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Differentiable rings, analytic rings, Nash rings and their
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1 Introduction

This is a survey paper which was presented by the author in the RIMS at Kyoto University. This paper
contains several recent results which obtained by the author. Let us mention on the motivations of our
study related to the theory of manifolds and that of C*-rings.

Let M, N be C®-manifolds and C®(M) (resp. C®(N)) a set of C*-functions on M(resp. N).
€ = C*(M) is a kind of “C*®-ring” with the following property forany ! € N and f € C*(R/), there
exists an operation @ : €' — € defined as (®f(hy, ..., kn))(x) := f(h(x),...,ha(x)) for x € M for
hy,...,h € € (Definition 2.1. [5]). For an analytic mamfold (resp. a Nash mamfold) M, we can define
an analytlc—rmg C¥(M) (resp. a Nash-ring N (M)).

For a C®-map f : M — N of C®-manifolds, there exists a pullback f* : C*(N) — C*(M) defined
as f*(c) := co f € C*°(M) for c € C*(N).

We can regard a C*-tangent vector field V : M — f*(TN) over f on M as an R-derivation
V : C®(N) = C®(M) along f*,i.e. V is an R-linear map with the following property

V(mh2) = f*(m)V (k) + f*(h2)V(hy) for all by, by € C*(N).

Note that in this case, V turns to be a C*-derivation, i.e. V satisfies that:

1
V(go (..., ) = E(* O () f () ) VIR,

i=1
forany! € N, hy,..., b € C°(N),and g € C*(R’).

Therefore, any R-derivation V : C*(N) — C®(M) along f* is a C®-derivation.

Let € be a C*-ring and M be a €-module with a €-homomorphism ¢ : € — 9. When (under which
condition of €, MM, ¢) does an R-derivation V : € — 9t over ¢ become a C*-derivation? In [9] for a
C®-ring € and a C®-ring MM = D regarded as a €-module, any R-derivation V is a C*-derivation if © is
k-jet determined. In [4] for a Nash-function f : R" — R, V(®¢(cy,-..,cn)) — Lieq <I>§aL (c1,- - ren)V(ci)

become a nilpotent element of 9t for any c;,...,cn € €.

In Definition 4.16. [5], for a category C*Rings of C*-rings and a category LC®RS of local C*-ringed
spaces, there exists a functor Spec : C*Rings®®? — LC®RS. A C®-manifold M is regarded as a “C*-
scheme” Spec(C*(M)). Therefore, we can regard a C*-manifold M as a “space associated with C*®(M)”
and a tangent vector field over M as a “derivation C*(M) — C®(M)”. For analytic-rings, Nash-rings,
we try to regard analytic-manifolds and Nash-manifolds as “space associated with analytic-rings and
Nash-rings”. To define and study of singular point and vector fields on K-schemes for K = C*,C¥, N'¢,
we study properties of derivations V : € — € of K-rings.

In §2, we recall the notions of C*-functions, analyhc—functlons, and Nash-functions. These functions
are closed under sums, products, and partial derivations 2 ¥

In §3, we recall the notions of C*-rings, R-derivations and C*-derivations. Then we define analytic-
rings, Nash-rings and their derivations. We can define ideals of C®-rings (resp. analytic-rings, Nash-
rings) and their quotient C®-rings (resp. analytic-rings, Nash-rings).



In §4, we show the properties for C*-rings from the properties of C*-functions and its germs. First,
we have a localization of C*°(M) at p as a set C;°(M) of germs of C*-functions at p. Second, we compare
the difference of IR-derivations and C*®-derivations of C*-rings.

In 85, we show the properties for analytic-rings from the properties of analytic-functions and its
germs. we have that localizations of C“’(M) at p is not isomorphic to Cy(M).

In §6, we show the properties for Nash-rings. From [4], we introduce the properties of Nash-
derivations, i.e. R-derivations which satisfies Leibniz rule for Nash-functions.

2 The kinds of functions

2.1 Definition of functions
Fora = (ay,...,an)(a; € {0} UN), define |a| = Y7 ; a; and a! := [T, a;!.
Definition1 1. A “C*-function(A smooth function)” f : R" — R is a function which satisfies:

or any positive integer r > 0 and & € ({0} UIN)" with |a| < r, there exists the r-th partial derivative
Y p g [4

Hf L putetang o hich i . "

a—ix,, = a_r—[x,h-ax:" : R" — R which is continuous on R,

2. A “CY-function(An analytic function)” f : R" — R is a C®-function which satisfies:
for any p € R", there exists an open neighborhood U such that ¥, ;llg(p)(x —p)* : U — R formally
converges to f on U.

3. Forr=0,1,2,--- ,00,w, a “N"-function(a C" Nash function)” f : R” — R is a C"-function which
satisfies:
there exists a non-zero real polynomial P(x,y) € Rx,y] such that P(x, f(x)) = 0 on R" ([8]). We call
C“%-Nash functions as Nash-functions.

There exists a C®-function (resp. a C%-function) which is not the C%-function (resp. the N“-
function) from following examples.

et (x>0)
0 (x<0)
x‘—ze‘% (x>0)
0 (x<0)

Example1 1. Let 5 be a function defined as n(x) = { . 1 is the C®-function but not the

analytic function. The derivation of n is #'(x) = { and continuous. Then, the r-th

derivation 77 is

neer - JP(L)ex (x>0) ) N (r=1)
1(x) = {0 (x<0) for a real polynomial P,(x) = {_xzpr,_l %)+ 2Pa(x) (r>2)

17") is continuous for any r > 0. Therefore, 7 is a C®-function. For any r-th derivation (), 7") (0) = 0.
Therefore, Y72, ;ll-gr](’) (0)x" is not equal to 1 on any neighborhood at 0.
2. A real-polynomial p(x1,...,%xn) : R" — R is a Nash function.
p(x) is analytic and for a non-zero real-polynomial P(x,y) := y — p(x), P(x, f(x)) = 0.
3. Afunction f(x) := v1+ x2 : R — R is not a real-polynomial but a Nash function.
f(x) is analytic and for a non-zero real-polynomial P(x,y) := y* — (14 x?), P(x, f(x)) = 0.

4. A function f(x) := e* : R — R is analytic but not a Nash function.
f(x) is analytic and there does not exists a non-zero real polynomial P(x,y) such that P(x, f(x)) = 0.

2.2 Nash manifolds

From Introduction in [8], a subset of R" is called semialgebraic subset if it is a finite union of sets of the

form
{x eR"|fi(x) =0,8j(x) >0Vi=1,...,kj=1,...,1}

where f1,..., fr. 81, ...,& are real polynomial functions on R".
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Definition 2 ([8]) Let M be a topological space.

1. A C®-Nash manifold (A N“-manifold) is a topological space M if there exists an open finite cover
{Ux}« of M, a finite family {V,}« of open semialgebraic sets of R and homeomorphisms ¢y : Uy — Vi
such that ¢ o ¢ Iq:,,(umug) : ¢u(Ux N Up) — (U N Ug) is a C" Nash diffeomorphism for any a,

2. A C¥ Nash function is a C¥~function f : M — R such that f o ¢7' : V, — R is a C¥-Nash function
for any a.

Definition 3 1. Fora C®-manifold (resp. a C*-manifold, a N'’-manifold) M, define C* (M) (resp. C¥ (M),
N¥(M)) is a set of C®~functions (resp. C¥~functions , C“-Nash functions) on M.

2. C.;“(M) (resp. Cy'(M), N (M)) is a set of germs of C®-functions (resp. C“~-functions, C*-Nash func-
tions) at p on M.

From the definition of functions, we have a following property.
C®(M) > C¥(M) D N“(M), C>(M) D C(M) D N (M).
We write K for C*, C%, N, and K¢ for C¥, N'¥.

3 Definitions of rings and their derivations

From Proposition 1.6.2. and 1.6.3. in [1], analytic functions on R" are closed under sums, products, and
partial derivations. Moreover, analytic functions are closed under compositions from Proposition 1.6.7
in [1].

From Proposition 3.1. in [7], Nash functions on IR” are closed under sums, products, and partial
derivations.

For C*®-functions (resp. C“-functions, and Nash-functions), we can define operations of sum, prod-
uct, and compositions of functions as a following proposition.

Proposition 1 C®(R") (resp. C¥(R"), N (IR")) is closed under sums, products, and compositions, i.e.
f+gf-gho(c,....cm) € K(RY)
forany f,g,c1,...,cm € K(R") and h € K(R™). Therefore, C°(R") (resp. C¥(R"), N¥(R")) is an R-
algebra.
3.1 The definition of rings

From Proposition 1, C*-functions (resp. analytic-functions, Nash-functions) on R" are closed under
the composition (c1,...,cm) = fo(c1,...,cm) by a C*-function (resp. an analytic-function, a Nash-
function) f on R™. A C®-ring is defined in Definition 2.1. [5] by C®-functions. We define analytic-rings
and Nash-rings as same as C*-rings with the following definition.

Definition 4 1. A C*-ring (differentiable ring) ( resp. C“-ring (analytic-ring), N“-ring (Nash-ring)

) is a set € which satisfies that: for any 1 € {0} UN and any C®-map (resp. C“-map, N“-map) f : R! —
R (if1 = 0, f is a constant number of R), there exists an operation <I>}3 : ¢! — € such that

(a) for any k € {0} UN and any C®-maps (resp. C¥-maps, N“-maps) g : R* — Rand f; : R - R
(i =1, ’k),

<I>§(<I>}"l(c1,...,cl),...,<1>ﬁ(c1,...,c;)) = q’?o(f],..., (L0 foralley, -, €€,

(b) for all projections m;(xq,...,x1) =x;(i=1,--- 1),

<I>',Er._(c1,...,c,) =ciforallcy,--- ,c €C.

24



25

2. A morphism between K-rings €, D isa map ¢ : € — D such that
D7 (p(c1),- -, $cn)) = @0 ®F (cr, ..., Cn) forall f € K(R),cy,...,cn € €.
We give examples of rings and homomorphisms.
Example2 1. Let R be a set of real numbers. R has a structure of K-ring by the operation Q}‘ :R! = R for
feKR)as
®¥(r1,...,r,) = f(r1,...,m) forallry,...,n € R.
2. Let M be a K-manifold. K(M) has a structure of K-ring by the operation <I>}C(M) : K(M)F — K(M) for
feKm)as
<I>}C(M)(c1,...,c,) :=fol(cy,...,c)foralcy,...,cq € K(M).
3. Let f : M — N be a K-mapping of K-manifolds. Its pullback f* : K(N) — K(M) defined as
f*(c) :==co f(c € K(N)) is a morphism of K-rings.

Definition 5 Let € be a K-ring. An R-point of € is defined as a surjective homomorphism p : € — R of
K-rings.

Example 3 Let M be a K-manifold and p a point of M. K(M) has an R-point e, : K(M) — R by the operation
ep(f) = f(p) forany f € K(M).

3.2 The R-algebra structure of X-rings

From Proposition 1, for any K-manifold M, the K-ring K(M) is the R-algebra. As same as K(M), any
K-ring € has the natural R-algebra structure. From the operations ® of K-rings in Definition 4, define
operations of the R-algebra as

o the addition on €by c + ¢’ := D y)xty (6,

e the multiplication on €by ¢ - ¢’ := @, ), ,x,(c, ¢'), and

o the scalar multiplication by A € Rby Ac := ®,,,5,(c).
We see that elements 0 and 1 in € are given by

o O¢ := B 40(?) and

o 1¢ := &p,,1(D).

An ideal of the C®-ring is defined as an ideal of the commutative R-algebra ([5]). Then, an ideal of the
analytic-ring (resp. Nash-ring) is defined as an ideal of the commutative R-algebra as same as C*-rings.

We have Hadamard’s Lemma for C*-functions, C“-functions, and Nash-functions as a following
corollary.

Corollary 1 For any K-functions f € K(R"), there exists n-K-functions gy, ..., gn € K(R?") such that

Flx+y) - f(x) = };yigxx,y)foranx = (X1 Tn)Y = (1Y) € RY.

Therefore, we define a quotent K-ring by an ideal of the K-ring as same as Definition 2.7. in [5]. Let
¢€be a K-ring and I C € be an ideal as an R-module. From Corollary 1, for any f € X(R"), there exists
81,-+-,8n € K(R?") such that

n
cbfc(c] +i1,...,Cn +in) —<I>§?(c1,...,c,,) = Ziijég(cl,...,c,,,il,...,i,,)
=

foranycy,...,cp € €and iy,...,in € I. We can define a quotient K-ring €/1I as

<I>?/I(01+I,...,cn+1) = d>f(cl,...,cn)+1foranyf€ K®R"Y, ey +1,...,cn+1€C/L
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3.3 Localizations and local rings
Definition 6 (Joyce [5] for C*-rings) Let € be a K-ring and p an R-point of €.
1. We call a K-ring €, with following properties a localization of € at p.
(a) There exists a unique morphism 1ty : € — €, such that
Ty (s) is invertible in €, for all s € p~}(R\{0}). (1)
(b) If there exists a morphism ¢ : € — D which satisfies (1), there exists a unique morphism ¢y : €5 — D
such that ¢y o 7ty = ¢.
2. A K-ring € is called a K-local ring if € has a unique maximal ideal mg which satisfies €/me = R.

Any localization €, of K-ring € at any R-point p is a K-local ring with a maximal ideal m, C €.

For a K-manifold M and its point p with an R-point e, defined as ey(f) = f(p), there exists a
localization K(M), := K(M)e, of K(M) at e, with a homomorphism 7, : K(M) — K(M), defined as
ntp(f) = f/1. The set K)(M) of germs of K-functions on M at p has a homomorphism ¢, : K(M) —
Kp(M) defined as ¢ (f) := [f, M]p.

For any f € K(M) with f(p) # 0, ¢p(f) := [f, M], has an invertible element [%,f‘l(R\{O})]p.
Then, there exists a unique homomorphism ¢, : K(M), — Kp(M) such that ¢, o 7, = ¢p.

3.4 IR-derivations and K-derivations

For [3], R-derivations on a C*-ring are defined as R-derivations of the R-algebra. C*-derivations on a
C*®-ring are defined in [5]. We define C%-derivations (analytic-derivations) and N'-derivations (Nash-
derivations) as same as C*-derivations with the following definition.

Definition 7 (Joyce [5] for C*-rings) Suppose € is a K-ring, and I a €-module.
1. AnR-derivation is an R-linear map d : € — O with

d{c162) = cad(c1) + c1d(c2) for any cq,¢; € €.

2. A K-derivation is an R-linear map d : € — N with

n
d(®s(cy, ..., cn)) = 2‘I’gﬁ(01/---10n) -d(c;) foranyn € N, f € K(R"),cy,...,cn € €.

3. Letd :.€ — 90 be a K-derivation (K = R,K). We call a pair (I, d) a K-cotangent module for € if
for any K-derivation d’ : € — 9 there exists a unique morphism ¢ : M — M’ of €-modules such that
¢ od = d'. Then we write (Q¢ x,de x) for the K-cotangent module for €.

We have that any K-derivation is an R-derivation since there exists a function f(x, x2) = x1x, with

3

ai = x1, B'aé = xp which is a product of K-rings.
For a Nash-function f on an open set R”, a partial derivation of f is also the Nash-function ([7]).
Therefore, we have a following example of derivations as partial derivations.

- Example 4 Let U be an open set of R”. C*(U) (resp. C¥(U), N¥(U)) is closed under partial derivations

'] 9 4
xl,...,m,l.e.

af e KU)foranyi=1,...,n,f € K(U).

Therefore, for cq,...,cn € K(U), Lf4 c,-}xi 1 K(U) — K(U) is a K-derivation.

We show examples of C*-derivations for C*-mainfolds.



27

Example 5 Let M be a C*°-manifold and T (T* M) be the set of C®-sections to the cotangent bundle T* M on M.
1. Forany f € C®°(M), define a C®-section df : M — T*M by
df(v) :== o(f) forany x € Mand v € TyM.
Define an R-derivation d : C*(M) — T(T*M) as d(f) := df.
2. Let V : M — TM be a C®-vector field of M as Vy € TyM for x € M. Define V(f) € C®(M) by
(VD) () = Va(f).
We regard V : C®°(M) — C®(M) as an R-derivation.

4 Differentiable rings

41 Germs of C*-functions

Lemma 1 Let M be a C®-manifold, p a point of M and U an open neighborhood at p of M.
1. There exists 1 € C*®(M) and an open neighborhood V at p of U such that

1 (xeV)
”(")‘{o (xe M\U)

2. Forany f € C®(U), there exists g € C*(M) such that f|y = glv.

4.2 The localizations for C*-rings
Let M be a C*-manifold. Suppose that p € M is a point and U is an open neighborhood of M at p. We
can define a morphism 7z : C*(U) — C;°(M) of C*-rings as 7}/ (f) := [f, U],.

From Lemma 1, we have a following property about germs of C*-functions on a C*-manifold.

Cofollary 2 7l : C®(U) = Cy*(M) is surjective.

We have defined the morphism ¢, : C*(M), — C;°(M). From the following corollary, ¢, is isomor-
phism and (C;*(M), ng‘) is regarded as a localization of C*®(M) at p.

Corollary 3 (Joyce [5]) For a C®-ring C*°(M) and its R-point ep : C*°(M) — R by a point p € M, we have
the isomorphism C®(M)e, = C*(M).

4.3 Derivations of k-jet determined C*-rings

C*(M) is embedded to [T,em R by f — {f(p)}pem. Then C®(M) is point determined in Definition
4.1. [6]. We define k-jet determined as the generalization of point determined.

Definition 8 (Yamashita [9]) Let € be a C®-ring and k € {0} UIN U {o0}. For an R-point p of €, define a
homomorphism ji; : € = €, /mp*+1 by K (c) := my(c) +mkH! for ¢ € € (If k = oo, we mean m,*+1 by
my™ := Ngenmpk). Define j* : € = [Tp.cr Cp/mht as f* := (%) pesr-

€ is a k-jet determined C*®-ring if j* is injective.

Theorem 1 (Yamashita [9]) Let €,D be C®-rings, ¢ : € — D a homomorphism of C*-rings and k € {0} U
IN U {co}. Suppose that D is k-jet determined.
Then any R-derivation V : € — D over ¢ is a C*-derivation.

Example 6 Let M be a C-manifold. There exists an injection j* : C°(M) — [Tyem R defined as °(f) :=
{f(p)}pem. Then, C®(M) be a O-jet determined C®-ring.

Therefore, from Theorem 1, for a smooth mapping f : M — N of C*-manifolds, any R-derivation
V:C®(N) — C®°(M)along f* : C*(N) — C®(M) is C*®-derivation.
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The condition of k-jet determined is need to Theorem 1. From D. Joyce [5] Remark 5.5., we have an
example that all R-derivation are not C*-derivations.

Example 7 (Joyce [5]) Let € bea C®-ring C*(R).
For the R-cotangent module (Qg¢,r,der), der : € = Qg R is an R-derivation but not a C*-derivation.
Qe c is a finitely generated €-module generated by d(x). Qe is not a finitely generated generated ¢-
module.
In fact, for the exponential e* € C*°(R), e*de r(x) — der(€*) # 0in QeR.

5 Analytic-rings

5.1 Germs of analytic functions

From Lemma 1, for a C*-manifold M and a point p, there exists a C*-function # € C®°(M) and open
neighborhoods V' C U of M at p such that 7|y = 1and 7| mu =0

For a connected C*-manifold (resp. N-manifold) M, a germ [f, U], of C¥-functions which is ex-
tendable to M have a unique function g € C*(M) whose germ is [f, U], for following lemmas.

Lemma 2 Let M be a connected C*-manifold and f be a real-C“-function on M. f = 0 on M if and only if there
exists a non-empty open subset U C M such that fly = 0.

Lemma 3 Let f be a real-C*-function on R". f = 0 on R" if and only if there exists a point p € R" such that
adt
W[(p) =0 for any a.

5.2 Germs of analytic rings and Nash rings

Let M be a C*-manifold(resp. N'“-manifold). Suppose that x € Misa pointandi : V < U is an
inclusion of open connected subsets in M. We can define morphisms of X“-rings as

puv : K“(U) 3 f = flv € K“(V),
g K9U) 3 f = [f, U], € Ky (M).
From Lemma 2 and Lemma 3, we have a following corollary.
Corollary 4 1. pyy and 7t are injective.
2. For a maximal ideal my = {f € K“(M)|f(p) = 0} of K“(M), my = N2 mi, = 0.

We have defined the morphism 1, : C¥ (M), — C5'(M). 1p is not isomorphism. For example, take an
analytic function f(x) := {15 on (=1,1) and a point 0 € R. f(x) = L2, x" on (—1,1). We can't take
8 € C¥(R) such that [g, R]p = [f, (—1.1)]o. Therefore, 15 : C*(R)p — C§'(R) is not surjective, moreover
not isomorphism.

6 Nash-rings
6.1 The condition of Nash functions by Kihler-differential spaces

Suppose that U C R" be an open connected semialgebraic subset.
For Nash-functions on R”, we have a following theorem for Nash-derivations of Nash-rings.

Theorem 2 (Ishikawa-Yamashita [4]) A real analytic function f € C¥(U) is a Nash-function if and only if
there exists a Nash function g € N (U)(g # 0) such that

g(df—gg—idx,-) =0

in QC“’(U),R and QC‘”(U),]R



29

From Theorem 2 about Nash-functions and Nash-derivations, we have a following property.
Theorem 3 Suppose that 2 is a Nash-ring and 9 be an A-module with an R-derivation V : 2 — M.
Forany f e N°(R*) andcy,...,cn €9,
n
V(®s(c1,..hn)) — Y, <I>§£ (c1,-- - n)V(c;)
i=1 %

is a nilpotent element in 9.

6.2 Ideals of Nash rings

For C®-rings, all finitely generated C*-rings are not finitely presented C®-rings, i.e. C®-rings of the

form C°°(]R")/(fl, .. .,fk)cco(]Rn) by f], e rfk (S C°°(]R").
From Corollary 1.5.5.in p41 [8] and Theorem 8.7.15 in [2], we have a following proposition.

Proposition 2 (Shiota [8]) Suppose that M be an affine N'’-manifold, such that there exists an C% Nash em-
bedding i : M — R™. N (M) is a Noether ring, i.e. for any ideal I C N (M), there exists finite functions
81,++.,8k € Isuchthat I = (g1,.. ‘/gk)N“’(M)‘

Therefore, any finite generated N'“-ring is finitely presented.

6.3 The localizations of Nash-rings

For a sheaf Ox on a topological space X, a sequence - - - Fi~1 — F# — Fi+l 5 ... of Oy is exact if and

only if a sequence - - - Fj ' — Fj, — Fjt! — - of Oy, is exact for any p € X ([3]).

Proposition 3 (Shiota [8]) For a Nash-ring N“(R") and its R-point ey : N“(R") — R, N}(R") is faith-
fully flat on N“(R™),,, i.e. any sequence of N’ (R™)e,

oM S Ny >,
is exact if and only if the sequence of N’ (R")
R ) T ®N{"(R")mp N;;J(]R") — N ®N“’(R”)mp N;,"(]Rn) — ‘ﬂ,-+1 ®N“’(R")mp N;](]Rn) — e
is exact.

For a C*-ring C*(M), above Proposition satisfies since C;°(M)=C*(M)e, for any point p € M

A Analytic-ringed spaces and Nash-ringed spaces

A C*®-ringed space is defined in [5]. We define C*-ringed spaces (resp. Nash-ringed spaces) and a
functor Spec as same as C*-rings with the following definitions.

A.1 The definition of analytic-ringed spaces and Nash-ringed spaces
Definition9 1. A K“-ringed space X = (X, Ox) is a topological space X with a sheaf Ox of K¥-rings on
X.
2. A morphism f = (£, f*) : (X, Ox) = (Y, Oy) of K®-ringed spaces is a continuous map f : X — Y and
a morphism f* : Oy — f.(Ox) of sheaves of K%-ringson Y.

3. A local K¥-ringed space X = (X, Ox) is a K¥-ringed space for which Ox , are K“-local rings for all
xeX .



A.2 The examples of analytic-ringed spaces and Nash-ringed spaces
Example 8 Let M be a K-manifold.

1. For an open set U C M, define Op(U) as a set of functions s : U ~ 11yeu K“(M)e, such that for any
point x € U, there exists a open neighborhood V C U at p and elements c,d € K (M)(d(p) # 0) which
satisfy s(q) = 74(c)7rq(d)~? for any point g € U.

2. Define Oy, as O (U) := K« (U) for any open set U C M.
Then, (M, Op) and (M, O)y;) are K¥-ringed spaces.

A3 The definition of Spec
Definition 10 (Joyce [5]) 1. For a C®-ring €, define a C*-ringed spaceX¢ as followings.
(@) Define a topological space X¢ as followings by C*-ring €.
o Define a set Xg := {x : € — R|x is a R-point of €.}.
e Foreachc € €, definec, : Xe¢ 3 x— x(c) € R.
o Set a topology of X¢ as a smallest topology Te such that c is continuous for all ¢ € €.

(b) For an open subset U C Xe, define Ox,(U) as a set of functions s : U — [ [yey €x with following
properties
e Foreach x € U, s(x) € €y is satisfied.
o U is covered by open set V with
forsome c,d € €(Vx € V, mtx(d) # 0), 7tx(c)my(d) ™! = s(x)(Vx € V) is satisfied.

2. Therefore define the following C®-ringed space
Spec € := (Xe, Ox,)-
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