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Abstract

We construct some triple cyclic covers of any curves and calculate the Weierstrass

semigroups of ramification points on the triple covers.

1 Introduction

Let \mathbb{N}_{0} be the additive monoid of non‐negative integers. A submonoid H of \mathbb{N}_{0} is called

a numerical semigroup if the complement \mathbb{N}_{0}\backslash H is finite. The cardinality of \mathbb{N}_{0}\backslash H is

called the genus of H
, denoted by g(H) . In this paper H always stands for a numerical

semigroup. A curve means a complete non‐singular irreducible algebraic curve over an

algebraically closed field k of characteritic 0 . For a pointed curve (C, P) we set

H(P)= { n\in \mathbb{N}_{0}|\exists f\in k(C) such that (f)_{\infty}=nP},

where k(C) is the field of rational functions on C . Then H(P) is a numerical semigroup,
which is called the Weierstrass semigroup of P . Here g(H(P)) is equal to the genus g(C)
of the curve C . For positive integers a_{1} ,

. . .

, a_{s} we denote by \langle a_{1} ,
. . . ,  a_{s}\rangle the monoid

generated by  a_{1} ,
. . .

, a_{s} . For any integer t \geqq  2 we set d_{t}(H) = \{h' \in \mathrm{N}_{0} | th\prime \in H\},
which is a numerical semigroup. We have the following.

Theorem 1.1 Let t be an integer which is larger than or equal to two. Let  $\pi$ :  C\rightarrow C'

be a cyclic covering of degree t with a totally ramification point P over P' , Then

d_{t}(H(P))=H(P') .

We are devoted to the case t = 3 . A numerical semigroup H is said to be of
triple covering type, which is abbreviated to TC if there exists a triple cyclic covering
 $\pi$ :  C\rightarrow C' with a ramification point P such that H=H\langle P). We are interested in

numerical semigroups which are TC.

'This paper is an extended abstract and the details will appear elsewhere.
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2 Weierstrass semigroups on triple cyclic covers of

\mathbb{P}^{1}

Let  $\pi$ :  C\rightarrow \mathbb{P}^{1} be a triple cyclic covering with a ramification point P . Since we have

d_{3}(H(P))=\mathrm{N}_{0} , the Weierstrass semigroup H(P) is either \mathbb{N}_{0} or \langle 2, 3} or a 3‐semigroup,
where for a positive integer  m an m‐semigroup H means a numerical semigroup whose

minimum positive integer in H is m . The following is a well‐known fact:

Remark 2.1 The converse holds, namely \mathbb{N}_{0} , {2,  3\rangle and any 3‐semigroup are  TC.

3 Weierstrass semigroups on cyclic covers of \mathbb{P}^{1} with

degree 6

A 6‐semigroup H is cyclic if it is the Weierstrass semigroup of a total ramification point
on a cyclic cover of \mathbb{P}^{1} with degree 6. We have the following:

Remark 3.1 A cyclic 6‐semigroup is TC.

Let H be an m‐semigroup. For 1\leqq i\leqq m-1 we set s_{i}=\displaystyle \min\{h\in H|h\equiv i\mathrm{m}\mathrm{o}\mathrm{d} m\}.
The set S(H) = \{m, S_{1}, . . ., \mathcal{S}_{m-1}\} becomes a set of generators for H

) which is called

the \mathcal{S} tandard basis for H.

Example S ( \langle 6)  7\rangle ) =\{6 , 7, 14, 21, 28, 35 \}.

We have the following necessary and sufficient condition for a ‐semigroup to be cyclic.

Theorem 3.2 (Komeda‐Ohbuchi [1]) Let H be a 6‐semigroup with

S(H)=\{6\}\cup\{6m_{i}+i| 1\leqq i\leqq 5\}.

Then the following are equivalent:
i) H is cyclic.
ii) We have the three inequalities

m_{2}+m_{5}\geqq m_{3}+m_{4}, m_{1}+m_{5}\geqq m_{2}+m_{4} and m_{1}+m_{4}\geqq m_{2}+m_{3}.

Example Let H=\langle 6 , 9, 10}. Then we have S(H)=\{6 , 9, 10, 19, 20, 29 \} . Hence,

m_{1}=3, m_{2}=3, m_{3}=1, m_{4}=1 and m_{5}=4,

which implies that H is cyclic, hence TC.
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4 Weierstrass semigroups on triple cyclic covers of

any pointed curves

We have the following:

Lemma 4.1 Let H be an m ‐semigroup with S(H) = \{m, s_{1}, \cdots , s_{m-1}\} . Let n be an

integer with n\displaystyle \geqq\max\{c(H)-m+1, 3m\} and n\not\equiv 0 mod 3 where we set

c(H)=\displaystyle \min\{c\in \mathbb{N}_{0}|c+\mathrm{N}_{0}\subseteqq H\}.

Then the following holds:

i) We have

S(3H+n\mathbb{N}_{0})=\{3m, 3s_{1}, \cdots , 3s_{m-1}, n, 2n\}\cup\{n+3s_{1}, 2n+3s_{1}, \cdots , n+3s_{m-1}, 2n+3s_{m-1}\}.

ii) We obtain g(3H+n\mathbb{N}_{0})=3g(H)+n-1.

Example We have

g(3\langle 3,4)+10\mathrm{N}_{0})=g ( \langle 9 , 12
)  10\rangle ) =3g(\langle 3, 4\rangle)+10-1=18.

Lemma 4.2 Let C be a curve and D a divisor on C such that 3D is linearly equivalent
to a reduced divisor R. We give an \mathcal{O}_{C}-Al_{9}ebra structure on

\mathcal{V}_{2}(D)=\mathcal{O}_{C}\oplus \mathcal{O}_{C}(-D)\oplus \mathcal{O}_{C}(-2D) .

Then we get a triple cyclic covering

 $\pi$ : \tilde{C}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{V}_{2}(D))\rightarrow C

whose branch locus is R.

The above lemma follows from Miranda [2]. In the case t=2
, i.e., the case of double

coverings the following result is known:

Theorem 4.3 (Komeda‐Ohbuch [1]) Let (C, P) be a pointed curve and set H=H(P) ,

which is an m ‐semigroiup. Let d be an integer with 2d-1\displaystyle \geqq\max\{c(H)-m+2, 2m\}
Assume that 2d-1\in H . Then we get a double covering  $\pi$ : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{C}\oplus \mathcal{O}_{C}(-dP))\rightarrow C,
with a ramification point \tilde{P} over P satisfying H(\tilde{P})=2H(P)+(2d-1)\mathbb{N}_{0}.
In our case we get the following:

Theorem 4.4 Let (C, P) be a pointed curve and set H = H(P) , which is an m‐

semigroup. Let d be an integer with 3d-1 \displaystyle \geqq\max\{c(H)-m+2, 3m\} . Assume that

3d-1\in H . Then we get a triple cyclic covering

 $\pi$ : \tilde{C}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{C}\oplus \mathcal{O}_{C}(-dP)\oplus \mathcal{O}_{C}(-2dP))\rightarrow C
with a ramification point \tilde{P} over P satisfying H(\tilde{P})=3H(P)+(3d-1)\mathbb{N}_{0}.
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Corollary 4.5 Let H be an m ‐semigroup such that H=H(P) for some pointed curve

(C, P) . Let n be an integer with n\equiv 2 mod 3 and n\displaystyle \geqq\max\{c(H)-m+2, 3m\} . Assume

that n\in H . Then the numerical semigroup 3H+n\mathbb{N}_{0} is TC.

Example Let a and b be integers with 2\leqq a< b and (a, b)= 1 . Let d Ue an integer
with 3d-1 \geqq \displaystyle \max\{(a-1)(b-2)+1, 3a\} . Assume that 3d-1 \in \{a, b\} . Then the

numerical semigroup 3\{a, b\rangle+(3d-1)\mathbb{N}_{0} is TC, because there is a pointed curve (C)
P)

such that H(P)=\langle a, b}.
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