NON-INJECTIVITY OF GENERALIZED DISTANCE-SQUARED MAPPINGS OF EQUIDIMENSIONAL CASES

SHUNSUKE ICHIKI

ABSTRACT. Generalized distance-squared mappings are quadratic mappings of \mathbb{R}^m into \mathbb{R}^ℓ of a special type. In this paper, it is shown that any generalized distance-squared mapping of equidimensional cases is not injective.

1. INTRODUCTION

Throughout this paper, i, j, ℓ, m, n stand for positive integers. Let $p_i = (p_{i1}, p_{i2}, \ldots, p_{im})$ $(1 \le i \le \ell)$ (resp., $A = (a_{ij})_{1 \le i \le \ell, 1 \le j \le m}$) be a point of \mathbb{R}^m (resp., an $\ell \times m$ matrix with non-zero entries). Set $p = (p_1, p_2, \ldots, p_\ell) \in (\mathbb{R}^m)^\ell$. Let $G_{(p,A)} : \mathbb{R}^m \to \mathbb{R}^\ell$ be the mapping defined by

$$G_{(p,A)}(x) = \left(\sum_{j=1}^m a_{1j}(x_j - p_{1j})^2, \sum_{j=1}^m a_{2j}(x_j - p_{2j})^2, \dots, \sum_{j=1}^m a_{\ell j}(x_j - p_{\ell j})^2\right),$$

where $x = (x_1, x_2, \ldots, x_m) \in \mathbb{R}^m$. The mapping $G_{(p,A)}$ is called a generalized distance-squared mapping, and the ℓ -tuple of points $p = (p_1, \ldots, p_\ell) \in (\mathbb{R}^m)^\ell$ is called the central point of the generalized distance-squared mapping $G_{(p,A)}$. A distance-squared mapping D_p (resp., Lorentzian distance-squared mapping L_p) is the mapping $G_{(p,A)}$ satisfying that each entry of A is 1 (resp., $a_{i1} = -1$ and $a_{ij} = 1$ $(j \neq 1)$).

In [1] (resp., [2]), a classification result on distance-squared mappings D_p (resp., Lorentzian distance-squared mappings L_p) is given.

In [5], a classification result on generalized distance-squared mappings of the plane into the plane is given. If the rank of A is two, a generalized distance-squared mapping having a generic central point is a mapping of which any singular point is a fold point except one cusp point (for details on fold points and cusp points, refer to [6]). The singular set is a rectangular hyperbola. If the rank of A is one, a generalized distance-squared mapping having a generic central point is \mathcal{A} -equivalent to the normal form of definite fold mapping $(x_1, x_2) \to (x_1, x_2^2)$.

In [3], a classification result on generalized distance-squared mappings of \mathbb{R}^{m+1} into \mathbb{R}^{2m+1} is given. If the rank of A is m+1, a generalized distance-squared mapping having a generic central point is \mathcal{A} -equivalent to the mapping called the normal form of Whitney umbrella as follows:

$$(x_1, \ldots, x_{m+1}) \mapsto (x_1^2, x_1 x_2, \ldots, x_1 x_{m+1}, x_2, \ldots, x_{m+1})$$

²⁰¹⁰ Mathematics Subject Classification. 57R35,57R40,57R42.

Key words and phrases. generalized distance-squared mapping.

The first author is Research Fellow DC1 of Japan Society for the Promotion of Science .

If the rank of A is less than m + 1, a generalized distance-squared mapping having a generic central point is A-equivalent to the inclusion as follows:

$$(x_1,\ldots,x_{m+1})\mapsto (x_1,\ldots,x_{m+1},0,\ldots,0).$$

In [4], the properties of compositions by generalized distance-squared mappings having a generic central point are investigated. As an appendix of [4], the following lemma is proved.

Lemma 1.1. Any generalized distance-squared mapping of equidimensional cases $G_{(p,A)} : \mathbb{R}^m \to \mathbb{R}^m$ is not injective.

The main purpose of this paper is to give another proof of this lemma (for the proof of this lemma, see Section 2).

2. Proof of Lemma 1.1

If m = 1, then we get the mapping $G_{(p,A)} : \mathbb{R} \to \mathbb{R}$ defined by $G_{(p,A)}(x_1) = a_{11}(x_1 - p_{11})^2$. It is clearly seen that the mapping $G_{(p,A)} : \mathbb{R} \to \mathbb{R}$ is not injective. Hence, it is sufficient to consider the cases of $m \ge 2$.

Let $h : \mathbb{R}^m \to \mathbb{R}^m$ be the diffeomorphism defined by

$$h(x_1,...,x_m) = (x_1 + p_{m1},...,x_m + p_{mm}).$$

The composition of $G_{(p,A)}$ and h is as follows:

$$G_{(p,A)} \circ h(x) = \left(\sum_{j=1}^{m} a_{1j} \left(x_j + p_{mj} - p_{1j} \right)^2, \dots, \sum_{j=1}^{m} a_{m-1,j} \left(x_j + p_{mj} - p_{m-1,j} \right)^2, \sum_{j=1}^{m} a_{mj} x_j^2 \right)$$

Let $H : \mathbb{R}^m \to \mathbb{R}^m$ be the diffeomorphism of the target for deleting constant terms. The composition of H and $G_{(p,A)} \circ h$ is as follows:

$$= \left(\sum_{j=1}^{m} a_{1j}x_j^2 + \sum_{j=1}^{m} b_{1j}x_j, \dots, \sum_{j=1}^{m} a_{m-1,j}x_j^2 + \sum_{j=1}^{m} b_{m-1,j}x_j, \sum_{j=1}^{m} a_{mj}x_j^2\right),$$

0.

where $b_{ij} = 2a_{ij}(p_{mj} - p_{ij})$ $(1 \le i \le m - 1, 1 \le j \le m)$. Now, consider the following:

(1)
$$\sum_{j=1}^{m} b_{1j} x_j = \dots = \sum_{j=1}^{m} b_{m-1,j} x_j =$$

By (1), we get $(x_1, \ldots, x_m)B = (0, \ldots, 0)$, where $B = (b_{ij})_{1 \le i \le m-1, 1 \le j \le m}$. It is clearly seen that $m = \operatorname{rank} B + \dim$ Ker B. Hence, by rank $B = m - \dim$ Ker B and rank $B \le m - 1$, we have dim Ker $B \ge 1$. Therefore, there exists a nonzero vector $(c_1, \ldots, c_m) \in$ Ker B. Set $c = (c_1, \ldots, c_m)$. Then, it follows that $H \circ G_{(p,A)} \circ h(c) = H \circ G_{(p,A)} \circ h(-c)$. Since H and h are diffeomorphisms, we see that $G_{(p,A)}$ is not injective.

ACKNOWLEDGEMENTS

The author is supported by JSPS KAKENHI Grant Number 16J06911.

References

- S. Ichiki and T. Nishimura, Distance-squared mappings, Topology Appl., 160 (2013), 1005– 1016.
- [2] S. Ichiki and T. Nishimura, Recognizable classification of Lorentzian distance-squared mappings, J. Geom. Phys., 81 (2014), 62-71.
- [3] S. Ichiki and T. Nishimura, Generalized distance-squared mappings of \mathbb{R}^{n+1} into \mathbb{R}^{2n+1} , Contemporary Mathematics, Amer. Math. Soc., Providence RI, 675 (2016), 121-132.
- [4] S. Ichiki, T. Nishimura, Preservation of immersed or injective properties by composing generic generalized distance-squared mappings, arXiv:1610.02880.
- [5] S. Ichiki, T. Nishimura, R. Oset Sinha and M. A. S. Ruas, Generalized distance-squared mappings of the plane into the plane, Adv. Geom., 16 (2016), 189–198.
- [6] H. Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math., (2), 62 (1955), 374-410.

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

E-mail address: ichiki-shunsuke-jb@ynu.jp