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1 Back ground

The $\nu$^{+} ‐invariant is a non‐negative integer valued knot concordance invariant defined

by \mathrm{H}\mathrm{o}\mathrm{m} and Wu [2]. The $\nu$^{+} ‐invariant dominates many concordance invariants derived

from Heegaard Floer homology, in terms of obstructions to sliceness, and hence it plays
a special role among such knot concordance invariants.

In this section, we give a short review of knot concordance theory and its relationship
to Heegaard Floer theory.

1.1 Knot concordance

For two knots K and J in S^{3}
,

let -K denote the orientation reversed mirror image of J

and K#J the connected sum of K and J . We say that K is concordant to J if there exists

a smooth disk in B^{4} with boundary K\#(-J) ,
and we denote the relation by K \sim  J.

It is well‐known that the relation \sim is an equivalence relation on the set of knots in
conc.

 S^{3} ,
and connected sum endows the quotient set C := {knots in S^{3} } / \sim with an abelian

conc.

group structure. We often call this group  C the knot concordance group.

While the knot concordance group has been studied intensively for more than 50 years,

the following fundamental problems are still open.

Problem 1. Which two knots are concordant9

Problem 2. Which knots are concordant to the unknot�? (Such knots are called slice

knots.) Find an algorithm or algebraic criteria for detecting the sliceness.

Problem 3. Determine the group structure of C. (It is known that C has \mathbb{Z}^{\infty}\oplus(\mathbb{Z}/2\mathbb{Z})^{\infty}
as a summand.)
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To attack these problems, we use many kinds of knot concordance invariants, i.e. well‐

defined maps

C\rightarrow S

for some set S.

1.2 Knot concordance invariants from Heegaard Floer theory

Heegaard Floer thoery is a Floer homology theory for 3‐manifolds established by Ozsváth

and Szabó [6, 7]. From Heegaard Floer theory, many knot concordance invariants have

been introduced and used to resolve many problems on knot concordance theory. Here

we show several such invariants.

\bullet The correction terms  d(S_{p/q}^{3}(-), i) : C\rightarrow \mathbb{Q} (p/q\in \mathbb{Q}, i\in \mathbb{Z}/p\mathbb{Z}) defined by Ozsváth

and Szabó [8]. Originally, these are invariants of Dehn surgeries along a knot.

\bullet The  $\tau$ ‐invariant  $\tau$ :  C\rightarrow \mathbb{Z} defined by Ozsváth and Szabó [9]. This is famous as a

group homomorphism.

\bullet The  V_{k} ‐sequence V_{k} : C\rightarrow \mathbb{Z}_{\geq 0} (k\in \mathbb{Z}_{\geq 0}) defined by Ni and Wu [4]. It is known that

all correction terms d(S_{p/q}^{3}(-), i) are determined by the V_{k}‐sequence.

\bullet The  v^{+} ‐invariant $\nu$^{+} : C \rightarrow \mathbb{Z}_{\geq 0} defined by \mathrm{H}\mathrm{o}\mathrm{m} and Wu [2]. This represents a

complexity of the V_{k}‐sequence.

\bullet The Upsilon invariant \mathrm{T} : C \rightarrow Cont ([0,2], \mathbb{R}) defined by Ozsváth, Stipsicz and

Szabó [5]. Here Cont ([0,2], \mathbb{R}) denotes the set of continuous functions on the closed

interval [0 ,
2 ] . This invariant is a group homomorphism whose image contains \mathbb{Z}^{\infty} as

a subgroup.

Then, how strong are these concordance invariants? Actually, they are invariant under

a weaker equivalence relation than
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\sim. �

which is defined as follows.

Definition 1. For two elements x, y\in C ,
we say that x is v^{+} ‐equivalent to y (and denote

the relation by x_{ $\nu$}\sim y )+
if the equalities $\nu$^{+}(x-y)=$\nu$^{+}(y-x)=0 hold.

We can verify that the relation
 $\nu$+\sim

is an equivalence relation, and \mathrm{H}\mathrm{o}\mathrm{m} proves the

following theorem.

Theorem 1.1 (\mathrm{H}\mathrm{o}\mathrm{m} [1]) . The quotient C_{ $\nu$}+ := C/_{ $\nu$}\sim+ becomes a quotient group of C.

Moreover, the invariants d(S_{p/q}^{3}(-), i) ,  $\tau$, V_{k}, $\nu$^{+} and \mathrm{T} are invariant under
 $\nu$+\sim

. In other

words, these invariants can be seen as maps on  C_{ $\nu$}+.
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Theorem 1.1 implies that all the above invariants are determined by the $\nu$^{+} ‐equivalence
class of knots. Hence, it is an important problem to understand

 $\nu$+\sim
and  C_{ $\nu$}+.

Furthermore, $\nu$^{+} ‐equivalence is meaningful for Heegaard Floer theory, too. In [6],
Ozsváth and Szabó associated to a knot a \mathbb{Z}\oplus \mathbb{Z}‐filtered�� chain complex CFK^{\infty} . The

\mathbb{Z}\oplus \mathbb{Z}‐filtered chain homotopy equivalence class of CFK^{\infty} is a knot invariant, and we can

compute various kinds of Floer homology groups from CFK^{\infty} ; indeed, we can compute

\bullet the knot Floer homology HFK (and hence we can detect the knot genus and fibered‐

ness as a result), and

\bullet the (all original) Heegaard Floer homology groups \overline{HF}, HF^{\infty}, HF^{\pm} of ALL Dehn

surgeries.

In [1], \mathrm{H}\mathrm{o}\mathrm{m} also proves that the $\nu$^{+} ‐equivalence can be translated into an equivalence
relation with respect to CFK^{\infty} . Let [K] denote the concordance class of a knot K.

Theorem 1.2 (\mathrm{H}\mathrm{o}\mathrm{m} [1]) . Two knot concordance classes [K] and [J] are v^{+} ‐equivalent if
and only if there exists a \mathbb{Z}\oplus \mathbb{Z} ‐filtered chain homotopy equivalence

CFK^{\infty}(K)\oplus A_{1}\simeq CFK^{\infty}(J)\oplus A_{2},

where A_{1} and A_{2} are \mathbb{Z}\oplus \mathbb{Z} ‐filtered chain complexes with H_{*}(A_{1})=H_{*}(A_{2})=0.

Now, it seems natural to ask the following problems.

Problem 4. Determine the group structure of C_{ $\nu$}+.

Problem 5. Find geometrical meaning  of_{ $\nu$}\sim+\cdot
In contrast to the case of  C ,

we can conclude whether a given knot is $\nu$^{+} ‐equivalent to

the unknot by using $\nu$^{+} . In this work, we mainly consider Problem 5. In particular, we

study effects of full‐twist operations on $\nu$^{+}‐invariant.

2 Full‐twist inequalities for the $\nu$^{+}‐invariant

As main results of this work, we obtained full‐twist inequalities for the \mathrm{v}^{+} ‐invariant.

To state the inequalities, we first describe full‐twist operations. Let K be a knot in S^{3}

and D a disk in S^{3} which intersects K in its interior. By performing (-1) ‐surgery along
\partial D ,

we obtain a new knot J in S^{3} from K . Let n = 1\mathrm{k}(K, \partial D) . Since reversing the

orientation of D does not affect the result, we may assume that n\geq 0 . Then we say that

K is deformed into J by a positive full‐twist with n ‐linking, and call such an operation a

full‐twist operation. The main theorem of this paper is stated as follows.
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Theorem 2.1. Suppose that a knot K is deformed into a knot J by a positive full‐twist
with n ‐linking. If n=0 ,

then \mathrm{v}^{+}(J\#(-K))=0 . Otherwise, we have

\displaystyle \frac{(n-1)(n-2)}{2}\leq$\nu$^{+}(J\#(-K))\leq \frac{n(n-1)}{2}.
Remark 1. For any coprime p, q>0 ,

let T_{p,q} denote the (p, q)‐torus knot. Then we note

that $\nu$^{+}(T_{p,q})=(p-1)(q-1)/2 [2 ,
9 ] ,

and hence the inequality in Theorem 2.1 implies

$\nu$^{+}(T_{n,n-1}\# K\#(-K))\leq$\nu$^{+}(J\#(-K))\leq$\nu$^{+}(T_{n,n+1}\# K\#(-K)) .

Since both T_{n,n-1}\# K and T_{n,n+1}\# K are obtained from K by a positive full‐twist with

n‐linking, the inequalities are best possible for any K.

Here we note that Theorem 2.1 gives an inequality for J\#(-K) rather than J and K.

However, by subadditivity of $\nu$^{+}
,

we also have the following result for J and K.

Theorem 2.2. Suppose that K is deformed into J by a positive full‐twist with n ‐linking.

If n=0 ,
then $\nu$^{+}(J) \leq$\nu$^{+}(K) . Otherwise, we have

\displaystyle \frac{(n-1)(n-2)}{2}-$\nu$^{+}(-K)\leq$\nu$^{+}(J)\leq\frac{n(n-1)}{2}+$\nu$^{+}(K) .

3 Applications

In this section, we show two applications of our full‐twist inequalities.

3.1 $\nu$^{+}‐invariant for cable knots

As an application of Theorem 2.2, we gave a lower bound for the $\nu$^{+}‐invariant of all

cable knots.

Theorem 3.1. For any knot K and coprime integers p, q with p>0 ,
we have

$\nu$^{+}(K_{p,q})\displaystyle \geq p\mathrm{v}^{+}(K)+\frac{(p-1)(q-1)}{2},
where K_{p,q} denotes the the (p, q) ‐cable of K.

Note that Wu proves in [10] that the equality holds in the case where p, q > 0 and

 q\geq (2$\nu$^{+}(K)-1)p-1 . Hence Theorem 3.1 extends his result to arbitrary cables in the

form of inequality. Furthermore, Theorem 3.1 also enables us to extend Wu�s 4‐ball genus

bound for particular positive cable knots to all positive cable knots.

Corollary 3.2. If $\nu$^{+}(K)=g_{4}(K) ,
then for any coprime p, q>0 ,

we have

$\nu$^{+}(K_{p,q})=g_{4}(K_{p,q})=pg_{4}(K)+\displaystyle \frac{(p-1)(q-1)}{2}.
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As an application of Corollary 3.2, for instance, we can determine the 4‐ball genus for

all positive cables of the knot T_{2,5}\# T_{2,3}\# T_{2,3}\#(-(T_{2,3})_{2,5}) . This example is used in [2] to

show that \mathrm{v}^{+} \neq  $\tau$ . Remark that the  $\tau$‐invariant cannot determine the 4‐ball genus for

any positive cable of the knot. Also note that this generalizes [2, Proposition 3.5] and

Wu�s result in the introduction of [10].

3.2 A partial order on  $\nu$^{+}‐equivalence classes

As another application, we introduced a partial order on C_{ $\nu$}+ and studied its relationship
to full‐twists by using Theorem 2.1. Our partial order is defined as follows.

Definition 2. For two elements x, y\in C_{ $\nu$}+ ,
we write x\leq y if $\nu$^{+}(x-y)=0.

Note that the equality in the above definition is one of the equalities in the definition of

$\nu$^{+}‐equivalence, and so this partial order seems to be very natural. In fact, we can prove

the following proposition.

Proposition 3.3. The relation \leq is a partial order on C_{ $\nu$}+ with the following properties;

1. For elements x, y, z\in C_{ $\nu$}+ , if x\leq y ,
then x+z\leq y+z.

2. For elements x, y\in C_{ $\nu$}+ , if x\leq y, then-y\leq-x.

3. For coprime integers p, q>0, k\in \mathbb{Z}_{\geq 0} and 0\leq i\leq p-1 ,
all of-d(S_{p/q}^{3}(\cdot), i) ,  $\tau$, V_{k},

$\nu$^{+} and-\mathrm{T} preserve the partial order.

Here the third assertion in Proposition 3.3 implies that there are many algebraic ob‐

structions to one element of C_{ $\nu$}+ being less than another. On the other hand, the following
theorem establishes similar obstructions in terms of geometric deformations.

Theorem 3.4. Suppose that K is deformed into J by a positive full‐twist with n ‐linking.

1. If n=0 or 1, then [J]_{ $\nu$}+ \leq [K]_{ $\nu$}+.

2. If n \geq  3
,

then [J]_{ $\nu$}+ \not\leq [K]_{ $\nu$}+ . In particular, if the geometric intersection number

between K and D is equal to n
,

then [J]_{ $\nu$}+ > [K]_{ $\nu$}+.

Here [K]_{ $\nu$}+ denotes the v^{+} ‐equivalence class of a knot K
,

and the symbol > means x\geq y
and x\neq y for elements x, y\in C_{ $\nu$}+.

In the above theorem, we can see that only the case of n=2 tells us nothing about the

partial order. This follows from the fact that Theorem 2.1 gives 0 \leq $\nu$^{+}(x-y) \leq  1 for

n=2 and hence we can show neither $\nu$^{+}(x-y)=0 nor $\nu$^{+}(x-y)\neq 0.
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We also mention the relationship between our partial order and satellite knots. Let P

be a knot in a standard solid torus V\subset S^{3} with the longitude l
,

and K a knot in S^{3} . For

n \in \mathbb{Z} , Let e_{n} : V\rightarrow S^{3} be an embedding so that e(V) is a tubular neighborhood of K

and 1\mathrm{k}(K, e_{n}(l))=n . Then we call e_{n}(P) the n ‐twisted satellite knot of K with pattern P,
and denote it by P(K, n) . Furthermore, if P represents m times generators of H_{1}(V;\mathbb{Z})
for m \geq  0

,
then we denote w(P) := m . It is proved in [3, Theorem \mathrm{B} ] that the map

[K]_{ $\nu$}+ \mapsto [P(K, n)]_{ $\nu$}+ for any pattern P with w(P) \neq 0 . We extend their theorem to all

satellite knots, and show that those maps preserve our partial order.

Proposition 3.5. For any pattern P and n \in \mathbb{Z}
,

the map P_{n} : C_{ $\nu$}+ \rightarrow  C_{ $\nu$}+ defined by

P_{n}([K]_{ $\nu$+}) :=[P(K, n)]_{ $\nu$}+ is well‐defined and preserve the partial order \leq.

By Proposition 3.5, we obtain infinitely many order‐preserving maps on C_{ $\nu$}+ which

have geometric meaning. Now it is an interesting problem to compare these satellite

maps. Theorem 3.4 tells us the relationship among the maps \{P_{n}\}_{n\in \mathrm{Z}} for some particular

patterns.

Corollary 3.6. Let P be a pattern.

1. If w(P) =0 or 1, then the inequality P_{m}(x) \geq  P_{n}(x) holds for any integers m< n

and x\in C_{ $\nu$}+.

2. If the geometric intersection number between P and the meridian disk of V is equal
to w(P) and w(P) \geq 3 ,

then P_{m}(x) <P_{n}(x) for any m<n and x\in C_{ $\nu$}+.
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