
BAD GROUPS

FRANK O. WAGNER

ABSTRACT. There is no bad group of Morley rank 2n+1 with an abelian Borel subgroup
of Morley rank n . In particular, there is no bad group of Morley rank 3 (O. Frécon).

1. INTRODUCTION

The algebraicity conjecture, proposed independently by Gregory Cherlin [4] and Boris

Zilber [11] forty years ago, states that a simple group of finite Morley rank should be an

algebraic group over an algebraically closed field. Despite much effort, it is still open. In

fact, it is currently believed that in the so‐called degenerate case, where there is no invo‐

lution, a counter‐example may exist. It has been shown ten years ago by Altinel, Borovik

and Cherlin [1] that if there is an infinite elementary abelian 2‐subgroup, the conjecture
holds. However, the inductive approach for the remaining case where a connected 2‐Sylow
subgroup is abelian and divisible got stuck at the initialisation stage: it is very difficult

to eliminate small non‐algeUraic configurations.
In the paper [4], Cherlin classified connected groups of small Morley rank: In rank 1

they are abelian after a result of Reinecke [10], in rank 2 they are soluble, and in rank

3 they are either soluble, \mathrm{P}\mathrm{S}\mathrm{L}_{2}(K) for some interpretable algebraicaly closed field K,
or what he called a bad group. Bad groups were further studied by Nesin [8], Corredor

[5] and Borovik‐Poizat [3]. A connected group of finite Morley rank is bad if all its

soluble connected subgroups are nilpotent. In a minimal bad group, the maximal nilpotent
connected subgroups (called Borel subgroups) are definable, self‐normalizing, conjugate,
and the conjugates cover the whole group; moreover the group does not have an involution.

It is easy to see [9, p. 91] that the Morley rank of a Borel subgroup is strictly less than

half the rank of the ambient bad group, but essentially little progress has been made for

more than 25 years until 2016, when Olivier Frécon [6] proved the non‐existence of bad

groups of Morley rank three, and thus completed Cherlin�s classification from almost 40

years ago.
Frécon�s proof is restricted to rank 3, and our generalisation to rank 2 RM(B)+1

(where B is any abelian Borel subgroup) is absolutely minor. However, given that bad

groups are one of the main obstacles to a full proof of the algebraicity conjecture (at least

in the presence of involutions), it seems important to analyze the scope and current limits

of Frécon�s arguments. This note hopes to contribute to this study.
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2. FULL FROBENIUS GROUPS

Recall that a subgroup B of a group G is malnormat if B\cap B^{g}=\{1\} for any g\in G\backslash B.
This means that B is self‐normalizing and intersects all its distinct conjugates trivially.
Thus, for any b\in B\backslash \{1\} ,

if b^{g}\in B for some g\in G , then g\in B ; in particular C_{G}(b) \leq B.
A malnormal subgroup is often called a Frobenius complement and the ambient group a

Frobenius group� Frobenius� Theorem states that in a finite group, a malnormal subgroup
B has a normal complement, called the R?obenius kernel and consisting of all elements

outside all conjugates of B\backslash \{1\} . It is easy to deduce that Frobenius� Theorem also

holds for locally finite groups, and by the transfer principle for all algebraic groups. The

following definition, due to Jaligot [7], isolates a particularly pathological configuration.

Definition 2.1. A Frobenius group is full if the conjugates of the Frobenius complement
cover the whole group. A malnormal subgroup whose conjugates cover the whole group

is a full Fkobenius complement.

We shall see that a connected full Frobenius group of finite Morley rank has a sim‐

ple definable subgroup which is still a full Frobenius group, and hence contradicts the

algebraicity conjecture. One would thus like to show that they do not exist.

For the rest of this section G will be a full Frobenius group of finite Morley rank, and

B a malnormal subgroup. We shall call the conjugates of B the Borel subgroups of G.

Lemma 2.2. G has no involutions. Thus, every element g of G has a unique square root,
which is contained in every definable subgroup containing g . If g\neq 1 ,

it is not conjugate
to its inverse g^{-1} . If G is connected, then C_{G}(g) is infinite for all g\in G

Proof. If i and j are two involutions in different conjugates of B ,
then both invert the

element ij, and hence normalize the unique Borel B' containing ij. But then both i and

j are contained in B'
,

a contradiction.

Let H be the smallest definable subgroup containing g . Then H\leq Z(C_{G}(g)) is abelian,
and x\mapsto x^{2} is an injective homomorphism. So it must be surjective, since its image has

the same Morley rank and degree as H . Hence g has a unique square root h in H . Every
other square root h' of g must commute with g and normalize H

,
and hence commute

with the unique square root h of g in H . But then (h'h^{-1})^{2}=1 ,
and h=h'.

If g^{h}=g^{-1} ,
then h^{2}\in C_{G}(g) ,

so h\in C_{G}(g) ,
and g=g^{-1} . Since there are no involutions,

g=1.
Finally, if g has a finite centraliser, then the conjugacy class g^{G} is generic, as is (g^{-1})^{G} ;

if G is connected then g is conjugate to its inverse, a contradiction. \square 

Note that all the assertions of Lemma 2.2 follow from the first one, and thus hold in

any group of finite Morley rank without involutions.

Lemma 2.3. Every finite or soluble subgroup is contained in a Borel. In particular, G

has no finite or soluble normal subgroup.

Proof. It is clear that a Borel B cannot contain a normal subgroup, as the normalizer of

any subgroup of B must be contained in B by malnormality.
Let F be a finite subgroup not contained in a Borel; we may assume that is it minimal

such. If B is a Borel intersecting F non‐trivially, then B\cap F is malnormal in F
,

so F is a

finite Frobenius group. By minimality, its kernel N is contained in a Borel subgroup B'.

As N is non‐trivial, F\leq N_{G}(N) \leq B' ,
a contradiction.

Let S be a non‐trivial soluble subgroup. Then S has a non‐trivial abelian normal

subgroup A , which must be contained in a Borel B , and S\leq N_{G}(A) \leq B. \square 
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Lemma 2.4. G has a unique non‐trivial minimal normal definable subgroup, which is

simple.

Proof. As G has no soluble normal subgroup by Lemma 2.3, its socle is a finite product
of definable simple groups S_{1} \times \cdots \times  S_{n} by [9, p. 97]. Consider s \in  S_{1}\backslash \{1\} and a

Borel B containing s . Then S_{i} \leq  C_{G}(s) \leq  B for any i > 1 . But if s' \in  S_{2}\backslash \{1\} , then

S_{1} \leq  C_{G}(s') \leq  B as well, and B contains a non‐trivial normal subgroup, contradicting
malnormality. It follows that n=1. \square 

Lemma 2.5. (1) B is infinite.
(2) If G is connected, so  $\iota$ sB.

(3) If H is a connected definable subgroup of G which is not contained in a Borel, then

H is a full Frobenius group, and B\cap H is a fvll Frobenius complement in H , for
any Borel B of G with B\cap H\neq\{1\}.

(4) If H is a connected definable subgroup containing a Borel B ,
then H is a full

Frobenius complement for G.

(5) IfG is connected, B' is anotherfull Probenius complement and B\cap B' is nontrivial,
then B\cap B' is again a full Frobenius complement. In particular there is a unique
minimal full Frobenius complement.

(6) If N is a normal subgroup of G , then G=NB.

Proof. (1) Let g\in G^{0} . Then C_{G^{0}}(g) is infinite, and contained in the Borel of g.

(2) If B were not connected, then the union of the conjugates of B^{0} and the union of

the conjugates of B\backslash B^{0} would be two disjoint generic subsets of G.

(3) Let (B_{i} : i \in I) be the non‐trivial intersections with H of the conjugates of B.

Then H is the disjoint union of the B_{i} ,
which are malnormal in H . The union of

the H‐conjugates of B_{i} is generic in H for all i\in I ; by connectedness the B_{i} are

all H‐conjugate.
(4) If g \in  G and h \in  H\backslash \{1\} with h^{g} \in  H

,
then there are two Borel subgroups B'

and B'' of H with h\in B' and h^{g} \in B But there is h' \in H with B^{;h^{J}} =B so

h^{g}\in B Ĩg\cap B^{Jh'} It follows that B^{Jg}=B^{\prime h'} ,
and gh^{\prime-1}\in N_{G}(B')=B'\leq H . Hence

H is malnormal in G ; it is clear that its conjugates cover G.

(5) We may assume B\not\leq B' . Then B is connected by (2), and B\cap B' is a full Frobenius

complement in B by (3). The result now follows from fullness of B.

(6) N is infinite by Lemma 2.3. But then N^{0} cannot be contained in a Borel by
normality, and must be a full Frobenius group itself; if B is a Borel of G and B\cap N^{0}
is a Borel of N^{0} , then for any g\in G there is h\in N^{0} with (B\cap N^{0})^{g}=(B\cap N^{0})^{h},
whence gh^{-1} \in N_{G}(B)=B . Thus G=N^{0}B=NB. \square 

If in (3) we choose H of minimal Morley rank not contained in some Borel subgroup,
we obtain a full Frobenius group whose connected proper definable subgroups are all con‐

tained in some Borel of H . In fact all definable subgroups are contained in some Borel

of H : This is clear for finite groups by Lemma 2.3, and for a proper infinite definable

subgroup K there is a Borel B of H with K^{0} \leq  B
,

and K \leq  N_{G}(K^{0}) \leq  B by malnor‐

mality. In particular the Borel subgroups of H are precisely its maximal definable proper

subgroups, which are connected by (2).
Definition 2.6. A full Frobenius group is special if its Borel subgroups are precisely its

maximal proper definable subgroups.
In particular a special full Frobenius group G must be simple, whence connected. If

moreover its Borel subgroups are nilpotent, then G is a bad group in the sense of the
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introduction. Conversely, a minimal bad group gives rise to a special full Frobenius group

with nilpotent complement [8, 5, 3]. Thus if there are no special full Frobenius groups,

neither are there full Frobenius groups nor bad groups.

3, INVOLUTIVE AUTOMORPHISMS

In this section we shall study a group G of finite Morley rank and without involutions,
together with an involutive automorphism  $\sigma$ of  G . Let F be the set of elements invariant

under  $\sigma$
,

and  I the set of elements inverted by  $\sigma$.

Lemma 3.1. (1) No non‐trivial lement of F is conjugate to an element of I.

(2) For every g\in G there are unique f\in F and i\in I with g=fi . In particuliar, if
G is connected, so is F.

Proof. (1) The sets {g\in G: $\sigma$(g) is conjugate to g} and { g\in G: $\sigma$(g) is conjugate to g^{-1} }
are G‐invariant and contain F and I

, respectively. They must have empty inter‐

section, as no element is conjugate to its inverse.

(2) Put g(x)=x^{-1} $\sigma$(x) . Then g(x)\in I for all g\in G . So the unique square root z of

g(x)^{-1} must also be in I . Then

g(x)=x^{-1} $\sigma$(x)=z^{-2}=z^{-1} $\sigma$(z)=g(z) ,

so xz^{-1}= $\sigma$(xz^{-1})\in F . Hence G=FI.

If fi=f'i' with f, f'\in F and i, i'\in I , then i'i^{-1} \in F , and

i'i^{-1}= $\sigma$(i'i^{-1})=i^{J-1}i,
whence i^{\prime 2}=i^{2} and i'=i . It follows that f=f'.

Finally, by uniqueness of the decomposition, the generic types of G are in bijec‐
tion with the independent products of the types of maximal rank in F and in I . If

G is connected, F and I must have a unique type of maximal rank; in particular
F is connected. \square 

Some special cases of the following Proposition have been shown in [2, p. 393] and [7,
p. 128].

Proposition 3.2. A special full Frobenius group has no non‐trivial definable involutive

automorphism. If  $\sigma$ is a definable involutive automorphism of a connected full jFbrobenius

group  G_{f} then RM(F\cap B)<RM(B) for any minimal full complement B , and  RM(B)\geq
2. Moreover,

 RM(I)\displaystyle \leq\frac{RM(G)+RM(B)}{2}-1<\frac{3}{4}RM(G)-1.
Proof. Let  $\sigma$ be a definable non‐trivial involutive automorphism. Then  F is a proper

definable subgroup of G.

If G is special, F is contained in a single Borel B . As G = FI there must be some

i\not\in B inverted by  $\sigma$ ; if  B' is the Borel containing i
,

then  $\sigma$(B) is again a maximal proper

subgroup, and hence conjugate to B' . As  $\sigma$(B')\cap B' is non‐trivial,  $\sigma$(B') = B' and  $\sigma$

stabilises  B' . Thus  $\sigma$ is a definable involutive automorphism of  B' without fixed points;
by Lemma 3.1(2) it inverts B' . But B' is conjugate to B , contradicting Lemma 3.1(1).
The same argument works if G is connected and F is contained in a single minimal full

complement, noting that  $\sigma$(B') is again a minimal full complement and hence conjugate
to B'.
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So F is a full Frobenius group with full complement F\cap B by Lemma 2.5(3), where B is

a minimal full complement intersecting F non‐trivially. No Borel which does not intersect

F can contain a point of I ,
as otherwise it would itself be inverted by  $\sigma$ , again contradicting

Lemma 3.1. Moreover  F\not\leq  B and both are connected, so 1 \leq RM(F\cap B) <RM(B) ;

in particular RM(B) \geq 2.
If B is the family of conjugates of B intersecting F non‐trivially, then

RM(\mathcal{B})=RM(F)-RM(F\cap B) ,

and for B'\in \mathcal{B} we have RM(I\cap B')=RM(B)-RM(F\cap B) . Hence

RM(I)=RM(\mathcal{B})+RM(I\cap B)

=RM(F)-RM(F\cap B)+RM(B)-RM(F\cap B)
=RM(F)+RM(B)-2RM(F\cap B) ;

2 RM(I)=RM(I)+RM(F)+RM(B)-2RM(F\cap B)
=RM(G)+RM(B)-2RM(F\cap B) .

Therefore

RM(I)=\displaystyle \frac{RM(G)+RM(B)}{2}-RM(F\cap B)
\displaystyle \leq\frac{RM(G)+RM(B)}{2}-1.

Now RM(G)>2RM(B) , as otherwise for g\not\in B the double coset BgB would be generic
in G and equal to Bg^{-1}B ,

which would imply the presence of involutions (see [9, p. 91

Hence

RM(I)<\displaystyle \frac{3}{4}RM(G)-1. \square 
4. ALMOST TWISTEDLY NORMAL SUBSETS

In this and the following section we shall consider particular subsets of a group G which

produce involutive automorphisms, and hence cannot exist in a special full Frobenius

group.

Definition 4.1. Two definable sets X and Y are almost equal, denoted X \sim \mathrm{Y} , if

RM(X $\Delta$ Y)<RM(X) .

Note that \sim is an equivalence relation, and  X \sim  Y implies RM(X) = RM(Y) =

RM(X\cap Y) .

Definition 4.2. A definable subset X of an  $\omega$‐stable group  G is twistedly normal if for

all g\in G there is h\in G with gX=Xh . The subset X is almost twistedly normal if for

all g\in G there is h\in G with gX\sim Xh.

We shall first show that an almost twistedly normal subset of a group gives rise to a

twistedly normal subset.

Lemma 4.3. Let G be a group acting definably on a set X in an  $\omega$ ‐stable structure. Let

 Y be a definable subset ofX such that gY\sim Y for all g\in G . Then there is a G‐invariant

Z\subseteq X with Z\sim Y.
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Proof. Let p_{1} ,
. . . , p_{n} be the generic types of G . We add the parameters necessary to

define G, X, Y and the p_{i} to the language, and put

Z_{i}= {x\in X:x\in gY for some/every g \models p_{i} with g,\mathrm{L}x}.
Then Z_{i} is \emptyset‐definable by definability of types. Let  x\in Y be of maximal rank, and g\models p_{i}
generic over x . As RM(Y $\Delta$ gY) < RM(Y) , we have x \in  gY and x \in  Z_{l} . In particular
RM(Z_{i})\geq RM(Y) . Conversely, if x\in Z_{i} is of maximal rank, there is g\models p_{i} independent
of x with x\in gY . Hence

RM(Y)\leq RM(Z_{i})=RM(x)=RM(x/g)\leq RM(gY)=RM(Y) .

Thus x is of maximal rank in gY , and x\in gY\cap Y , whence x\in Y . So Y\sim Z_{i}.
Finally, put Z=\displaystyle \bigcap_{i}Z_{i} . Clearly Z is almost equal to \mathrm{Y}

,
and Z is invariant under all

generics of G , and hence G‐invariant. \square 

Proposition 4.4. Let X be an almost twistedly normal subset of G. Then there is a

twistedly normal subset Y with X\sim Y.

Proof. We consider the action of G\times G on G given by (g, h)(x)=gxh^{-1} . By definability
of rank, the subgroup

H=\{(g, h)\in G\times G : gXh^{-1}\sim X\}
is definable. By Lemma 4.3 there is an H‐invariant subset Z of G with X\sim Y ; clearly Y

is twistedly normal. \square 

Proposition 4.5. [6] Let G be a simple group of finite Morely rank, and X an infinite
non‐generic definable subset of G. If X is almost twistedly normal, then there is a unique
definable automorphism  $\sigma$ of  G such that gX\sim X $\sigma$(g) for all g\in G.

Proof. Put F = \{g \in G : gX \sim X\} ,
a definable subgroup of G . As \emptyset í\displaystyle \oint  X 7^{6} G by

hypothesis, F is a proper subgroup of G . If x \in  F and g \in  G , choose h \in  G with

gX\sim Xh . Then

xgX\sim xXh\sim Xh\sim gX.
Hence x^{g}\in F and F is normal in G , whence trivial by simplicity.

By a similar argument, F'=\{g\in G:X\sim Xg\} is normalised by all h\in G such that

there is some g \in  G with gX \sim Xh . So there is an injective definable homomorphism
from G to N_{G}(F')/F' such that gX\sim Xh for all h\in $\sigma$(g) . But

RM(G)\geq RM(N_{G}(F'))\geq RM(N_{G}(F')/F')\geq RM(G)

by injectivity, and equality holds all the way. As G is connected, we have G= N_{G}(F') ,

and F' must be trivial as well by simplicity of G. \square 

5. FRÉCON ELEMENTS

In this section we shall consider a connected full Frobenius group G with full comple‐
ment B . Following Frécon, we shall call call a double translate gBh^{-1} a line. Note that

any line is a left (or right) translate of a conjugate of B , and that any two distinct lines

intersect in at most one point. Given any two distinct points x and y , there is a unique
line xB' containing them both, where B' is the conjugate of B containing x^{-1}y.

If X is a definable subset, we shall say that a line d is generically contained in X if

RM(d\backslash X) <RM(d) . As B and d have Morley degree 1, this is equivalent to RM(d\cap X)=
RM(d) .
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Remark 5.1. The set of lines can be identified with G/B\times G/B , as gBh^{-1}=g'Bh^{\prime-1}
implies gh^{-1}B^{h-1} = g'h^{J-1}B^{h'-1} ,

and hence  h^{-1}h'\in  N_{G}(B) = B ; similarly we obtain

 g^{-1}g'\in  N_{G}(B) = B . It follows that the family of lines has Morley rank 2 RM(G) -

2RM(B) .

Definition 5.2. Let X be a definable subset of G ,
and g\in G . Then D_{g}(X) is the set of

lines containing g and generically contained in X.

Remark 5.3. Clearly,

RM(X)\displaystyle \geq RM(\bigcup_{d\in D_{g}(X)}(X\cap d))=RM(D_{g}(X))+RM(B) ,

whence RM(D_{g}(X))\leq RM(X)-RM(B) .

Definition 5.4. Let X be a definable subset of G . An element g\in G is a Frecon element

for X if RM(D_{g}(X))=RM(X)-RM(B) . The set of Frécon elements for X is denoted

by \mathcal{F}(X) .

In particular, if RM(X)<RM(B) we have \mathcal{F}(X)=\emptyset.

Remark 5.5. As a line is determined by two points, there are at most 2 RM(X) -

2RM(B) lines generically contained in X . Any such line contains at most 2 RM(B)
Frécon points. Counting the pairs (g, d) where g\in \mathcal{F}(X) and d\in D_{g}(X) , we obtain

RM(\mathcal{F}(X))+RM(X)-RM(B)\leq 2RM(X)-2RM(B)+RM(B) ,

whence RM(\mathcal{F}(X)) \leq RM(X) .

Remark 5.6. If X and X' are definable subsets of G ,
then any line generically contained

in X\cup X' must be generically contained in X or in X' by connectedness of B . It follows

that \mathcal{F}(X\cup X')=\mathcal{F}(X)\cup \mathcal{F}(X') .

Lemma 5.7. (1) If X\sim Y
,

then \mathcal{F}(X)=\mathcal{F}(Y) .

(2) If g\in \mathcal{F}(X) , then hg\in \mathcal{F}(hX) and gh\in \mathcal{F}(Xh) .

(3) We have d \in  D_{g}(X) if and only if d^{-1} \in  D_{g-1}(X^{-1}) . In particular \mathcal{F}(X)^{-1} =

\mathcal{F}(X^{-1}) .

(4) If g \in \mathcal{F}(X) and X has Morley degree 1, then X \sim \cup D_{g}(x) . In particuliar
g^{-1}X\sim X^{-1}g.

Proof. (1) If g\in \mathcal{F}(X)\backslash \mathcal{F}(Y) , then

RM(\displaystyle \bigcup_{d\in D_{g}(X)}((d\cap X)\backslash Y))=RM(D_{g}(X))+RM(B)=RM(X) ,

contradicting X\sim \mathrm{Y}.

(2) Obvious, as lines are preserved under translation.

(3) Obvious, noting that for a line d its inverse d^{-1} is again a line.

(4) As g\in \mathcal{F}(X) we have

RM(X)=RM(D_{g}(X))+RM(B)=RM(X\cap\cup D_{g}(X)) ;

since X has Morley degree 1 we obtain

RM(X\backslash \cup D_{g}(X))<RM(X) .
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Conversely,

RM(\displaystyle \cup D_{9}(X)\backslash X)=RM(\bigcup_{d\in D_{g}(X)}(d\backslash X))
\leq RM(D_{g}(X))+(RM(B)-1)<RM(X) .

Hence X\sim\cup D_{g}(X) .

If g\in \mathcal{F}(X) ,
then 1\in \mathcal{F}(g^{-1}X) and 1\in \mathcal{F}(X^{-1}g) . So

g^{-1}X\displaystyle \sim\bigcup_{g-1}d=\bigcup_{-1}d^{-1}=\bigcup_{\in d\in D_{1}(X)d\in D_{1}(gX)d-1D_{1}(X^{-1}g)}d^{-1}\sim X^{-1}g,
as the lines containing 1 are subgroups. \square 

Proposition 5.8. Let G be a connected full Probenius group of finite Morley rank, and X

a subset of G which is not almost equal to G. Then either \mathcal{F}(X) is contained in a finite
union of translates of proper definable subgroups of G , or G is not special and

RM(\displaystyle \mathcal{F}(X))\leq\frac{RM(G)+RM(B)}{2}-1<\frac{3}{4}RM(G)-1.
Proof. Let X be a definable subset of G such that \mathcal{F}(X) is not contained in a finite

union of proper definable subgroups of G . We may suppose that X is of Morley degree 1;
translating by g^{-1} for some g\in \mathcal{F}(X) we may furthermore assume that 1 \in \mathcal{F}(X) ,

and

hence X\sim X^{-1} . Then for any g\in \mathcal{F}(X) we have g^{-1}X\sim X^{-1}g\sim Xg ,
and the definable

subgroup

H=\{g\in G:\exists h\in G:gX\sim Xh\}
contains \mathcal{F}(X)^{-1}=\mathcal{F}(X^{-1})=\mathcal{F}(X) . So H=G and X is almost twistedly normal. By
Proposition 4.5 there is a unique definable automorphism  $\sigma$ such that  gX\sim  X $\sigma$(g) for

all  g\in  G ,
and  $\sigma$(g) =g^{-1} for all g \in \mathcal{F}(X) . So $\sigma$^{2} fixes \mathcal{F}(X) and hence G . It follows

that  $\sigma$ is involutive.

As  $\sigma$ is not the identity,  G is not special by Proposition 3.2, and

RM(\displaystyle \mathcal{F}(X))\leq RM(I)\leq\frac{RM(G)+RM(B)}{2}-1<\frac{3}{4}RM(G)-1. \square 
Remark 5.9. In fact, Frécon works with a set X such that X\sim \mathcal{F}(X) . This gives some

better bounds in Proposition 5.8; we hope that separating X and \mathcal{F}(X) might allow a

generalization of Frécon�s method. Note that the only currently known way to obtain a

non‐generic set X with \mathcal{F}(X) big, presented in the next section, automatically yields even

X\subseteq \mathcal{F}(X) .

6. COMMUTATORS

In this section, we shall see that a simple full Frobenius group G of finite Morley rank

with abelian full complement B contains a definable subset X such that RM(\mathcal{F}(X)) =

2RM(B) , unless RM(G)>2RM(B)+1 . This will quickly yield the main theorem.

Proposition 6.1. Let G be a simple full Fyobenius group of finite Morley rank with an

abelian full complement B. If RM(G)=2RM(B)+1 ,
there is a definable subset X with

RM(X)=2RM(B) and X\subseteq \mathcal{F}(X) .
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Proof. Let g=[h, h'] be a non‐trivial commutator, and put

X=\{x\in G:\exists y\in G[x, y]=g\}.
Note that

[ux, y ] = y^{-ux}y= y^{-x}y=[x, y] if and only if u\in C_{G}(y) ,
and

[x, vy]=x^{-1}x^{vy}=x^{-1}x^{y}=[x, y] if and only if v\in C_{G}(x) .

Suppose first that RM(X) =RM(G) . For any x \in X the set \{y \in G : [x, y] =g\}=
C_{G}(x)y has Morley rank RM(B) ,

and every non‐trivial conjugacy class has Morley rank

RM(G)-RM(B) . It follows that

{ (x, y)\in G\times G : [x, y] is conjugate to g}

has Morley rank

RM(X)+RM(B)+RM(G)-RM(B)=2RM(G) ;

it is thus generic in G\times G . It follows that for independent generic x and y both [x, y] and

[y, x] are conjugate to g . So [x, y] is conjugate to [y, x] = [x, y]^{-1} , a contradiction. Thus

RM(X)<RM(G) .

Let B be the Borel containing h
,
and for every y\in Bh

� let B(y) be the Borel containing
y . Then for every x\in B(y)h we have

[x, y]=[h, y]=[h, h']=g,
whence \displaystyle \bigcup_{y\in Bh}, B(y)h\subseteq X(g) . Moreover, if y'\in Bh' with y\neq y' , then B(y)\neq B(y') ,

as

otherwise

y'y^{-1}\in(Bh')(Bh')^{-1}=B,
so B\cap B(y) contains the two points 1 and y'y^{-1} . It follows that h \in  B = B(y) ,

and

g=[h, y]=1 ,
a contradiction.

Thus D_{h}(X)\supseteq\{B(y)h:y\in Bh'\} and

RM(D_{h}(X))\geq RM(Bh')=RM(B) .

Hence

RM(X)\geq RM(D_{h}(X))+RM(B)\geq 2RM(B) ,

and we must have equality. So h \in \mathcal{F}(X) ; as h \in  X can be chosen arbitrarily, X \subseteq

\mathcal{F}(X) .
\square 

Theorem 6.2. Let G be a simple full Probenius group of finite Morley rank and with

abelian full complement B. Then RM(G)>2RM(B)+1 . In particular RM(G)>3.

Proof. We already know that RM(G) >2RM(B) , so suppose RM(G)=2RM(B)+1.
By Proposition 6.1 there is a definable set X with X\subseteq \mathcal{F}(X) and RM(X)=2RM(B) .

Now

RM(\displaystyle \mathcal{F}(X))\geq 2RM(B)>\frac{RM(G)+RM(B)}{2}-1.
So \mathcal{F}(X) and hence X is contained in a finite union of translates of proper definable

subgroups of G by Proposition 5.8. So there is a definable connected subgroup H with

RM(H) = 2RM(B) containing generically a line  d\in  D_{g}(X) for some g \in \mathcal{F}(X) . But

then d^{-1}d is a Borel subgroup B contained in H . Then H is a full Frobenius group with

full complement B and of rank 2 RM(B) ,
a contradiction. \square 
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