, —1 if s <0 and zero at s = 0 u™ = max[u, 0].
Remark 1.1 1. If we assume in addition that u is continuous in 2, then we have
Alu| = sgn(u)Au in D'([u # 0]). (3)

The inequality (1) ; Alu|] > sgn(u)Au  in D'(Q)
is a consequence of the fact that |u| takes its minimum on the set [u = 0].

2. Similar inequalities hold

when Awu is replaced by elliptic operator M(z,8;):
N
M(x, aw)u = Z 6z,- (a’j,k(z)aﬁvku) )
k=1
where ajk(z) € CY, and for some C >0

3 ajk(@)€ie > ClEP,  for any € € RY
j-k=1

1.2 Concave type inequality

Definition 1 (Truncation) : Ty (s) : Given k > 0, we denote by Ty, :-R — R a truncation
Jfunction

kK ifs>k,
Ti(s):=<s if -k<s<k, 4)
—k if s<-—k.
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Since Tk|r, is concave, we have the following lemma:

Lemma 2 Assume that u € L] (Q), Au € LL (Q) and u > 0 a.e. in Q. Then, for
any k > 0 we have

A(Ty(u)) < X[QSuSk]Au in D'(9), - (5

where xs(x) is a characteristic function of S C R.

Moreover, whenAu can be replaced by Apu under additional assumptions on dlstn-
butional derivatives of u € L ().
Here, p-Laplace operator is defined by

Apu = div (|VulP~2Vu),

Example 1 (Classical)
Let 1 < p < c0. For u € K,(2) we have

1. (Convez type):

Aply| 2 sgn(u)Apu in D'(Q), (6)
A,,u"' > X[uzolAp’u n D/(Q) (7)
2. (Concave type): If u > 0, the we have

 ApTi(u) < X[o<u<kDpt in D' (). (8)

Here K,(Q) is given by
Kp(Q) = {u € Li,o(Q) : Oju, 82 u € Lloc(Q)
|VulP~2|02 ul € Lj,o(Q) for j,k=1,2,..,N},

where p* = max[(p — 1), 1].

2 Main Aim
Consider a class of second order elliptic operators A including A, and estabhsh
1mproved Kato’s inequalities when Au is a Radon measure.
Au = div A(z, Vu), 9)

where A : Q x RV — RV satisfies the following assumptions for some positive numbers

ci,co and c3:
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1. the function x — A(z,¢) is bounded measurable for ¥¢ € RV,

2. the function ¢ — A(zx, £) is continuous for a.e. z € Q,

3.
|A(z,€) — Az, n)| < c2(l€] + )P~ — 7], Y&meRY, ae €9,
4.
(A(z, &) — A(z,n)) - (€ —n) > cs(€] + Inl)P21E = nf?, "¢, n € RN, ae. z€Q,
5.

Az, M) = MNP 2A(x,€), forall A\ e RA#0.
Remark 2.1 1. It follows from the assumption J that we have

Az, &) - € > c1lélP for allé € RY and a.e. zeQ.

2. For some C >0
N

>

Jk=1

%?(x,g)‘ <CleP™% Yee RY\{0}, ae z€Q, (10
k .

Then A saiisﬁes the assumptions 3 and 4.

Example 2 1. In the case of Ap; A= A(€) = |€[P7%¢, and A satisfies the estimate
(10).
2. Assume that ajr € L°(Q), ajr = ax; for j,k =1,2,...,N and {a;i} satisfies

the uniformly elliptic estimate:

N
> ajntie > CiE> forany &€ RV

Ji:k=1
N
0 ou :
— -~ . p—2 7"
Bu ,-; 52, (a,,k(x)|Vu| 3zk) . (11)

Ifpis sufficiently close to 2, then the operator B satisfies the assumptions 1 ~ 5
with A;(z,€) = 341y (a4 (@) €~ 6k) - »

Definition 2 ( M(Q): the space of Radon measure):

1 € M() <=> For every open set w CC 2, 3C, > 0 s.t. | [ pdu| < Cu|lgl|ze, for
Yo € C§°(w).

We do not assume the finiteness of the total measure |p|() < oo but assume |p|(w) < -

oo for each w CC .
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3 Decomposition of Radon measures

For any p € M(f2), u can be uniquely decomposed as a sum of two Radon measures
on € (see e.g. [7, 10]) : p = pg+ pe, where

pda(A) =0 . for any Borel set A C 2 s.t Cp(4,9Q) =0,

le|(2\ F) =0 for some Borel set F C Qs.t Cp(F,Q) = 0.
Total measure: |u| = ut + p~.

" Definition 3 (A p-capacity relative to Q)
For each compact set K C €2, -

Cp(K,Q) = inf{/ IVoIP : ¢ € C(Q), ¢ > 1 in some nbd of K}.
Q ’ )

Note that (ua)t = (ut)q and (ue)* = (uh). by the definition.

4 Definition of admissible class

Definition 4 (Admissible class in W'lt’f*(ﬂ)_)

Let p* = max(1,p — 1).

A function u € W'lt’f*(Q) 18 said to be admissible iff Au € M () and there exists a
sequence {un}32, C WioP(2) N L®(9) s.t:

1 up—uae inQ, up — u in Wltcp*(Q) as n — 00.
2. Aup € L}, () (n=1,2,---) and

sup |Aup|(w) = sup/ |Aup| < 0o for every w CC Q. (12)
n n w .

5 Some results on the admissibility

1. Ifu € VVI})’f* () is admissible => u* = max[u,0], u~ = max[—u,0], Tk(u)
are admissible.
2. Ty(u) € WEP(Q) for Yk > 0. Moreover, given w CC o’ CC Q, 3C > 0 indepen-
dent on u s.t _ :
S VT <k ([, 1Au/+C [, [ul),  ip=2,
L IVTi(w)P < Ck ([, |Apul + [, [VuP~t) if p # 2,
3. Whenp=2and A=A, . ’
u € VVI})’1 (Q), Au € M(Q) = u is admissible. -

C

4. ue Wol’p(Q), Au € M(Q2) = u is admissible.

5
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6 Counter-example due to J.Serrin

Let Q be a unit ball By = {z € R : |z| < 1}, and set

aij =i+ (a— 1)%, (r = |z),
N
0 ou

Gk=1"17

Then we have a pathological weak solution of the form

a

. ' 2 _
U(x) = 1779, where, a=g+\/(%_l) +N 1.

fa>1= N-1<a<N.

(13)

(14)

(15)

Proposition 1 Assume that a > 1. Then U c WEY(By) and BU = 0 in D'(B;). But

loc
U is not admissible, and B(U*) is not a Radon measure.

7 Main results and Applications

In the rest of this note, we assume for the sake of simplicity

A=A,

7.1 Improved Concave type inequality

Theorem 1 [15, 16]
Assume that u € W22 () and u is addmissible.

i

Ifu > 0 a.e. in Q, then Ap(Tk(u)) ts a Radon measure for every k > 0. Moreover,

we have
Ap(Ti(w)) < (Apu)™.

7.2 Application to Strong Maximum Principle

(16)

Theorem 2 [15] Let Q be a bounded domain of RY. Assume thatu € W'l})’f* Q),u>0

a.e. and u is admissible. Then

1. There exists a quasicontinuous function (w.r.t. Cp ) @ : Q@ — R such that

u=14u a.e in S
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2. Assume that
‘ —Apu >0inQ  in the sense of measures. (17)

If i =0 on some K C Q with Cy(K,§) > 0, then u =0 a.e. in Q.

Remark 7.1 —Apu can be replaced by —Apu + aud, where 0 < a € L}, (Q) and g >
p—1.

Example 3 U = z;/|z|* is not admissible in Q = By. Moreover U = 0 on {x; =
0} N By which has positive p-capacity.

7.3 A quick sketch of the proof of Theorem 2

Since Apu<0inQ in the measure sense,

4
(Apu)f =0

)
Since Ti(u) € WEP(Q), Ap(Tk(w)) € M(Q) for any k > 0,
Ap(Ti(w)) < (Apuw)f =0 in D'(Q), Vk>0.

Y

Now we can assume that u € L®(Q)

. 4
As a test function, using ¢§/(u + 6)P~! with @9 = 1 on w,

P
[|vs(3+1) <c [ (ch+19P)
w é Q
¢
Let E C Q with Cp(E, ) >0st. u=00n ECw CC .

By the Poincare’s inequality
. - p
/)10g(%+1)} SC/¢5+|V¢0|” v > 0.
w

4
We conclude that v = 0 a.e. in Q. ad
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7.4 Convex type Kato’s inequality

Theorem 3 [15, 16] Let ® be a C' convez function s.t 0 < & < co. Assume u €
Wli’f "(Q) and u is addmissible. Then we have

A8 (u) > ' (WP (Apw)a — [|¥'|| o) (Bpu);  in D'(Q). (18)

Corollary 1 Assume the same assumptions in Theorem 3.
Then it holds that .

Ap(u+) 2 X[uZO](APu)d = (Apu)e in D'(92), (19)

Aplu| > sgn(uw)(Apu)g — |Apule in D'(9), (20)
where sgn(t) = 1 for t > 0, sgn(t) = —1 for t <0, and sgn(0) = 0.
Example 4 Let u = |z|* fora=(p— N)/(p—1) and 0 € Q.

1. u satisfies Apu = alaP~2cNé, § : a Dirac mass, cy : the surface area of the unit
ball By. If p> 2 —1/N, then |Vu| € L} (Q) and u is addimible.

loc
Recall  Ap(ut) > Xpuso)(Apu)a — (Apu); inD'(Q). (19)
2.If2-1/N < p < N, then a < 0, Cp({0},Q) = 0 (Ap(ut) is concentrated)
(Ap(u+))c = (Apu)c = _(Apu)c_ = 0£|O£|p_2cN5 <0.

Ifp> N, then a > 0, Cp({0},92) > 0 (Ap(u') is diffuse) (Ap(ut))e = (Apu)e =
(Apu); =0 and Ap(ut) = X[uZO](ApU)d? alalP~2end > 0.

Consequently

Ap(ut) = Xuso)(Bpu)d — (Apu);  inD'().

7.5 Inverse maximum principle

Theorem 4 [15, 16] (Inverse maximum principle ) Assume u € Wlf;f* Q),u>0

and u is admissible. Then we have
(—Apu)e >0  on Q. (21)
Corollary 2 Assume u € WP *(Q) and u is admissible. Then we have

loc

(Bpwhe = (-A0)F  on (22)
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7.6 A quick sketch of the proof of Theorem 4:
Recall: .

Ti(uw) € WEP(Q), Ap(Ti(u)) € M(Q) for Vk > 0.

loc
Moreover we have

AT(w) < (Bt i DI(9).
Set Apu = p € M(Q).
For some compact set K, s.t. [uc|(2\ K) =0, Cp(K, Q) = 0.
Then  ApTip(u) <pt  in D'(Q2\ K).

Ask—o00, p=A0pu<xogpt inD'(Q).

Then el = ug <0 in D'(Q).
\

ke <0 in D'(9). (23)

7.7  Application of IMP
Theorem 5 [17]Suppose that u is admissible. Then supput C {z : u = +oo} for
p = Apu.

Remark 7.2 From this fact,
Cifue VVlz’f*(Q) is an admissible solution of of —Apu = p € M(RQ),
then u is also a (local) renormalized solution of —Apu = p.

7.8 A quick sketch of proof of Theorem 5

- Suppose that u is admissible.

I
Apu = Ap(Tyu) + Ap(u — k)t — Ap(u+ k)~
—App = ﬂd+ﬂ:—ﬂc—
Y
Aplu—k)t, Ap(ut+ k)" <0  (IMP)



4
Note that Ap(Tju) is diffuse and k is an arbitrary number.
4
supp uE C {z: u = oo}
O
8 Existence of admissible solution
Theorem 6 [17]Assumethat p € M(Q) and |p|(Q) < co. Then
—Apu=yp, inQ, (24)
u =0, on .

has an admissible solution in Wol’p*(Q).

The proof relies on the following lemma.

Lemma 3 Let {un} satisfy sup,, |un|(Q) < 0o and {un} be admissible. Assume that

{_Apu'n = Hn, n 97 (25)

un =0, on .

holds forn=1,2,....
Then , up to a subsequence, up, — u € Wol’p *(Q) s.t. u 1s admissible and satisfy

(24) for 3p.

9 Problems

1. (Nonlinear version of Good measure problem)
Let g(s) be continuous, nonnegative and nondecreasing on [0, 00). When does the
next equation have an admissible solution? —Ayu+ g(u) = p, ulagn =0

2. (Nonlinear version of boundary Kato’s inequality)
If u, Apu € L}, then Apu is a finite measure?

Ex: Even if p = 2, there is a u € H(Q2), s.t. Au=0, but [, |Aut| =00

10
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