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A short, informal description of the intuitive ideas in the holonomy
decomposition of finite transformation semigroups.
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Calculus versus automata theory

One of the fundamental concepts of science and computation is the

notion of change: a system goes from a state to another state due to

external manipulations or due to internal processes at various time‐

scales. If the set of states is a continuum then we study continuous

functions and thus we do analysis. If we have a set of discrete states

then we do automata theory from theoretical computer science. Since

automata theory has an algebraic level of description, we end up in

abstract algebra, namely in semigroup theory.

Transformation semigroup

A transformation semigroup (X, S ) captures the concept of change in \mathrm{a}

rigorous and discrete way. It consists of a set of states X (analogous to

phase space), and a set S of transformations of the state set, s : \mathrm{X}\rightarrow \mathrm{X}

acting by x\mapsto x\cdot s, that is closed under the associative operation of

function composition. Writing s_{1}s_{2} \in  S for the composite function

s1 \in  S followed by s_{2} \in  S, we have x. (s_{1}s_{2}) = (x\cdot s_{1}) . \mathrm{s}_{2} , giving
\mathrm{a} (right) action of S on X. Transformation semigroups are general
enough to model a wide range of processes. All we need is to have a

strong structure theorem for them.

Fiiute state automata (without speci‐
fying mitial and accepting states) and

transformation semigroups are essen‐

tially the same concepts, since \mathrm{a} fixed

generating set for a transformation

semigroup can be considered as a set of

input symbols.

Decompositions

Another fundamental technique of the scientific method is decompo‐
sition. We identify the building blocks of a system, and how these

components work together to build the system. The simpler compo‐
nents are easier to understand. We gain more understanding from

the decomposition if these connections are somehow limited. If the

information goes only in one direction, we talk about a hierarchical

system. The least dependent component does not receive any infor‐

mation from others, while components deeper in the hierarchy are

influenced by the building blocks above.
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Krohn‐Rhodes theory

It is a remarkable result of finite semigroup theory [7], that we can

always find a decomposition in a hierarchical form. There is a caveat

though, we often end up building a bigger system through hierar‐

chical composition. So instead of two systems being the same, we

need to talk about emulation, which is in general a capauility of one

system producing the same dynamics as another one, not necessarily
containing an exact copy. For semigroups, we say that S divides T, if S

is a homomorphic image of a subsemigroup of T.

Algebraically, hierarchical connections are captured by wreath

products. Now we can state a main result of algebraic automata

theory.

Theorem 1 (Krohn‐Rhodes Theorem (informal)). Every finite semi‐

group S is a divisor of wreath product of its building block components. The

The wreath product (X,S)l(\mathrm{Y},T) of

transformation semigroups is the

transformation semigroup (X \mathrm{x}\mathrm{Y},V\mathrm{V})
where

W=\{(\mathrm{s},f)|\mathrm{s}\in S,f\in T^{\mathrm{X}}\},
whose elements map \mathrm{X}\times Y to itself as

follows

(x,y)\cdot(s,f)=(x\cdot \mathrm{s},y\cdot f(x))

\mathrm{g}\mathrm{r}\circ \mathrm{u}\mathrm{p}\mathrm{o}\mathrm{f}\mathrm{a}\mathfrak{l}1 fimctions f
\mathrm{f}_{0}\mathrm{r}x\in \mathrm{x},\in \mathrm{Y}. Here T \mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}-

(under pointwise multiplication). Note

we have written y f(x) for the element

f(x) \in  T applied to  y\in $\gamma$. The wreath

product construction is associative

on the class of transformation semi‐

groups (up to isomorphism) and can be

iterated for any number of components.

groups in the components are divisors of  S itself.

This is analogous to the Jordan‐Hölder Theorem in group theory,
but there we can use embedding instead of division.

The holonomy method

The holonomy decomposition is one particular method for finding
the building blocks of transformation semigroups and composing
them in a hierarchical structure. Beyond the ideas of emulation and

hierarchy, we need two more fundamental concepts: approximatton
and compression.

Approximation gives less information about a system in a way that

the partial description does not conhadict the full description. In the

holonomy decomposition, we extend the action to be defined on sets

of states. Thus, a state is approximated by a set containing it. Then,
we further extend the action to chains of increasingly smaller subsets

of the state set, that successively approximate a state. The hierarchical

nature of the decomposition also originates in these nested sets.

The technical details of the holonomy method are for putting the

extended action on chains into the form of a wreath product.
To do this we need compression, that for repeated patterns stores

the pattern once and then only records its occurrences. Whenever

the semigroup acts the same way on different subsets, we consider

those subsets equivalent and only store the action on the equiva‐
lence class representatives (compression). These representative local

actions are the building blocks of the decomposition, and they are

permutation groups augmented with constant maps. They can be

defined by round‐trips of mappings of elements of the equivalence

The easiest example is the holonomy
decomposition of the semigroup of

all maps of an n ‐element set, thefull
transformation semigroup T_{11} . It divides

a cascade product with n ‐llevels, on

each level with a symmetric group S_{m}
with constants, 2\leq m\leq n.
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classes. The term�holonomy� is borrowed from differential geometry:
a round‐trip of composed bijective maps producing permutations is

analogous to moving a vector via parallel transport along a smooth

closed curve yielding change of the direction of the vector.

For the complete algorithm see [3].

Outlook

There are many possible applications of Krohn‐Rhodes theory [6].
Most recently, it has been picked up in the study of complex systems,
under the general concept of renormalization, coming form theoret‐

ical physics and information theory [1]. However, before the theory
can realize its full potential, we still need to further mathematical

research about its computational aspects. For computational exper‐

iments, a software package called SGPDEC [2,4] is available for the

GAP computer algebra system [S].
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