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ABSTRACT. Generalized distance‐squared mappings are quadratic mappings
of \mathbb{R}^{7Y} into \mathbb{R}^{p} of a special type. In this paper, it is shown that any generalized
distance‐squared mapping of equidimensional cases is not injective.

1. INTRODUCTION

Throughout this paper, i, j, P, m, n stand for positive integers. Let p_{i} =

(p_{i1},p_{i2}, \ldots , p_{im})(1\leq i\leq\ell) (resp., A=(a_{ij})_{1\leq i\leq\ell,1\leq j\leq \mathrm{z}n} ) be a point of \mathbb{R}^{m} (resp.,
an \ell\times m matrix with non‐zero entries). Set p = (p_{1},p_{2}, . . . , p_{\ell}) \in (\mathbb{R}^{m})^{\ell} . Let

G_{(p,A)} : \mathbb{R}^{m}\rightarrow \mathbb{R}^{\ell} be the mapping defined by

G_{(p,A)}(x)=(\displaystyle \sum_{j=1}^{ $\tau$ n}a_{1j}(x_{j}-p_{1j})^{2},\sum_{j=1}^{m}a_{2j}(x_{j}-p_{2j})^{2}, \ldots,\sum_{j=1}^{rn}a_{lj}(x_{j}-p_{\ell j})^{2}) ,

where x = (x_{1}, x2, . . . , x_{m}) \in \mathbb{R}^{m} . The mapping G_{(p,A)} is called a generalized
distance‐squared mapping, and the \ell‐tuple of points  p =(p\mathrm{l}, . . ., p_{1})\in (\mathbb{R}^{m})^{\ell} is

called the central point of the generalized distance‐squared mapping G_{(p,A)}. \mathrm{A}

distance‐squared mapping D_{p} (resp., Lorentzian distance‐squared mapping L_{p} ) is

the mapping G_{(p,A)} satisfying that each entry of A is 1 (resp., a_{i1}=-1 and a_{ij}=1
(j\neq 1

In [1] (resp., [2]), a classification result on distance‐squared mappings D_{p} (resp.,
Lorentzian distance‐squared mappings L_{p} ) is given.

In [5], a classification result on generalized distance‐squared mappings of the

plane into the plane is given. If the rank of A is two, a generalized distance‐squared
mapping having a generic central point is a mapping of which any singular point
is a fold point except one cusp point (for details on fold points and cusp points,
refer to [6]). The singular set is a rectangular hyperbola. If the rank of A is one, \mathrm{a}

generalized distance‐squared mapping having a generic central point is A‐equivalent
to the normal form of definite fold mapping (x_{1}, x_{2})\rightarrow(x_{1}, x_{2}^{2}) .

In [3], a classification result on generalized distance‐squared mappings of \mathbb{R}^{m+1}
into \mathbb{R}^{2m+1} is given. If the rank of A is m+1 , a generalized distance‐squared
mapping having a generic central point is \mathcal{A}‐equivalent to the mapping called the

normal form of Whitney umbrella as follows:

(x_{1}, \ldots x_{m+1}) \mapsto (X_{1}^{2}, X_{1}X_{2}, . . . X_{1}X_{m+1}, X_{2}, \ldots x_{m+1}) .
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If the rank of A is less than m+1 , a generalized distance‐squared mapping having
a generic central point is A‐equivalent to the inclusion as follows:

(xl, . . ., x_{m+1} ) \mapsto(x_{1}, \ldots , x_{m+1},0, \ldots , 0) .

In [4], the properties of compositions by generalized distance‐squared mappings
having a generic central point are investigated. As an appendix of [4], the following
lemma is proved.

Lemma 1.1. Any generalized distance‐squared mapping of equidimensional cases

G_{(p,A)} : \mathbb{R}^{m}\rightarrow \mathbb{R}^{m} is not injective.

The main purpose of this paper is to give another proof of this lemma (for the

proof of this lemma, see Section 2).

2. PROOF OF LEMMA 1. 1

If m = 1 , then we get the mapping G_{(p,A)} : \mathbb{R} \rightarrow \mathbb{R} defined by G_{(p,A)}(x_{1}) =

a_{11}(x_{1}-p_{11})^{2} . It is clearly seen that the mapping G_{(p,A)} : \mathbb{R}\rightarrow \mathbb{R} is not injective.
Hence, it is sufficient to consider the cases of m\geq 2.

Let h:\mathbb{R}^{m}\rightarrow \mathbb{R}^{m} be the diffeomorphism defined by

h(x_{1}, \ldots, x_{m})=(x_{1}+p_{m\mathrm{i},\ldots,X_{m}+p_{mm})}.
The composition of G_{(p,A)} and h is as follows:

G_{(p,A)}\circ h(x)

= (\displaystyle \sum_{j=1}^{m}a_{1j}(x_{j}+p_{mj}-p_{1j})^{2}, \ldots,\sum_{j=1}^{m}a_{m-1,j}(x_{j}+p_{n $\iota$ j}-p_{m-1,j})^{2},\sum_{j=1}^{m}a_{mj}x_{j}^{2})
Let H : \mathbb{R}^{m}\rightarrow \mathbb{R}^{7n} be the diffeomorphism of the target for deleting constant terms.

The composition of H and G_{(p,A)}\circ h is as follows:

H\circ G_{(p,A)}\circ h(x)

= (\displaystyle \sum_{j=1}^{m}a_{1j}x_{j}^{2}+\sum_{j=1}^{m}b_{1j}x_{j}, \ldots,\sum_{j=1}^{m}a_{m-1,j}x_{j}^{2}+\sum_{j=1}^{m}b_{m-1,j}x_{j},\sum_{j=1}^{m}a_{mj}x_{j}^{2}) ,

where b_{ij}=2a_{ij}(p_{mj}-p_{ij}) (1\leq i\leq m-1,1\leq j\leq m) .

Now, consider the following:

(1) \displaystyle \sum_{j=1}^{m}b_{1j}x_{j}=\cdots=\sum_{j=1}^{m}b_{m-1,j}x_{j}=0.
By (1), we get (xl, . . .

, x_{m} ) B=(0, \ldots, 0) , where B=(b_{ij})_{1\leq i\leq m-1,1\leq j\leq m} . It is

clearly seen that m= rank B+\dim \mathrm{K}\mathrm{e}\mathrm{r}B . Hence, by rank B=m-\dim \mathrm{K}\mathrm{e}\mathrm{r}B

and rank B \leq  m-1 , we have \dim \mathrm{K}\mathrm{e}\mathrm{r}B \geq  1 . Therefore, there exists a non‐

zero vector (cl, . . ., c_{m} ) \in \mathrm{K}\mathrm{e}\mathrm{r}B . Set c = (cl, . . .

, c_{m} ). Then, it follows that

H\circ G_{(p,A)}\circ h(c)=H\circ G_{(\mathrm{p},A)}\circ h(-c) . Since H and h are diffeomorphisms, we see

that G_{(p,A)} is not injective.
\square 
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