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1 Introduction

A fundamental invariant of a knot is its Alexander polynomial ([1]). It has been studied for a

long time from many viewpoints as a fundamental and important knot invariant. In 1990, Lin

([12]) introduced the twisted Alexander polynomial associated with a knot K and a representa‐
tion $\pi$_{1}(S^{3}\backslash K)\rightarrow \mathrm{G}\mathrm{L}(m,  $\Gamma$) using its Seifert surface, where  $\Gamma$ is a field. Subsequently, Wada

([19]) showed a method to define it using only a presentation of a group. Via its interpretations
as the Reidemeister torsion by Kitano ([8]) and Kirk‐Livingston ([7]), the twisted Alexander

polynomial is a mathematical object which is investigated from various viewpoints now.

A 3‐manifold which admits a complete Riemannian metric with sectional curvature -1 at

each interior point is said to be hyperbolic. If a knot complement becomes a hyperbolic mani‐

fold, the knot is called a hyperbolic knot. It was shown by Thurston that a knot which is neither

a torus knot nor a satellite knot is hyperbolic, and almost all knots are hyperbolic in the feeling.

By the Mostow�s rigidity theorem, which includes that the hyperbolic structure of a hyperbolic
manifold is unique, we know the volume of a knot complement is an invariant of the knot.

There are several researches on estimates of the volume of a knot complement recently. In

this note we consider the twisted Alexander polynomial of a hyperbolic knot associated with the

representation given by the composition of the lift of the holonomy representation to \mathrm{S}\mathrm{L}(2, \mathbb{C})
and the higher‐dimensional, irreducible, complex representation of \mathrm{S}\mathrm{L}(2, \mathbb{C}) . Then we study a

relationship between its asymptotic behavior and the volume of the knot.

2 Alexander polynomials

There are some methods to define the Alexander polynomial. Here we introduce the definition

using a presentation of the fundamental group of a knot complement and the free differential

calculus devised by Fox. Let K be a knot in the 3‐sphere S^{3} . Fix a Wirtinger presentation of

the knot group G(K)=$\pi$_{1}(E(K))=$\pi$_{1}(S^{3}-\mathrm{I}\mathrm{n}\mathrm{t}N(K)) :

P=\langle x_{1} ,
. . .

, x_{n}|r_{1} ,
. . .

, r_{n-1}\rangle.
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We denote by  $\phi$ :  F_{n}\rightarrow G(K) the epimorphism from the free group associated with P to G(K) ,

and by \overline{ $\phi$} : \mathbb{Z}F_{n} \rightarrow \mathbb{Z}G(K) the ring homomorphism which is obtained from  $\phi$ by extending

linearly. Let  $\alpha$ :  G(K) \rightarrow H_{1}(E(K);\mathbb{Z}) \cong \mathbb{Z}= \langle t } be the abelianization homomorphism. It

is given by  $\alpha$(x_{1}) =. . .  $\alpha$(x_{n}) =t since P is a Wirtinger presentation. By extending linearly,
we have a homomorphism between group rings: \overline{ $\alpha$}:\mathbb{Z}G(K) \rightarrow \mathbb{Z}[t, t^{-1}] . We denote by  $\Phi$ the

composed mapping \overline{ $\alpha$}\circ\overline{ $\phi$}, that is,

 $\Phi$:\mathbb{Z}F_{n}\rightarrow \mathbb{Z}[t, t^{-1}].

The map \displaystyle \frac{\partial}{\partial x_{j}} : \mathbb{Z}F_{n}\rightarrow \mathbb{Z}F_{n} is the linear extension of the map defined on the elements of F_{n}

by (1) \displaystyle \frac{\partial x_{i}}{\partial x_{j}}=$\delta$_{ij} , (2) \displaystyle \frac{\partial x_{i}^{-1}}{\partial x_{j}}=-$\delta$_{ij}x_{i}^{-1} , (3) \displaystyle \frac{\partial(uv)}{\partial x_{j}}=\frac{\partial u}{\partial x_{j}}+u\frac{\partial v}{\partial x_{j}} . This is called the Fox�s

free differential. We obtain a matrix whose size is (n-1) \times n :

A= ( $\Phi$(\displaystyle \frac{\partial r_{i}}{\partial x_{j}})) \in M(n-1, n;\mathbb{Z}[t, t^{-1}])
by applying the Fox�s free differential to the relations r_{1} ,

. . .

, r_{n-1} of the Wirtinger presenta‐

tion P and composing  $\Phi$ . The matrix  A is called the Alexander matrix associated with the

presentation P of the knot group G(K) .

We denote by A_{j} obtained from A by deleting the j column of A . This becomes a square

matrix and we define the Alexander polynomial of a knot K by

$\Delta$_{K}(t)=\det A_{j} \in \mathbb{Z}[t, t^{-1}].

It is known that this becomes a knot invariant up to \pm t^{s}(s\in \mathbb{Z}) .

Example 2.1. The knot illustrated below is called the figure eight knot and it is known as a

hyperbolic knot. The knot number is 4_{1}.

Its knot group has the next presentation, which is a Wirtinger presentation:

G(K)=\langle x, y|xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1}\rangle.
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We apply the Fox�s free differential to the relation: r=xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1} , then we have:

\displaystyle \frac{\partial}{\partial x}r=\frac{\partial x}{\partial x}+x\frac{\partial}{\partial x}(y^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1})
=1+x(\displaystyle \frac{\partial y^{-1}}{\partial x}+y^{-1}\frac{\partial}{\partial x}(x^{-1}yxy^{-1}xyx^{-1}y^{-1}))
=1+xy^{-1}(\displaystyle \frac{\partial x^{-1}}{\partial x}+x^{-1}\frac{\partial}{\partial x}(yxy^{-1}xyx^{-1}y^{-1})) (2.1)

=1-xy^{-1}x^{-1}+xy^{-1}x^{-1}\displaystyle \frac{\partial}{\partial x}(yxy^{-1}xyx^{-1}y^{-1})=\cdots=
=1-xy^{-1}x^{-1}+xy^{-1}x^{-1}y+xy^{-1}x^{-1}yxy^{-1}-xy^{-1}x^{-1}yxy^{-1}xyx^{-1}

Similarly,

\displaystyle \frac{\partial}{\partial y}r=-xy^{-1}+xy^{-1}x^{-1}-xy^{-1}x^{-1}yxy^{-1}+xy^{-1}x^{-1}yxy^{-1}x-xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1}
Since  $\alpha$(x)= $\alpha$(y)=t , we have:

 $\Phi$(\displaystyle \frac{\partial r}{\partial x}) =1-tt^{-1}t^{-1}+tt^{-1}t^{-1}t+tt^{-1}t^{-1}ttt^{-1}-tt^{-1}t^{-1}ttt^{-1}ttt^{-1}
=1-\displaystyle \frac{1}{t}+1+1-t=-\frac{1}{t}+3-t,

 $\Phi$(\displaystyle \frac{\partial r}{\partial y}) =-1+t^{-1}-1+t-1=\frac{1}{t}-3+t.
Thus the Alexander matrix is the matrix of 1\times 2 : (-\displaystyle \frac{1}{t}+3-t \frac{1}{t}-3+t) ,

and the Alexander

polynomial of the figure eight knot K is:

$\Delta$_{K}(t)=\displaystyle \det (- \frac{1}{t}+3-t) =-\frac{1}{t}+3-t
(up to \pm t^{S}(s\in \mathbb{Z}

Originally x and y are different generators in the knot group, but they are sent to the same

element t by the map  $\alpha$ . It makes the calculation easy while this process might reduce some

information included in knot groups. The twisted Alexander polynomial, which is introduced

in the following section, improves this point.

3 Twisted Alexander polynomials

We use the same nations as in the previous sections. Let  $\rho$ :  G(K) \rightarrow \mathrm{S}\mathrm{L}(m, \mathbb{C}) be a

representation of a knot group G(K) . This map induces naturally the map between group rings:

\overline{ $\rho$}:\mathbb{Z}G(K)\rightarrow M(m;\mathbb{C}) ,
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moreover by taking the tensor product with the map \overline{ $\alpha$} induced in the previous section, we have:

\overline{ $\rho$}\otimes\overline{ $\alpha$}:\mathbb{Z}G(K)\rightarrow M(m, \mathbb{C}[t, t^{-1}]) .

Set  $\Phi$ :

 $\Phi$=(\overline{ $\rho$}\otimes\overline{ $\alpha$})\circ\overline{ $\phi$}:\mathbb{Z}F_{n}\rightarrow M(m;\mathbb{C}[t, t^{-1}])
by composing \overline{ $\phi$} defined in the previous section. Suppose A_{ $\rho$} is the (n-1) \times n matrix whose

the (i,j) element is the m\times m matrix:

 $\Phi$(\displaystyle \frac{\partial r_{i}}{\partial x_{j}}) \in M((n-1)m\times nm;\mathbb{C}[t, t^{-1}]) .

This matrix is called the twistedAlexander matrix associated with  $\rho$ . In order to make a square

matrix, we delete from  A_{ $\rho$} �one column� corresponding to a generator x_{k} in the presentation P,

so that we have \mathrm{a}(n-1)m\times(n-1)m matrix, which is denoted by A_{ $\rho$,k} . We define the twisted

Alexander polynomial as:

$\Delta$_{K, $\rho$}(t)=\displaystyle \frac{\det A_{ $\rho$,k}}{\det $\Phi$(x_{k}-1)}.
Here we assume \det $\Phi$(x_{k}-1)\neq 0.

Wada proved the following theorem in [19].

Theorem 3.1 ([19]). Let K be a knot and G(K) the knot group. Suppose  $\rho$ is a representation

of  G(K) . The twisted Alexander polynomial $\Delta$_{K, $\rho$}(t) is an invariant for the pair (G(K),  $\rho$) up

to\pm t^{s}(s\in \mathbb{Z}) .

Example 3.2. Let K be the figure eight knot, then the knot group G(K) has the following

presentation as in Example 2.1:

 G(K)=\{x, y|xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1}\rangle . (3.1)

Define

 $\rho$(x)= \left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right) ,  $\rho$(y)= (_{\frac{-1+\sqrt{-3}1}{2}} 01) (3.2)

Then we can confirm that  $\rho$ becomes a representation from  G(K) to \mathrm{S}\mathrm{L}(2, \mathbb{C}) . Set  $\rho$(x) =

X,  $\rho$(y)=Y , then we have :  $\Phi$(\displaystyle \frac{\partial r}{\partial x}) =

I-\displaystyle \frac{1}{t}XY^{-1}X^{-1}+XY^{-1}X^{-1}Y+XY^{-1}X^{-1}YXY^{-1}-tXY^{-1}X^{-1}YXY^{-1}XYX^{-1},
where I is the identity matrix of size 2\times 2 . Note that this can be obtained from (2.1) by changing

x\rightarrow X, y\rightarrow Y and 1\rightarrow I with t to the appropriate power. Calculate these matrices, then we

have:

$\Delta$_{K, $\rho$}(t)=\displaystyle \frac{\det $\Phi$(\frac{\partial r}{\partial x})}{\det $\Phi$(y-1)}=\frac{1/t^{2}(t-1)^{2}(t^{2}-4t+1)}{(t-1)^{2}}=t^{2}-4t+1.
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This seems to make up for the lack of the information caused by going through the map  $\alpha$.

However the twisted Alexander polynomial depends on not only G(K) but also  $\rho$ , so it might
not be called a knot invariant, namely, it is hard to use for distinguishing two given knots.

Furthermore, is is not easy to find a representation of a knot group in general. Therefore the

thinkable ways to apply might be (1) to find a property of a knot satisfied for any representation
or (2) to consider the restricted representation. I think an example of the former case is to

determine a non‐fibered knot by using any unimodular representation, i.e., we gave the theorem

in [6] which states that the twisted Alexander polynomials of fibered knots are monic for any

unimodular representation. See [3, 15] for the researches which followed this theorem. In

the following sections, we will consider the twisted Alexander polynomial associated with the

holonomy representation of a hyperbolic knot, which corresponds to the case (2) above.

For the details of basic notations and conceptions on the twisted Alexander polynomial, see

[10]. See [4, 9] for its recent researches.

4 On hyperbolic knots

We refer [11, 18] for the former half in this section.

We regard the upper half space model \mathbb{H}^{3} as a subspace of the quatemion field and set

\mathbb{H}^{3}=\{(x+yi)+tj \in \mathbb{C}+\mathbb{R}j|t>0\}

where 1, i, j are the part of basis, i = \sqrt{-1} , and we suppose \partial \mathbb{H}^{3} = \mathbb{C}\cup\{\infty\} . We give the

metric

ds^{2}=\displaystyle \frac{1}{t^{2}}(dx^{2}+dy^{2}+dt^{2})
to \mathbb{H}^{3} then we call this \mathbb{H}^{3} the 3‐dimensional hyperbolic space. It is known that the orientation

preserving isometric transformation group of \mathbb{H}^{3} is:

\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})=\{ \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) |a, b, c, d\in \mathbb{C}, ad- bc=1\}/\{\pm \left(\begin{array}{ll}
1 & 0\\
0 & 1
\end{array}\right) \}.
Here the action on \mathbb{H}^{3} of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) is given by

\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)w=(aw+b)(cw+d)^{-1} (w\in \mathbb{H}^{3}) .

We calculate the right‐hand side as elements of the quatemion field. The isometric transforma‐

tion of \mathbb{H}^{3} is a conformal mapping, and the action of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) on \mathbb{H}^{3} is transitive. Moreover

its stabilizer of a point is \mathrm{P}\mathrm{S}\mathrm{U}(2, \mathbb{C})(\cong \mathrm{S}\mathrm{O}(3)) , that is, if f(p) and the mapping between tan‐

gent spaces T_{p}\mathbb{H}^{3}\rightarrow T_{f(p)}\mathbb{H}^{3} are given for f\in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) and a point p\in \mathbb{H}^{3} , then f may be
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determined uniquely. Thus, if the image of the neighborhood of a point by the isometric trans‐

formation is given, then one can extend the mapping to the whole space \mathbb{H}^{3} uniquely. Further,

there exists uniquely the transformation f \in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) such that f transforms any 3 points

p_{1},p_{2},p_{3}\in\partial \mathbb{H}^{3} into any 3 points pí, p_{2}',p_{3}'\in\partial \mathbb{H}^{3}.
Let M be a 3‐dimensional differentiable manifold. If M has a local coordinate such that a

neighborhood of each point is homeomorphic to an open set in \mathbb{H}^{3} and the coordinate transfor‐

mation can be written in an element of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) , we call M a hyperbolic 3‐manifold. This is

the same concept defined in Section 1. For a simply‐connected hyperbolic 3‐manifold M' , we

may define the developing map from M' to \mathbb{H}^{3} as follows. Give a local coordinate of a neigh‐
borhood of the base point in M' . For any point p we take a path from the base point to p and

a sequence of local coordinates along the path. We may have the image of p by the developing

map by determining the image of the coordinate functions corresponding to the sequence in

order. (It does not depend on the way to take a path.) Let  $\gamma$ be an element of the fundamental

group of a hyperbolic 3‐manifold  M and \overline{ $\gamma$} a lift of  $\gamma$ to a universal covering \overline{M} of M . We call

the homomorphism  $\rho$ :  $\pi$_{1}(M) \rightarrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) the holonomy representation of M if  $\rho$( $\gamma$) is the

element (\in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})) which maps the image by the developing map of the neighborhood of the

base point of \overline{ $\gamma$} to that of the neighborhood of the end point of \overline{ $\gamma$} . Let  $\Gamma$ be the image  $\rho$($\pi$_{1}(M))
for the holonomy representation  $\rho$ of a complete hyperbolic 3‐manifold  M , then  $\Gamma$ acts \mathbb{H}^{3} nat‐

urally and M is homeomorphic to \mathbb{H}^{3}/ $\Gamma$ . Therefore the classification of complete hyperbolic
3‐manifolds is equivalent essentially to that of a kind of discrete subgroups of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) , so we

may think the geometrical information of a complete hyperbolic 3‐manifold is included in  $\Gamma$ . It

is shown by Thurston that a holonomy representation can be lift to \mathrm{S}\mathrm{L}(2, \mathbb{C}) representation, and

in [2] it is proved that the lift has a one‐to‐one correspondence to the spin structure of M . Let  $\eta$

be a spin structure of  M . Then we have the following homomorphism:

\mathrm{H}\mathrm{o}1_{(M, $\eta$)} : $\pi$_{1}(M,  $\eta$)\rightarrow \mathrm{S}\mathrm{L}(2, \mathbb{C}) .

If a submanifold of a hyperbolic 3‐manifold is homeomorphic to the direct product of the

2‐dimensional torus and the half‐line, the submanifld is called a cusp. A 3‐manifold M with a

cusp is non‐compact, and we obtain from M a compact 3‐manifold whose boundary is a torus

by getting rid of a neighborhood of the cusp. It is known that a complete hyperbolic 3‐manifold

with finite volume is a closed 3‐manifold or a 3‐manifold with cusps. In particular, a knot K(L

resp.) is said to be hyperbolic if S^{3}-K (S^{3}-L resp.) admits the structure of the hyperbolic
3‐manifold with a cusp (cusps resp A knot which is neither a torus knot nor a satellite knot is

hyperbolic.
In the case of a knot in S^{3} , we let A_{1} ,

. . .

, A_{n} be the images of generators a_{1} ,
. . .

, a_{n} of a

Wirtinger presentation of G(K) by the holonomy representation  $\rho$ , then their lifts to \mathrm{S}\mathrm{L}(2, \mathbb{C})
are A_{1} ,

. . .

, A_{n} or -A_{1} ,
. . .

, -A_{n} (Corollary 2.3 in [14]). We denote by $\rho$^{\pm}(a_{i}) = \pm A_{i}(\in
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\mathrm{S}\mathrm{L}(2, \mathbb{C})) for the lifts of the holonomy representation  $\rho$(a_{i})=A_{i}(\in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}

5 Irreducible \mathrm{S}\mathrm{L}(m, \mathbb{C}) ‐representations of \mathrm{S}\mathrm{L}(2, \mathbb{C})
We review irreducible representations of \mathrm{S}\mathrm{L}(2, \mathbb{C}) briefly. The vector space \mathbb{C} has the standard

action of \mathrm{S}\mathrm{L}(2, \mathbb{C}) . It is known that the symmetric product \mathrm{S}\mathrm{y}\mathrm{m}^{m-1}(\mathbb{C}^{2}) and the induced action

by \mathrm{S}\mathrm{L}(2, \mathbb{C}) give an m‐dimensional representation of \mathrm{S}\mathrm{L}(2, \mathbb{C}) . We can identify \mathrm{S}\mathrm{y}\mathrm{m}^{m-1}(\mathbb{C}^{2})
with the vector space of homogeneous polynomials on \mathbb{C}^{2} with degree m-1 , namely,

V_{m}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\langle x^{m-1}, x^{m-2}y ,
. . .

, xy^{m-2}, y^{m-1}\rangle.

The action of A\in \mathrm{S}\mathrm{L}(2, \mathbb{C}) is expressed as

A\cdot p\left(\begin{array}{l}
x\\
y
\end{array}\right) =p(A^{-1} \left(\begin{array}{l}
x\\
y
\end{array}\right))
where p\left(\begin{array}{l}
x\\
y
\end{array}\right) is a homogeneous polynomial and the variables in the right‐hand side are deter‐

mined by the action of A^{-1} on the column vector as a matrix multiplication. We denote by

(V_{m}, $\sigma$_{m}) the representation given by the above action of \mathrm{S}\mathrm{L}(2, \mathbb{C}) where $\sigma$_{m} denotes the homo‐

morphism from \mathrm{S}\mathrm{L}(2, \mathbb{C}) into GL(V_{m}) . It is known that (1) each representation (V_{m}, $\sigma$_{m}) tums

into an irreducible \mathrm{S}\mathrm{L}(m, \mathbb{C}) ‐representation and (2) every irreducible m‐dimensional represen‐

tation of \mathrm{S}\mathrm{L}(2, \mathbb{C}) is equivalent to (V_{m}, $\sigma$_{m}) .

Let M be a complete hyperbolic 3‐manifold and \mathrm{H}\mathrm{o}1_{(M, $\eta$)} the homomorphism defined in Sec‐

tion 4. By composing \mathrm{H}\mathrm{o}1_{(M, $\eta$)} and $\sigma$_{m} , we have the representation:

$\rho$_{m}:$\pi$_{1}(M)\rightarrow \mathrm{S}\mathrm{L}(m, \mathbb{C}) .

Example 5.1. It is known that the map given by (3.2) in Example 3.2 is the holonomy represen‐

tation of the figure eight knot K . To avoid the reduplication, let a and b be generators of G(K)
instead of x and y in the group presentation (3.1) and set:

 $\rho$(a)= \left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right) ;  $\rho$(b)= (_{\frac{-1+\sqrt{-3}1}{2}} 01) .

Note that these are the elements in \mathrm{S}\mathrm{L}(2, \mathbb{C}) . Since (x-y)^{2} = x^{2}-2xy+y^{2}, (x-y)y =

xy—y2, y^{2}=y^{2} ,
we have the next matrix by taking the coefficients:

$\rho$_{3}(a)= \left(\begin{array}{ll}
1-2 & 1\\
0 & 1-1\\
0 & 01
\end{array}\right)
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By setting u=\displaystyle \frac{-1+\sqrt{-3}}{2} and calculating similarly, we obtain:

$\rho$_{3}(b)= \left(\begin{array}{lll}
1 & 0 & 0\\
u & 1 & 0\\
u^{2} & 2u & 1
\end{array}\right), $\rho$_{4}(a)= \left(\begin{array}{lll}
1-3 & 3 & -1\\
0 & 1-2 & 1\\
0 & 0 & 1-1\\
0 & 0 & 01
\end{array}\right), $\rho$_{4}(b)= \left(\begin{array}{llll}
1 & 0 & 0 & 0\\
u & 1 & 0 & 0\\
u^{2} & 2u & 1 & 0\\
u^{3} & 3u^{2} & 3u & 1
\end{array}\right)
Here (\cdot)^{T} means the transposed matrix.

ó Main Theorem and the outline of the proof

Let K be a hyperbolic knot, and $\rho$_{m} the \mathrm{S}\mathrm{L}(m, \mathbb{C}) ‐representation which is obtained from the

holonomy representation of G(K) by the method described in Sections 4 and 5. Set:

\displaystyle \mathcal{A}_{K,2k}(t)=\frac{$\Delta$_{K,$\rho$_{2k}}(t)}{$\Delta$_{K,$\rho$_{2}}(t)} ; \displaystyle \mathcal{A}_{K,2k+1}(t)=\frac{$\Delta$_{K,$\rho$_{2k+1}}(t)}{$\Delta$_{K, $\rho$ \mathrm{s}}(t)} . (6.1)

Our main result is the following:

Theorem ó.l ([5]).

\displaystyle \lim_{k\rightarrow\infty}\frac{\log|\mathcal{A}_{K,2k}(1)|}{(2k)^{2}}=\lim_{k\rightarrow\infty}\frac{\log|\mathcal{A}_{K,2k+1}(1)|}{(2k+1)^{2}}=\frac{\mathrm{V}\mathrm{o}1(K)}{4 $\pi$}.
As in (6.1), \mathcal{A}_{K,$\rho$_{m}} is defined by dividing the principal part, but it is inessential, especially in

the case of m even. We may describe as follows if there is no corrections:

\bullet \displaystyle \lim_{k\rightarrow\infty}\frac{\log|$\Delta$_{K,2k}(1)|}{(2k)^{2}}=\frac{\mathrm{V}\mathrm{o}1(K)}{4 $\pi$} ;

\bullet \displaystyle \lim_{k\rightarrow\infty}\frac{1}{(2k+1)^{2}}(\log(\lim_{t\rightarrow 1}|\frac{$\Delta$_{K,2k+1}(t)}{t-1}|)) =\displaystyle \frac{\mathrm{V}\mathrm{o}1(K)}{4 $\pi$}.
In the next section, we give sample calculations of the figure eight knot. As shown there the

volume of a knot complement can be approximated using a kind of a combinatorial method.

The crucial points are the results of Müller: one of them states the analytic torsion and the Rei‐

demeister torsion are the same essentially for unimodular representations ([16]) and the other

gives the volume formula using the analytic torsion ([17]) for a closed complete hyperbolic 3‐

manifold. Thus, combing them, we are able to have a volume formula for a closed complete hy‐

perbolic 3‐manifold using the Reidemeister torsion. Applying the Thurston�s hyperbolic Dehn

surgery theorem to these Müller�s works, Menal‐Ferrer and Porti gave a volume formula for a

complete hyperbolic 3‐manifold with cusps in [14] (see Theorem 6.4), so we have only to make

clear the relation between the Reidemeister torsion and the twisted Alexander polynomial.
Let us review some results of Menal‐Ferrer and Porti. Let M be an oriented complete hyper‐

bolic 3‐manifold whose boundary is one torus cusp, i.e., we will consider M with \partial\overline{M}=T^{2}.
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Proposition ó.2 ([13]). (1) Ifm is even, then \dim_{\mathbb{C}}H_{i}(M;$\rho$_{m})=0 for any i.

(2) Ifm is odd, then \dim_{\mathbb{C}}H_{0}(M;$\rho$_{m})=0 and \dim_{\mathbb{C}}H_{i}(M;$\rho$_{m})=1 for i=1
,
2.

Proposition ó.3 ([14]). Suppose m is odd and let G<$\pi$_{1}(M) be some fixed realization of the

fundamental group of T as a subgroup of $\pi$_{1}(M) . Choose a non‐trivial cycle  $\theta$ \in  H_{1}(T;\mathbb{Z}) ,
and a non‐trivial vector v\in V_{m} fixed by $\rho$_{m}(G) . If i : T\rightarrow M denotes the inclusion, then the

following assertions hold.

(1) A basis for H_{1}(M;$\rho$_{m}) is given by  i_{*}([v\otimes $\theta$

(2) Let [T] \in  H_{2}(T;\mathbb{Z}) be a fundamental class of T. A basis for H_{2}(M;$\rho$_{m}) is given by

i_{*}([v\otimes T

Using the above notations, we set:

T_{2k+1}(M)=\displaystyle \frac{\mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{2k+1}; $\theta$)}{\mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{3}; $\theta$)} ;

T_{2k}(M)=\displaystyle \frac{\mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{2k})}{\mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{2})}.
Here \mathrm{T}\mathrm{o}\mathrm{r} means the Reidemeister torsion.

Theorem 6.4 ([14]).

\displaystyle \lim_{k\rightarrow\infty}\frac{\log|T_{2k+1}(M)|}{(2k+1)^{2}}=\lim_{k\rightarrow\infty}\frac{\log|T_{2k}(M)|}{(2k)^{2}}=\frac{\mathrm{V}\mathrm{o}1(M)}{4 $\pi$}.
As in Proposition 6.2 (1), the twisted homology vanishes in the case that m is even. In such

a case the corresponding chain complex is said to be acyclic and it is easy relatively to discuss

the Reidemeister torsion. Let M be the complement E(K) of a knot K . It is proved by Kitano

([8]) that the Reidemeister torsion can be obtained from the twisted Alexander polynomial by

evaluating t=1 in this case, that is,

\mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{2k})=$\Delta$_{K,$\rho$_{2k}}(1) .

Thus we get the even case of our main result via Theorem 6.4

The representation obtained from the adjoint action of the \mathrm{S}\mathrm{L}(2, \mathbb{C}) ‐representation of a fun‐

damental group is the same as $\rho$_{3} in our setting essentially. The next proposition is a general‐
ization of the Yamaguchi�s theorem ([20, 21]) which treats the adjoint action of the \mathrm{S}\mathrm{L}(2, \mathbb{C})-
representation of a fundamental group. We restrict the base  $\theta$ in Proposition 6.3 to a longitude
 $\lambda$ and handle it well, so that we have this proposition:

Proposition ó.5 ([5]). Let  $\lambda$ be a longitude ofa knot  K and M the complement ofK, then the

following equation holds:

|\displaystyle \mathrm{T}\mathrm{o}\mathrm{r}(M;$\rho$_{2k+1}; $\lambda$)|=\lim_{t\rightarrow 1}\frac{|$\Delta$_{K,$\rho$_{2k+1}}(t)|}{t-1}.
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The odd case in our main result follows from the proposition.

7 Some calculations

Here we give some calculations on the figure eight knot K . It is known that the volume of the

complement of K is equal to 2. 0298832\cdots.

We use the lifts $\rho$^{+}(a)= \left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right) , $\rho$^{+}(b)= (_{\frac{-1+\sqrt{-3}1}{2}} 01) , stated in Example 5.1, and we

proceed the calculation in Example 3.2, then we have:

$\Delta$_{K,$\rho$_{2}^{+}}(t)=\displaystyle \frac{1}{t^{2}}(t^{2}-4t+1) , $\Delta$_{K,$\rho$_{3}^{+}}(t)=-\displaystyle \frac{1}{t^{3}}(t-1)(t^{2}-5t+1) , $\Delta$_{K,$\rho$_{4}^{+}}(t)=\displaystyle \frac{1}{t^{4}}(t^{2}-4t+1)^{2}.
In the same way, we can have:

$\Delta$_{K,$\rho$_{5}^{+}}(t)=-\displaystyle \frac{1}{t^{5}}(t-1)(t^{4}-9t^{3}+44t^{2}-9t+1) .

We denote by \mathcal{A}_{K,m}^{+} the corresponding \mathcal{A}_{K,m} with $\rho$^{+} , so we obtain:

\displaystyle \frac{4 $\pi$\log|\mathcal{A}_{K,4}^{+}(t)|}{4^{2}}=\frac{ $\pi$\log|t^{2}-4t+1|}{4}\rightarrow\frac{ $\pi$\log 2}{4}\approx 0.544397t=1\ldots ;

\displaystyle \frac{4 $\pi$\log|\mathcal{A}_{K,5}^{+}(t)|}{5^{2}}=\frac{ $\pi$\log|\frac{t^{4}-9t^{3}+44t^{2}-9t+1}{t^{2}-5t+1}|}{5^{2}}\rightarrow\frac{4 $\pi$\log\frac{28}{3}}{5^{2}}\approx 1.12273t=1\ldots
The following is the results using by a computer. The symbol \mathcal{A}_{K,m}^{-} corresponds to the lift of

the holonomy representation of K :

$\rho$^{-}(a)=-\left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right) ; $\rho$^{-}(b)=-(_{\frac{-1+\sqrt{-3}1}{2}} 01) .

Note that \mathcal{A}_{K,m}^{+}(t) =\mathcal{A}_{K,m}^{-}(t) when m is odd. Mr. Tetsuya Takahashi helped me to calculate

these and we used the softwares Wolfram Mathematica and MathWorks Matlab. It took about

4\sim 5 hours to compute in the degree 33 case.
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