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1 Introduction

This paper focus upon the eight moves to 2‐foams that are derived by
considering the decomposition of the 4‐ball into a product of simplices.
These decompositions, in turn, correspond to codimension-2 singularities of

knotted trivalent graphs, and also the boundaries of chains in a homology
theory that encompasses group and quandle homology. Here two series

of equations are derived. The first series consists of four equations and

includes the Yang‐Baxter equation (YBE). The second series consists of

eight equations and includes the Zamolochikov tetrahedral equation. Some

solutions are proposed that correspond to computing the boundary maps

of certain chains. This focus comes from the fourth section of my talk

May 2017. I believe that slides are posted at the RIMS website. I also

have posted an updated version on my webpage. Personal and financial

acknowledgements appear at the end of this paper.

A fundamental principle in the formulations of categorifications is that

even when two things are naturally isomorphic it is unnatural to consider

them equal. Instead, we study their �sameness�� by examining relation‐

ships among the isomorphisms that relate them. In the case of diagrams
that represent the same knotting, say, of knotted trivalent graphs (KTGs)
or handlebody knots (HBKs), we can formulate a finite set of moves that
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relate the equivalent diagrams, and understand these as local pictures of

embedded 2‐dimensional foams in 4‐space. In general there is a theory of

n‐dimensional foams and codimension 2 embeddings thereof that is formu‐

lated in four steps.

First, a space Y^{n} is defined that is a model for the local structure of the

foam. Second, a model for local crossings is formulated. A crossing will

be understood as an isolated point that occurs at the intersection of strata

when the foam is projected into codimension 1. Third, the crossings of

(n+1)‐dimensional foams are used to formulate an essential set of moves

for n‐foams. Fourth, these crossings are described as chains in a homology
theory that encompasses group and rack homology.

In this note, I will not have space to describe the full set of Reidemeis‐

ter/Roseman moves to 2‐foams. However, I point out that the list given
in [2] is incomplete. There are additional moves that involve the twist ver‐

tex which are not presented there. That error will not affect the current

work which is more or less self‐contained. Please also consult [1] for more

information.

An organizational sketch follows. In Section 2, the axiomatics of the op‐

erations of multiplication and conjugation in a group are examined. Those

axioms will be expressed diagrammatically, and the oriented moves to dia‐

grams are interpreted as crossings of foams. In Section 3, the definition of

the space Y^{n} is given, and in general, local pictures of crossings are defined.

Importantly, the crossings of (n+1) ‐foams correspond to some of the moves

for n‐foams. The unification of group and quandle homology is outlined.

The eight fundamental moves to 2‐foams are presented. In Section 4, the

original four moves to knotted trivalent graphs (KTG) are reinterpreted as

abstract tensor diagrams as are the eight moves to foams. The foam moves

are also depicted as 3‐dimensional polytopes with pentagonal, hexagonal,
and square faces. The square faces are sometimes commutators; other

times they correspond to the associator. In Section 5, a simple solution to

these systems is given via the homological considerations.
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2 Algebraic Preliminaries

Let G denote a group and consider conjugation as a separate operation that

is denoted ( \triangleleft ) . The group operation will be denoted by juxtaposition
when no ambiguity arises. Note also that we can restrict to a subset that

is closed under multiplication and conjugation. We have the following four

properties:

\mathrm{A} (ab)c=a(bc) ;

YI (ab)\triangleleft c=(a\triangleleft c)(b\triangleleft c) ;

IY (a\triangleleft b)\triangleleft c=a\triangleleft(bc) ;

Ill (a\triangleleft b)\triangleleft c=(a\triangleleft c)\triangleleft(b\triangleleft c) .

These properties are schematized in Fig. 1 as moves to KTGs.

The moves are directed; the directions allow one to keep track of the

orientations in homological boundaries. Thus, this author considers each

of \mathrm{A}
, YI, IY, and 111 to have a well‐defined left‐hand and right‐hand side.

In fact, within these pictures boundaries are computed. The text will soon

discuss boundaries. For the time being, consider the \mathrm{A}‐move as a chain

(\mathrm{a},\mathrm{b},\mathrm{c}) ; the Yl‐move is a chain (a, b)|c ; the IY‐move is a chain a|(b, c) ,
and

the Ill‐move is a chain a|b|c . boundaries of chains are computed using group

homology and a graded Leibniz rule.

It is well‐known that the \mathrm{A}‐move corresponds to a tetrahedron and the

Ill‐move corresponds to a cube when the planar pictures are dualized: the

dual to a trivalent vertex is a triangle; the dual to a crossing is a square.

Less apparent, but nonetheless easy to observe, is that each of YI and

IY correspond to triangular prisms:  $\Delta$\times [0 ,
1 ] and [0 ,

1 ] \times $\Delta$ respectively.
Figure 2 indicates the prismatic structure while simultaneously indicating
each move as a broken surface diagram of a local crossing for a knotted

2‐foam.

3 The space  Y^{n} , local crossings and homology

Let $\Delta$^{n+1}=\displaystyle \{\vec{x}\in \mathbb{R}^{n+2}:\sum x_{i}=1 \& 0\displaystyle \leq x_{i}\} denote the standard simplex.
The space Y^{n} \subset $\Delta$^{n+1} is defined as follows: Y^{0} = (\displaystyle \frac{1}{2}, \frac{1}{2}) . Take $\Delta$_{j}^{n} =
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Figure 1: The four moves to KTGs that correspond to the boundaries of 3‐chains

Figure 2: The local pictures for crossings of 2‐foams fit inside prisms
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\{\vec{x}\in $\Delta$^{n+1} : x_{j} =0\} . Embed a copy, Y_{j}^{n-1} \subset $\Delta$_{j}^{n} . Cone \displaystyle \bigcup_{j=1}^{n+2}Y_{j}^{n-1} to the

barycenter b=\displaystyle \frac{1}{n+2}(1,1, \ldots, 1) of $\Delta$^{n+1} Define,

Y^{n}=C(\displaystyle \bigcup_{j=1}^{n+2}Y_{j}^{n-1}) .

Then the space Y^{1} is a neighborhood, \mathrm{Y}
,

of a trivalent vertex. The space

Y^{2} is the local picture of the associativity relation when envisioned as a

time‐elapsed manifestation of a trivalent vertex moving past another. It is

the carrier of the 6j‐symbol in the definition of Turaev‐Viro invariants. It

also is known as the IH‐move.

An n ‐dimensional foam (with boundary) or simply an n ‐foam is a com‐

pact topological space X that locally modeled upon Y^{n} . Specifically, for

every point x \in  X
,

there is a neighborhood N(x) and a homomorphism
from N(x) to a neighborhood of a point y\in Y^{n} . If y is non‐singular, then

x is a manifold‐like point. In general, a point y\in Y^{n} has a neighborhood
that is homeomorphic to the product of a lower dimensional disk and a

point in a lower dimensional Y^{k} Of course, the boundary of an n‐foam is

an (n-1) ‐foam.

Since Y^{n}\subset$\Delta$^{n+1} ,
we can use this embedding to define a local crossing

diagram.
Take

[\displaystyle \bigcup_{l=1}^{k} ($\Delta$^{j_{1}} \times \cdot \cdot \cdot \times Y^{j_{\ell}-1} \times \cdot \cdot \cdot \times$\Delta$^{j_{k}}) \subset \mathbb{R}^{n+1} \times\{l\}] ,

and project this into \mathbb{R}^{n+1} The factor p is in the (n+2)\mathrm{n}\mathrm{d} coordinate and

represents the relative height of each Y.

[ (Y^{j_{1}-1} \times$\Delta$^{j_{2}} . . . \times$\Delta$^{j\ell} \times \cdot \cdot \cdot \times$\Delta$^{j_{k}}) \subset \mathbb{R}^{n+1} \times \{1\}] ,

[ ($\Delta$^{j_{1}} \times Y^{j_{2}-1} . . . \times$\Delta$^{j\ell} \times \cdot \cdot \cdot \times$\Delta$^{j_{k}}) \subset \mathbb{R}^{n+1} \times \{2\}] ,

[ ($\Delta$^{j_{1}} \times$\Delta$^{j_{2}} . . . \times Y^{j\ell-1} \times \cdot \cdot \cdot \times$\Delta$^{j_{k}}) \subset \mathbb{R}^{n+1} \times\{l\}] ,

[ ($\Delta$^{j_{1}} \times$\Delta$^{j_{2}} . . . \times$\Delta$^{j\ell} \times \cdot \cdot \cdot \times Y^{j_{k}-1}) \subset \mathbb{R}^{n+1} \times \{k\}]
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These project to a 0‐dimensional multiple point in \displaystyle \prod_{\ell=1}^{k}$\Delta$^{j_{\ell}} \subset \mathbb{R}^{n+1}

Here we are interested in the local pictures for KTGs and for 2‐foams.

Case 1: Local pictures for crossings of KTGs. There are only two

ways to express a 2‐disk as a product of simplices. It is either a triangle
 $\Delta$ or the product of intervals: a square  $\Delta$^{1} \times $\Delta$^{1} In the latter case, the

crossing picture is exactly the standard depiction of a knot crossing. In

the former, the space \mathrm{Y} lives as the dual to the triangle.

Case 2: Local crossings of 2‐foams. There are four local pictures: The

space Y^{2} itself represents a �crossing� in that its vertex is 0‐dimensional

and isolated from other crossings. It is the junction of the six sheets and

four seams of Y^{2} Each seam has a neighborhood of the form \mathrm{Y}\times \mathrm{I} . In the

case of the YI move, a transverse 2‐dimensional disk crosses over the seam

of \mathrm{Y}\times I. For an IY move, the transverse sheet crosses under \mathrm{Y}\times I. The

Ill‐move, when viewed from the current time‐elapsed perspective, is the

standard triple point figure that arrises by comparing the differing sides

of the Reidemeister type III move. In the YI and IY cases, the crossing
point has valence 5. It is the junction of the before and after seams of the

\mathrm{Y}\times \mathrm{I}
,

and the three legs of \mathrm{Y} crossing the transverse disk. The vertex of

the Ill‐move has valence 6 and coincides with the origin in the intersection

of the three coordinate planes \{(x, y, z) : xyz=0\}.
In general, we envision a grouping of an n‐letter sequence as a decom‐

position of the n‐ball into a product of simplices, or alternately, the 10‐

cal picture of a crossing of an (n-1) ‐dimensional foam. Meanwhile, the

grouping can be interpreted as a family of binary trees in which a positive
half‐twist is inserted among the bottom branches of the trees. For a given
grouping, Each binary tree can be �reassociated� using the \mathrm{A}‐move in, per‐

haps, many different ways. In addition, the crossings of the half‐twists can

commute with the \mathrm{Y}‐type vertices via IY or YI moves. And three successive

crossings that form a triangle can be interchanged using the Ill move.

A given half‐twisted family of trees has multiple planar diagrammatic
representative. Each can be represented as a composition of words of the

form . . . \mathrm{I}\mathrm{Y}|\ldots \mathrm{I} ) or . . . \mathrm{I}\mathrm{X}|\ldots For each such composition, one can

dualize the planar picture as a tiling by triangles (duals to Y) and squares
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(duals to X). Alternative representations are composed as moves across

tetrahedra, triangular prisms, or cubes. Unions of these moves form 4‐

dimensional polytopes that are also prismatic. The pattern continues.

Let us digress on compositions of words and moves to KTGs for a mo‐

ment. We can express the relations \mathrm{A}
, YI, \mathrm{I}\mathrm{Y}

,
and 111 as follows.

\mathrm{A} (YI) \circ(\mathrm{Y})\Rightarrow(\mathrm{I}\mathrm{Y})\circ(\mathrm{Y}) .

YI (YI) \mathrm{o}(\mathrm{X})\Rightarrow(\mathrm{I}\mathrm{X})\circ (XI)  0 (YI)

IY (XI) 0 (IX) \circ(\mathrm{Y}|)\Rightarrow(\mathrm{I}\mathrm{Y})\circ(\mathrm{X})

III (XI) 0 (IX) \mathrm{o}(\mathrm{I}\mathrm{X})\Rightarrow(\mathrm{I}\mathrm{X})0 (IX) 0 (XI)

We would be remiss in our duty to the reader if we did not point out

that the Ill move in this form is a version of the Yang‐Baxter equation.

We give a more algebraic description that depends upon partitioning.
Let g_{1}, g_{2} ,

. . .

, g_{n} denote elements of a group G . We will partition these

into subsets \langle g_{1} ,
. . .

,  g_{\ell_{1}}\rangle \langle g_{\ell_{2}+1} ,
. . .

,  g_{l_{1}+\ell_{2}}\rangle . . . \langle g_{[$\Sigma$_{j=1}^{k-1}\ell_{j}+1]} ,
. . .

, g_{[$\Sigma$_{j=1}^{k}\ell_{j}]}\rangle.
We consider such partitioned set of group elements to represent a gen‐

erating n chain. Here, of course, \displaystyle \sum_{j=1}^{k}P_{j}=n.
To simplify the notation, we let i stand in for g_{i} . The partitioning then

looks like \langle 1, . . .

, \ell_{1}\rangle\langle\ell_{2}+1 ,
. . .

, P_{1}+\displaystyle \ell_{2}\rangle\ldots\langle[\sum_{j=1}^{k-1}\ell_{j}+1] ,
. . .

, [\displaystyle \sum_{j=1}^{k}\ell_{j}]\rangle.
Using a group‐theoretic boundary operator, we define

\partial\langle j+1, j+2 ,
. . .

, j+k\}
= \triangleleft(j+1)\langle j+2 ,

. . .

,  j+k\rangle

+ \displaystyle \sum_{l=1}^{k-1}(-1)^{\ell}\langle j+1 ,
. . .

, (j+\ell)\cdot(j+\ell+1) ,
. . .

,  j+k\rangle

+ (-1)^{k}\langle j+1,\ldots,j+k-1\rangle.

In particular,
\partial\langle j+1\rangle=\triangleleft(j+1)_{\ovalbox{\tt\small REJECT}^{-}\ovalbox{\tt\small REJECT}}.

This is extended to a partitioned sequence by means of the Leibniz rule.

\partial(PQ)=(\partial P)Q+(-1)^{\dim P}P(\partial Q) .
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It is easy to show that \partial\circ\partial=0 since conjugation and multiplication obey
properties \mathrm{A}

, YI, \mathrm{I}\mathrm{Y}
,

and

Since we are most interested in the relationships among 2‐foams, we will

compute the boundaries of \langle a, b, c,  d\rangle through \langle a\rangle\langle b\rangle\langle c\rangle\langle d\rangle

\partial\langle a, b, c,  d\rangle = \langle b, c, d\rangle-\langle ab, c, d\rangle+\langle a , bc, d\rangle-\langle a, b, cd\rangle+\langle a, b,  c\rangle ;

\partial\langle a, b,  c\rangle\langle d\rangle = \langle b, c\rangle\langle d\rangle-\langle ab, c\rangle\langle d\rangle+\langle a, bc\rangle\langle d\rangle-\langle a,  b\rangle\langle d\rangle
-\langle a\triangleleft d, b\triangleleft d, c\triangleleft d\rangle+\langle a, b, c\rangle ;

\partial\langle a, b\rangle\langle c,  d\rangle = \langle b\rangle\langle c, d\rangle-\langle ab\rangle\langle c, d\rangle+\langle a\rangle\langle c,  d\rangle
+\langle a\triangleleft c, b\triangleleft c\rangle\langle d\rangle-\langle a, b\rangle\langle cd\rangle+\langle a, b\rangle\langle c\rangle ;

\partial\langle a,  b\rangle\langle c\rangle\langle d\rangle = \langle b\rangle\langle c\rangle\langle d\rangle-\langle ab\rangle\langle c\rangle\langle d\rangle+\langle a\rangle\langle c\rangle\langle d\rangle
+\langle a\triangleleft c, b\triangleleft c\rangle\langle d\rangle-\langle a, b\rangle\langle d\rangle
-\langle a\triangleleft d, b\triangleleft d\rangle\langle c\triangleleft d\rangle+\langle a, b\rangle\langle c\rangle ;

\partial\langle a\rangle\langle b, c,  d\rangle = \langle b, c, d\rangle-\langle b, c,  d\rangle
-\langle a\triangleleft b\rangle\langle c,  d\rangle+\langle a\rangle \langle bc,  d\rangle-\langle a\rangle\langle b, cd\rangle+\langle a\rangle\langle b,  c\rangle ;

\partial\langle a\rangle\langle b,  c\rangle\langle d\rangle = \langle b, c\rangle\langle d\rangle-\langle b,  c\rangle\langle d\rangle
-\{a\triangleleft b\rangle\langle c\rangle\langle d\rangle+\langle a\}\langle bc\rangle\langle d\rangle-\langle a\rangle\langle b\rangle\langle d\rangle
-\langle a\triangleleft d\rangle\langle b\triangleleft d, c\triangleleft d\rangle+\langle a\rangle\langle b, c\rangle ;

\partial\langle a\rangle\langle b\rangle\langle c,  d\rangle = \langle b\rangle\langle c, d\rangle-\langle b\rangle\langle c, d\rangle-\langle a\triangleleft b\rangle\langle c, d\rangle+\langle a\rangle\{c,  d\rangle
+\langle a\triangleleft c\rangle\langle b\triangleleft c\rangle\langle d\rangle-\langle a\rangle\langle b\rangle\langle cd\rangle+\langle a\rangle\langle b\rangle\langle c\rangle ;

\partial\langle a\rangle\langle b\}\langle c\rangle\langle d\rangle = \langle b\rangle\langle c\rangle\langle d\rangle-\langle b\rangle\langle c\rangle\langle d\rangle-\langle a\triangleleft b\rangle\langle c\rangle\langle d\rangle+\langle a\rangle\langle c\rangle\langle d\rangle
+\langle a\triangleleft c\rangle\langle b\triangleleft c\rangle\langle d\rangle-\langle a\rangle\langle b\rangle\langle d\rangle
-\langle a\triangleleft d\rangle\langle b\triangleleft d\rangle\langle c\triangleleft d\rangle+\langle a\rangle\langle b\rangle\langle c\rangle.

4 Moves to foams as abstract tensor diagrams

The local crossings of 3‐foams are represented here as moves to 2‐foams.

There are eight local pictures. We will envision these by examining the

boundaries of each of the local pictures. Imagine that the letters (a, b, c, d)
adorn the thin strings of the diagrams on the right hand side of each cross

section. Follow the strings towards the left. Each \mathrm{Y} junction represents a
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Figure 3: The YYY move that corresponds to $\Delta$^{4}

binary multiplication. Each Xjunction can be expressed as a transposition,
or more precisely as a braiding. The vertical steps on each figure are of the

form \mathrm{A}
, YI, \mathrm{I}\mathrm{Y}

, Ill, or possibly a commutation of distant moves. The local

pictures are given in the Figures: 3, 4, 5, 6, 7, 8, 9, and 10. These corre‐

spond respectively to groupings (a, b, c, d) , (a, b, c)|d, (a, b)|(c, d) , (a, b)|c|d,
a|(b, c, d) , a|(b, c)|d, a|b|(c, d) ,

and a|b|c|d.

5 Formulating and solving tensorial equations

The same figures will be illustrated without the movies of the 2‐foams as

the horizontal cross‐sections. Before that, let us make an observation. The

horizontal cross‐sections are compositions of words in 1, X, and Y. They
are connected vertically by moves that correspond to the moves \mathrm{A}

, YI, IY,
and Ill. In addition, there are commutators that occur because distant

expressions of the Xs or Ys commute. Each of the atomic pieces \mathrm{A}
, YI,

IY and Ill will be expressed as an abstract tensor. Respectively, the tensor

operators are \mathrm{K}, \mathrm{M}, \mathrm{W} or \ovalbox{\tt\small REJECT} . As such V\otimes V\leftarrow^{\mathrm{K}}V\otimes V, V\otimes V\leftarrow^{\mathrm{M}}V\otimes V\otimes V,
V\otimes V\otimes V\leftarrow^{\mathrm{W}}V\otimes V ,

and V\otimes V\otimes V\leftarrow^{\ovalbox{\tt\small REJECT}}V\otimes V\otimes V . The last tensor

operator \ovalbox{\tt\small REJECT} is a handmade version of the cyrillic letter that is pronounced
�je.� The vector space V is the direct sum of two vector spaces T and
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Figure 4: The YYI move that corresponds to $\Delta$^{3}\times$\Delta$^{1}

Figure 5: The YY foam move that corresponds to $\Delta$^{2}\times$\Delta$^{2}
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Figure 6: The YII foam move that corresponds to $\Delta$^{2}\times$\Delta$^{1} \times$\Delta$^{1}

Figure 7: The IYY foam move that corresponds to $\Delta$^{1} \times$\Delta$^{3}
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Figure 8: The 1 foam move that corresponds to $\Delta$^{1} \times$\Delta$^{2}\times$\Delta$^{1}

Figure 9: The I foam move that corresponds to $\Delta$^{1} \times$\Delta$^{1} \times$\Delta$^{2}
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Figure 10: The Illl foam move that corresponds to $\Delta$^{1} \times$\Delta$^{1} \times$\Delta$^{1} \times$\Delta$^{1}

S ,
called together and separated. The summands T and S each are free

over pairs of elements of the group G.1 In T we write the basis elements

(a, b) and in S we write a|b . More generally, we may assume that T and S

are free modules generated by pairs of elements (a, b) and a|b respectively.
Please note, there is no intension to confuse the notation a|b with the bar

resolution. They are different.

The figures 11 through 14 indicate the junctions at the moves, and

they rewrite the relations induced from the foam moves as relationships
among the tensor operators \mathrm{K}, \mathrm{M}, \mathrm{W}

,
and \ovalbox{\tt\small REJECT} . In particular, we imagine the

crossings (which are of the form \mathrm{X}\times[0,1] ) and the multiplication operators

(which are of the form \mathrm{Y}\times [0,1] ) as the carriers of the basis of the tensor

equations. The strings of the form \mathrm{X}\times[0 ,
1 ] correspond to bases of S ,

and

those of the form \mathrm{Y}\times [0 ,
1 ] correspond to the bases in T.

These tensor equations are the family in which we are most interested.

However, the moves \mathrm{A}
, YI, \mathrm{I}\mathrm{Y}

,
and 111 also can be formulated as abstract

1More generally, we can assume that we have a free module over any algebraic structure for which the

conditions A through 111 hold.
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\mathrm{K}_{\mathrm{p},\mathrm{q}}^{\mathrm{m},\mathrm{n}}\mathrm{K}_{\mathrm{s},\mathrm{t}}^{\mathrm{p},\mathrm{r}}=\mathrm{K}_{\mathrm{u},\mathrm{v}}^{\mathrm{n},\mathrm{r}}\mathrm{K}_{\mathrm{s},\mathrm{w}}^{\mathrm{m},\mathrm{u}}\mathrm{K}_{\mathrm{t},\mathrm{q}}^{\mathrm{w},\mathrm{v}}
\mathrm{M}_{\mathrm{t},\mathrm{u},\mathrm{v}}^{\mathrm{p},\mathrm{q}}\mathrm{M}_{\mathrm{x},\mathrm{y},\mathrm{z}}^{\mathrm{u},\mathrm{r}}\mathrm{K}_{\mathrm{m},\mathrm{n}}^{\mathrm{t},\mathrm{x}}=\mathrm{K}^{\mathrm{q}},\prime\'{i}^{\mathrm{r}}\mathrm{M}_{\mathrm{m},\mathrm{y},\mathrm{j}}^{\mathrm{p},\mathrm{s}}\mathrm{M}_{\mathrm{n},\mathrm{z},\mathrm{v}}^{\mathrm{j},\mathrm{i}}

Figure 11: Abstract tensor equations YYY and YYI

\mathrm{W}_{\mathrm{i},\mathrm{j}}^{\mathrm{p},\mathrm{q},\mathrm{r}}\mathrm{M}_{\mathrm{m},\mathrm{n},\mathrm{y}}^{1,\mathrm{s}}=\mathrm{M}_{\mathrm{t},\mathrm{u},\mathrm{v}}^{\mathrm{r},\mathrm{s}}\mathrm{M}_{\mathrm{m}\mathrm{x},\mathrm{z}}^{\mathrm{q},\mathrm{t}}\mathrm{W}_{\mathrm{n},\mathrm{h}^{i}}^{\mathrm{p},\mathrm{x}\mathrm{u}}\mathrm{W}_{\mathrm{y},\mathrm{i}}^{\mathrm{h},\mathrm{z},\mathrm{v}} \ovalbox{\tt\small REJECT}_{\mathrm{t},\mathrm{x},\mathrm{u}}^{\mathrm{p},\mathrm{q},\mathrm{r}}\mathrm{M}_{\mathrm{y},\mathrm{u}}^{\mathrm{x},\mathrm{s}}|,\mathrm{M}_{\mathrm{m},\mathrm{n},\mathrm{z}}^{\mathrm{t},1}=\mathrm{M}^{\mathrm{r},\mathrm{s}}\mathrm{j}_{X\prime}\mathrm{g}\mathrm{M}_{\mathrm{m},\mathrm{t},\mathrm{w}}^{\mathrm{q},\mathrm{j}}\ovalbox{\tt\small REJECT}_{\mathrm{n},\mathrm{y},\mathrm{f}}^{\mathrm{p},\mathrm{t}X}\ovalbox{\tt\small REJECT}_{\mathrm{z},\mathrm{u},\mathrm{v}}^{\mathrm{f},\mathrm{w},\mathrm{g}}

Figure 12: Abstract tensor equations YY and YII
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\mathrm{M}_{\mathrm{u},\mathrm{v}\mathrm{x}}^{\mathrm{p},\mathrm{q}}\ovalbox{\tt\small REJECT}^{\mathrm{x}' \mathrm{r}' \mathrm{s}}\mathrm{i},\mathrm{j},\mathrm{n}\mathrm{X}^{\mathrm{v}' \mathrm{j}' \mathrm{t}}\mathrm{h},\mathrm{g},\mathrm{f}\mathrm{W}_{\mathrm{y},\mathrm{z}}^{\mathrm{u},\mathrm{i},\mathrm{h}}=\mathrm{W}_{\mathrm{u},\mathrm{v}}^{\mathrm{q},\mathrm{s},\mathrm{t}}\ovalbox{\tt\small REJECT}_{\mathrm{y}\mathrm{i}\mathrm{j}}^{\mathrm{p}\mathrm{r}\mathrm{u}}\prime\prime\prime\prime \mathrm{M}_{\mathrm{z},\mathrm{f},\mathrm{n}}^{\mathrm{j},\mathrm{v}}

\mathrm{K}_{\mathrm{u},\mathrm{v}}^{\mathrm{p},\mathrm{q}}\mathrm{W}_{\mathrm{i}\mathrm{j}}^{\mathrm{v},\mathrm{r},\mathrm{s}}\mathrm{W}_{\mathrm{y},\mathrm{z}}^{\mathrm{u},\mathrm{i},\mathrm{t}}= \mathrm{W}_{\mathrm{u},\mathrm{v}}^{\mathrm{q},\mathrm{s},\mathrm{t}}\mathrm{W}_{\mathrm{y},\mathrm{i}}^{\mathrm{p},\mathrm{r},\mathrm{u}}\mathrm{K}_{\mathrm{z},\mathrm{j}}^{\mathrm{i},\mathrm{v}}

Figure 13: Abstract tensor equations IYY and 1

\mathrm{w}_{\mathrm{h},\mathrm{j}}\mathrm{w}_{\mathrm{i},\mathrm{n}}\ovalbox{\tt\small REJECT}_{\mathrm{x},\mathrm{y},\mathrm{z}}=\ovalbox{\tt\small REJECT}_{\mathrm{v},\mathrm{g},\mathrm{f}}\ovalbox{\tt\small REJECT}_{\mathrm{x},\mathrm{h},\mathrm{j}}\mathrm{w}_{\mathrm{y},\mathrm{i}}^{\mathrm{p},\mathrm{h},\mathrm{g}}\mathrm{w}_{\mathrm{z},\mathrm{n}}^{\mathrm{i}\mathrm{j},\mathrm{f}}\mathrm{p},\mathrm{q},\mathrm{r}\mathrm{j},\mathrm{s},\mathrm{t}\mathrm{h},\mathrm{i},\mathrm{u}\mathrm{r},\mathrm{t},\mathrm{u}\mathrm{q},\mathrm{s},\mathrm{v},

\ovalbox{\tt\small REJECT}_{\mathrm{V}}\prime \mathrm{p}' \mathrm{q},\mathrm{r}\ovalbox{\tt\small REJECT}_{\mathrm{z},\mathrm{e},\mathrm{n}}\ovalbox{\tt\small REJECT} \mathrm{k},\mathrm{h},\mathrm{j}\ovalbox{\tt\small REJECT}_{g,\mathrm{f},\mathrm{i}}=\mathrm{y},\mathrm{s},\mathrm{t}\mathrm{x}' \mathrm{e}' \mathrm{u}\mathrm{v},\mathrm{z},\mathrm{k} \ovalbox{\tt\small REJECT}_{\mathrm{k},\mathrm{z},\mathrm{v}}^{\mathrm{r},\mathrm{t},\mathrm{u}}\ovalbox{\tt\small REJECT}_{\mathrm{g},p}^{\mathrm{q},\mathrm{s},\mathrm{k}}\mathrm{e}(\ovalbox{\tt\small REJECT}_{\mathrm{f},\mathrm{h},\mathrm{y}}^{\mathrm{p},\mathrm{e},\mathrm{z}}\ovalbox{\tt\small REJECT}_{\mathrm{i}\mathrm{j},\mathrm{n}}^{\mathrm{y},\mathrm{x},\mathrm{v}}

Figure 14: Abstract tensor equations 1 and I
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tensors. For both A and 111 these formulations are no surprise. In the

case of A the equations is the relation among the structure constants in

an associative algebra. In the case of Ill, the equation is the Yang‐Baxter
relation written in tensorial form. These four equations appear in Table 1.

Here and below, Einstein summation conventions hold: sums are taken

Table 1: The equations induced by the KTG moves

over repeated indices that appear as subscripts and superscripts.
We have the tensor equations for the 2‐foam moves in Table 2.

Table 2: The equations induced by the 2‐foam moves

Now we turn to solutions. For the series of equations in the Table 1,
we formulate solutions as follows. Let V denote group algebra, or more

generally a free module with basis elements of a group, or set with opera‐

tions and (\triangleleft) that satisfy our main properties. Let V\otimes V\leftarrow^{\mathrm{Y}} V ,
and

V\otimes V\leftarrow^{\mathrm{X}}V\otimes V denote tensor operators of the form

\mathrm{Y}_{c}^{a,b}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} c=ab,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.

38



\mathrm{X}_{c,d}^{a,b}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} c=b \& d=b^{-1}ab,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
It is easy to check that these form a solution, but in fact, we will give a

more sophisticated reason for this in a moment.

Theorem 1. The tensor entries defined by

\mathrm{K}_{r,s}^{p,q}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} \exists a, b, c \mathrm{s}.\mathrm{t}. [Case]\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.
\mathrm{M}_{p,q,r}^{i,j}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} \exists a, b, c \mathrm{s}.\mathrm{t}. [Case] jq==((0,0((a,b 0|0)a|c),\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.

\mathrm{W}_{p,q}^{i,j,\ell}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} \exists a, b, c \mathrm{s}.\mathrm{t}. [Case]\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.
\ovalbox{\tt\small REJECT}_{s,t,u}^{p,q,r}= \left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} \exists a, b, c \mathrm{s}.\mathrm{t}. [Case]\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.
where, e.g., a\triangleleft c=c^{-1}ac, (a, b)\triangleleft c=(a\triangleleft c, b\triangleleft c) ,

and (a|b)\triangleleft c=(a\triangleleft c)|(b\triangleleft c)
solve the system of equations in Table 2.

Moreover, the tensor operators \mathrm{Y}_{c}^{a,b} and \mathrm{X}_{c,d}^{a,b} that are defined above satisfy
the equations contained in Table 1.

PROOF. We start with the conceptually easier case for the solutions

X and Y. The tensor equations in Table 1 arise as a result of taking
the formal boundaries of chains (a, b, c) (condition A), (a, b)|c (condition
YI), a|(b, c) (condition IY), and a|b|c (condition Ill). The subscripts and

the superscripts in the expressions for \mathrm{Y}^{a,b} and \mathrm{X}_{c,d}^{a,b} correspond formally
to taking the boundaries of the chains (a, b) and a|b . Thus we can see
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that the tensor operator in the expressions are, in fact, cocycles that are

coboundaries. Essentially, we are taking the boundary twice, and thus the

equalities hold.

More specifically in this case, the vector space (or module V in this case

should be an expression as chains in S_{1}\oplus T_{1} where each summand is just
a free module generated by the underlying group. In this case, the sub‐,
and superscripts should be listed as pairs of basis elements in the group.

Such a listing is given explicitly for the sub‐ and superscripts of \mathrm{K}, \mathrm{M},
\mathrm{W}

,
and \ovalbox{\tt\small REJECT} . The equations of Table 2 are formulated by means of taking a

formal boundary. The sub‐ and superscripts are the result of taking the

boundary once more with the signs of the top and bottom being opposite.
Thus these equations hold since the operators are, in fact, cocycles that

are coboundaries. This completes the proof. \square 

In full generality, the boundaries of crossings of n‐dimensional foams

give 0‐dimensional multiple points in the boundaries of prismatic sets.

They are joined by arcs in this boundary. We can use these to formu‐

late tensor equations that simultaneously include the higher dimensional

versions of the Zamolodchikov equation and equations that formulate the

higher dimensional Pachner moves. Meanwhile, using the underlying alge‐
braic structure we obtain solutions precisely because a homology theory is

formed.

Finally, we remark that equation YYY is a version of the Elliott‐Uiedenharn

identity, and equation 1111 is the Zamolochikov equation given in tensorial

form. In [3], a similar collection of generalizations are given. But only
extreme cases seem to coincide.
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