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1 Introduction

All knots and links are assumed to be ordered and oriented, and they are considered up
to ambient isotopy in the oriented 3-sphere S3.

A (m-)ribbon fusion on a link L is an m-fusion on L and an m-component trivial link
O which is disjoint from L and each of whose component is attached by a unique band
to L. Note that any ribbon link can be obtained from the trivial link by a ribbon fusion.

An m-ribbon fusion is called a (m-)simple-ribbon fusion (or an SR-fusion) if O bounds
m mutually disjoint disks D which are split from L such that each disk of D intersects
one of the bands B for the ribbon fusion exactly once and each band of B intersects one
disk of D exactly once [3].

The following is the precise definition of the simple-ribbon fusion. Let L be a link and
O = 0,U- - -UO,, the m-component trivial link which is split from L. Let D = D U---UD,,
be a disjoint union of non-singular disks with 0D; = O; and D;NL=0 (: = 1,---,m),
and let B= B; U---U B,, be a disjoint union of disks, called bands, for an m-fusion of L
and O satisfying the following:

(i) B;nL=90B;NL ={ asingle arc };
(i) BiN O =90B;N0; = { a single arc }; and
(iii) B; Nint D = B; Nint Dr(;y = { a single arc of ribbon type } , where 7 is a certain

permutation on {1,2,...,m}.

Let L' be a link obtained from a link L and O by the m-fusion along B, i.e., L' =
(LUOUOB) —int(BN L) — int(BN O). Then we say that L’ is obtained from L by a
simple-ribbon fusion or an SR-fusion (with respect to D U B). If there exists a 3-ball X
such that intX contains D and each band of B intersects with X in an arc (and thus
X N L = 0), then we call the SR-fusion an SR-move ([5], [6]).
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a trivial link and bands giving a trivial link and bands giving an arc of ribbon type
a ribbon fusion on [ a simple-ribbon fusion on [
Figure 1:

Since every permutation is a product of cyclic permutations, we can rename the indices
of the components of O, D, and B as
0O=0'U---u0"=(0{U---UO0} YU---U(OFU---UOR ),
D=D'U---UD"=(D{U---UD} )U---U(D}U---UDZ ), and
B= B'U---UB"=(BjU---UBL )U---U(BFU---UBp ), where
ODF = OF, B¥N O = 8BF N OF, and B Nint D = BF Nint D¥,; for any k (1 < k < n).
We consider the lower index modulo my. We call each D* U B* the (k-th) elementary
component of the SR-fusion, and my, the type of the elementary component. The type
of the SR-fusion is the ordered set (mj,ms,...,m,). If n = 1, then we simply write
m = m, instead of (m;) and call the SR-fusion an elementary SR-fusion. If my =1
(resp. my > 2) for any k, then we say that the SR-fusion is in class I (resp. class II).
In this paper, we survey some results about SR-fusions and genera, primeness and
Alexander polynomials.

2 Simple ribbon fusions and genera

The genus of an oriented surface is the sum of genera of its connected components. A
Seifert surface E for a link £ is a compact non-singular oriented surface in S with no
closed components such that OF = £. The genus g(¢) of a link ¢ is the minimal number of
genera of all the Seifert surfaces for £. The disconnectivity number of £, denoted by v(¥),
is the maximal number of connected components of all the Seifert surfaces for £ ([1]). For
each integer r (1 < r < v(£)), the r-th genus of £, denoted by g,(£), is the minimal number
of genera of all the Seifert surfaces for £ with r connected components.

Note that there exists a Seifert surface E for £ with #(E) = r for each integer r (1 <
r < v(f)), where {(F) is the number of the connected components of E. From the
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definition, we see that g;(¢) coincides with the genus of £, that 1 < v(£) < #(£), and that
0<g(0) =g:1(£) < g2(£) < -+ < gue(¢), where §(£) is the number of components of £.
For the n-component trivial link O, we have that v(O) = n and that g.(O) = 0 for each
integer r (1 <7 <n).

An SR-fusion is trivial if O bounds mutually disjoint non-singular disks U;A; such that
O0A; = O; and intA; does not intersect with L U B for each i (1 < i < m). Here note that
U;A; may intersect with intD (see Figure 2 for example). Since L is ambient isotopic to
¢ through (U;A;) U B, we know that a trivial SR-fusion does not change the link type.
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We showed the following in [3].

Figure 2:

Theorem 2.1. Let L be a link obtained from a link ¢ by an SR-fusion. Then we have
that v(L) < v(£) and that g.(L) > g.(£) for each integer r (1 <r < v(L)). Moreover, the
following three conditions are equivalent :

(1) the SR-fusion is trivial ;
(2) L is ambient isotopic to £ ; and
(3) v(L) = v(£) and gyr)(L) = gu(e)(£)-

Let D and BY be disks and f : U;;, (D{c U sz) — 53 an immersion such that f(DF) =
DF and f(BF) = BF. In the following, we omit the upper index k unless it causes
confusion.

Take an elementary component D* U B. Denote the arc of intD; N B;_; by a; and let

B;1 and B;, be the subdisks of B; such that B;; U B;» = B;, B;1 N Bjs = a;41, and

Bi1NOD; # 0.

Moreover, we denote the pre-images of o; on D; and B;_; by ¢; and é;, respectively.
Take a point b; on intey; (4 = 1, ..., my) and an arc §; on D;UB; ; so that 8;N(;Ua;11) =

0B; = b; U b1 (see Figure 3). Then 8% = U, is a simple loop and we call £ = US* an

attendant link of the SR-fusion. We also call each 8% an (k-th) component of £ and my
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the type of B*. Moreover, we denote the pre-images of a; (resp. b;) on D; and B;_; by &;
and @; (resp. b; and b;), respectively.

Figure 3:

Let L be a link obtained from a non-split link ¢ by an S R-fusion with an attendant link
L. We divide £ into three classes £1, Ly, and L3; £1 = f'U---U B° such that each b* has
type my, > 2, Lo = BT U --- U B** such that each b* has type m; = 1 and is non-split
from £, and L3 = Bt U ... U g5t u(=") such that each b* has type my = 1 and is split

from ¢ (here we rename the index for the components if necessary).

L U Z is non-split L U/ is split

Figure 4:

Then we have the following, where note that if £ is a knot, then v(L) = v(¢) = 1, and
thus g,(z)(L) = g(L) and gy(e = g(£).

Theorem 2.2. Let L be a link obtained from a non-split link £ by an SR-fusion with an
attendant link £ =L, U Lo U L3. If v(L) = v({), then we have that

L [me+1
9vr) (L) 29v<e>(€)+2[ k2 ]+t,
k=1

where [z] is the greatest integer not greater than x.
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3 Simple ribbon fusions and primeness of knots

A decomposing sphere ¥ for a knot K is a 2-sphere in S? which intersects with K at
exactly two points. Then K is decomposed into two knots K; and K, by X, where we
note that K; and K, may be trivial. A decomposing sphere ¥ for K is non-trivial if
K, and K, are non-trivial. A knot K is composite if there is a non-trivial decomposing
sphere of K. Otherwise it is called prime.

An SR-fusion is reducible if there exists a trivial elementary component. Otherwise, we
say that the SR-fusion is irreducible.

We say that the SR-fusion is decomposable if there exists a union of elementary com-
ponents D’ U B’ of the SR-fusion with respect to D U B and a non-trivial decomposing
sphere for K’ bounding a 3-ball B® containing D’ U B’ such that B3N K is a trivial arc.
Otherwise it is called indecomposable.

We give some sufficient conditions for the primeness of the knot obtained by an SR-
fusion in [4].

Theorem 3.1. Let K be a knot obtained from a prime knot k by an indecomposable
SR-fusion. Then K’ is prime.

Theorem 3.2. Let K be a non-trivial knot obtained from a trivial knot O by an inde-
composable SR-fusion. If K is neither the square knot nor the connected sum of two
figure-eight knots, then K is prime.

Remark 3.3. Figure 5 shows the irreducible and indecomposable SR-fusions on the
trivial knot O such that K is the square knot and the connected sum of two figure-eight
knots, respectively. We note that the SR-fusion in the center is a simple-ribbon move [6].

RA-2 @

Figure 5: The square knot and the connected sum of two figure-eight knots.

g

4 Simple ribbon fusions and Alexander polynomials of knots

Let K be a knot obtained from a knot k£ by an elementary SR-fusion with respect to
DU B. We call a disk D; is positive (or negative) if D; intersects B;_; as in Figure 6.
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D; D;
B;_; B
B B B — Ik
D; is positive D; is negative
Figure 6:

Then we obtain the following result [2].

Theorem 4.1. Let K be a knot obtained from a knot k by an elementary SR-fusion of
type m with an attendant knot L. Then

Ax(t) = fFOFE)AR(E),
where f(t) = (1 —t)™ — t*k (R (—t)P, and p is the number of positive disks.

A simple ribbon knot is a knot obtained from a trivial knot by SR-fusions. For example,
all knots with up to 9 crossings are simple-ribbon knots. By definition, a simple-ribbon
knot is ribbon. But the converse does not hold as follows.

Example 4.2. We show that ribbon knots 10153 and 52#5, are not simple-ribbon. By
Theorem 4.1, for a simple-ribbon knot K, Ag(—1) = [[,(2™ + ¢;) for positive integers
m; and g; = £1. Since Ajg,,,(—1) = 112, 10,93 is not simple-ribbon.

We assume that 5y#5, is simple-ribbon. By Theorem 2.2 and Theorem 4.1, 55#5,
should be obtained from a trivial knot by an elementary SR-fusion of type 3, because
9(52#52) = 2 and As,ys,(—1) = (2 — 1)2. By Theorem 3.2, a non-prime knot obtained
from a trivial knot by an elementary S R-fusion is the square knot nor the connected sum
of two figure-eight knots, which is a contradiction. Then 5,#5, are not simple-ribbon.
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