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1 Introduction

There are several aspects, definitions or characteristics of Applell polynomi-
als. Let g, two fixed functions. The function g : C — C is holomorphic at
0, g(0) =0, ¢'(0) # 0, and ¢ : N — C\{0} an arbitrary function. The func-
tion g(t) is sometimes called delta, implying that there is no constant term.
Let (P,(z)), be a sequence of polynomials. We call (P,(z)),, a sequence of
Appell polynomials of type (g,¢), if and only if there exists f : C — C
holomorphic at 0 such that f(0) # 0 and

;Pn(x)mz_m = f(t)e™®. (1)

The function f(t) is sometimes called invertible. Then, in general, P,(z) is
sometimes called Sheffer ([16]). The ordinary Appell sequence of polynomials
corresponds to special type

gt)=t, ¢(0)=1 and ¢m)=n (n21).

Therefore, every Appell sequence is a Sheffer sequence, but most Sheffer
sequences are not Appell sequences. There are some well-known Appell se-
quences of polynomials. In particular, for the above type, we have Bernoulli
polynomials B,(x) corresponding to fg(t) = ettTl, and Euler polynomials
corresponding to fg(t) = ﬁ

Hermite polynomials ([8]) and Laguerre polynomials (see e.g. [17]) also
belong to Appell polynomials. However, we do not treat them in this paper,
as we consider the polynomials in the view point of the symmetric relations

in (2).



For a fixed analytic function g, we study the classes of sequences of Appell
polynomials (P,(z)), in (1) when they satisfy the symmetric relation

Fu(a—z) = (=1)"Pu(z) )

for a real parameter a.

1.1 Known characterizations of Appell polynomials

We review the known results concerning special cases of ordinary Appell
sequences of polynomials, in particular, Bernoulli and Euler polynomials.
According to Bernoulli, Euler, Appell, Hurwitz, Raabe and Lucas, there
are several approaches to study Bernoulli and Euler polynomials. We refer
to Lehmer’s paper [11] for concise details about the first five approaches.
These approaches can be generalized to any generalized Appell sequences of
polynomials.

(i) Generating functions theory (Bernoulli [3]; Euler [6])

S Bu@)l = 2 (i < 2m). ®
n=0

Y B = 27 (<), (@
n=0 '

(ii) Appell sequence theory (Appell [1])

d
E;Bn(x) =n- B,_1(z).
d
%En(x) =n-FE,_1(z).

(iii) Umbral Calculus (Lucas [12])

Bu(z) = (B +2)".

11



12

(iv) Fourier Series (Hurwitz [9])

B —n! e27rikz 0 .
n(x) = Wo;&mz kn ( <z < )
1 2m’(k+l)x
E.(z) 2n! ° i 0<z<1).

= (27m~)n+1 Py (k+ %)n+1

(v) Raabe multiplication theorem (Raabe [15])

it r+k
z B, ( ) =m!"B,(r) (Ym>1, Vn € N).
k=0

m

mz_l(—l)kEn (w + k) =m "E,(z) (Ym>1odd, VneN).

m
k=0

(vi) Determinantal approach (Costabile et. al ([4, 5])

Bo(.’]))=1,
1 z 22 28 e
1y 4 b
e |01 T 1 1
Bn(x)=(_—)1| 002 3 n—l no | (n=12,..).
(n—1)! 000 (2) (2) (2)
000 0 (ho2) (o)
Eo(l’):l,
1 z 22 28 nl "
11 TN
01 3(;) %(i) %(Zi) %(Z)
Eo(@)=(-1)"| 0 0 1 3(3) 2(2) 2 | (n=12...)
00 0 1 5( 3) 5(3)
00 0 0 1 5(.00)




Consequently, a determinant expression of Bernoulli numbers B, is
given by

BO_]-,
11 1 1 1
2 3 4 n n+1
11 1 1 1
_ (- |0 2 3 n—1 n 19
om0 0 () e () @ | =L
00 0 - (275 ()

A determinant expression of Euler numbers E, is given by

Ey=1,
1 1 1 1 1
2 3 2 2 2
2 3 -1
Ll il i) 0
En(z) = (=1) 01 306) ?(nil) ?(%) (n=1,2..).
0 0 1 '2'( 3 ) 5(3)
0 0 0 - 1 3()
More simplified forms by Glaisher ([7]) are given by
= 1
1
3! 21
B, = (—-1)"n! : : 1
o T 5 1
T oY F
(n+1)! n! 3t 2t
and
1
i 1
1l 2
Eon = (—1)™(2n)! : : 1
;' ;' l' 1
Gl
@)l @n-2) o

Note that Fp,y1 =0 (n=0,1,...).
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It is immediate to obtain that

B, 1
%2 B

(1 (r+1t| SESENES
By_ B, _
(n—ﬁ! (5—23! - B 1

and

£z 1
B B
4! 2!

(=1)™(2n)! : =1.

Eon—2 Eon_4
(2n—-2)! (2n—4)!
on Ean-2
@n)  (@n-2)!

N1

Therefore, for n > 1

§ : (t1+ - +t,)! (——1)t1 <_1>t2 ( 1 >tn
14204 +ntn=n (tl)' v (tn)' 21 3! ] (n + 1)|

and

En = (2n)! 3 H (—2-_!1>t1 (2_'1)*2 ((Q;nlyl—)tn

t14+2ta+-+ntn=n

(Cf. [10, 13, 14]).

2 Main results

For this section we consider fixed type (g, ¢) Appell sequences of polynomials.

2.1 Characterization of Appell sequences polynomials
of type (g,¢)

We state our first main result.

Theorem 1. Let a be a real parameter. We set

(t) == f(E)edo®



15

and denote by
V(a) := {(P:)x Appell polynomials of sequences (1) | Py(a—x) = (—=1)*P(z)}.

We have
V(a) #0 < g is odd and h is even.

Corollary 1. For a = 0, we have the function h(t) = f(t). Then V(0) # 0
if and only if g is odd and f is even.

Theorem 2. Let a # 0 be a real parameter. We have the following char-
acterization for the set V(a) of Appell sequences of polynomials. We have
V(a) # 0 if and only if the functions g and t — (e®® — 1) f(t) are odd.

2.2 Application to type g(t) =t

In this section, we fix the type g(t) = ¢ and p(0) = 1,¢(n) = n (n > 1).
Next, we shall describe the set V'(a) explicitly, by truncating the Appell
sequences (1). Denote by

Vi(a) = {P € C,[z]|3(P:)x € V(a) : P = Py, for some ko € N}.

Theorem 3. Let n be ‘a positive integer, and a # 0 a real parameter. We
have

Va(a) = Vect(Bp_ak(z/a);0 < k <n/2),

which is the subspace spanned by { Bn_sx(7/a);0 < k < n/2}, with dimension
equal to [n/2] + 1. Alternatively, we have

Vo(a) = Vect{ E,_ok(z/a);0 < k < n/2).

By symmetric properties of Bernoulli and Euler polynomials, V,(a) con-
tains Vect(B,_ax(x/a);0 < k <n/2) and Vect(E,_ox(z/a);0 < k < n/2).

Theorem 4. Let a be a nonzero real parameter, and (P,(z)), be a sequence
of Appell polynomials of type (g,p) such that (2) holds. Let (ax)ken be a
sequence of real numbers such that the function F' has the following property:

tk
F:t— f(t)— Zakﬁ is odd or even (5)
- !



Then, we obtain

Po= S alD)emn (D). or ®

k even

P (z) = -2 Z ag %(k " )an‘k+1Bn_k+1 (g) , if Fiseven. (7)

k odd -1

2.3 Fourier expansions for Appell polynomials of type
g(t) =1t
ForO0<z<lifn=1and 0 <z <1ifn> 2. Itis well-known that

—n! e27rik:x
(271'2)" kez\{0} k"

B,(z) = 8)

Concerning Euler polynomials, for 0 < z < 1ifn =0, and 0 < z < 1 if
n > 1, we have

2! e27ri(k—%)a:

En(m) = (27ri)"+1 =~ (k _ %)n+1' (9)

Theorem 5. Let a be a nonzero real parameter, and (P,(z)), be a sequence
of Appell polynomials of type (g,¢) such that (2) holds. Let (ax)ken be a
sequence of real numbers such that the function

k
F:t— f(t)— zak% is odd or even. (10)
- !

(i) If F odd and 0 < z/a <1 (n=0); 0<z/a <1 (n>1), then we have

a™(n! 2ri(m=3)z
Polo) = Gy X o)y (1)

where

@)= 3 %(”{)k@m—nk.
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(ii) If F is even and 0 < z/a <1 (n=1);0<z/a <1 (n > 2), then we
have

21r1, me

"( (27T’L)n+1 Z (12)

where 1
ax [T ke
ch(a) = Z I (Z) mPL.
kodd

3 New results on Bernoulli and Euler poly-
nomials of higher order

In this section, we give two applications of our results. We obtain new
explicit formulas and Fourier series for Bernoulli and Euler polynomials of
higher order.

3.1 Bernoulli polynomials

We start with two applications. We obtain new characterizations of
Bernoulli and Euler polynomials. Note that for ¢(0) = 1, (k) = k and
ax = E(0) (k > 1), it is well-known that Fy(0) =1 and Ex(0) =0 for k # 0
even. Then, we obtain

2¢e™ 2e*
t)e Ey(0)— - - :
1) Z (0 ee+1 et+1

k even

We get P,(z) = E,(z). It means, in particular, that if the function F': ¢ —
f(t)—1is odd and P,(1—z) = (—-1)"P,(z), then P,(z) = E,(z). Similarly,
one can apply it to Bernoulli polynomials B, (z).

We have the following general formulation.

Theorem 6 (Bernoulli polynomials by symmetry). Let (P,(z)), be a se-
quence of Bernoulli polynomials of type (1) such that

P,(1—z)=(-1)"P,(z). (13)
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Let N be a positive integer. If the function F : t — f(t) — ZBk(O)— is
k=0
even, then we obtain
Poz)=Ba(@) and f(t)= o (14)

3.2 Euler polynomials

Theorem 7 (Euler polynomials by symmetry). Let (P,(z)), be a sequence
of Euler polynomials of type (1) such that (18) holds. Let N be a positive

integer. If the function F :t — f(t) — ZEk(O)— is odd, then we obtain

2
et+1

Fo(z) = E,(z) and  f(t) = (15)

3.3 Bernoulli polynomials of order r

Let 7 be a positive integer. The Bernoulli polynomials and numbers of order
r are given by the equations

tn t T
(7”) R xt
> @G = () ¢

n>0

and BY = B{"(0).
The function f(t) = ( tr ) (r > 1) satisfy f(t)et = f(—t) and the function

et/T—1

k=1 po(r) t2k+1
Fity=ft)y=Y r~ sz+1m

k>0
is an even function. So, we obtain

B
g _ n
B (rz) = -2 E 2= 12k2]_°:11 (2k) By, —2k(z).

0<k<n/2
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We have a new formula for the generalized Bernoulli polynomials B,(f)(a;)

(r) n—2k—1 B§2)+1 n
Bn (x)=—2 Z r —(2k)Bn_2k(.’D/7’)

0<hen? 2k+1

Thanks to the relations in [2, (1.10) and Corollary 1.8], the coefficients B;(,z_l
are given by the formula

( )Zk—l( 1)FLs(r, k)in_,f,f , 2T
By = (16)
(T_Ll;s(r,r—n), 0<n<r-—1.

where s(n, 1) is the Stirling number of the first kind.
Therefore, we obtain the formulas.

Theorem 8. Forn > r > 2, we have

s(r,r—2k—1) (.
BP(@) =—-2r"" Y o ( % + 1 : (z—kl) Bra(a/7)
O<haria-1 (2k+1)

1 2k Bé::)—f-l
—92 Z r- 2k 1 (2k> n_gk(x/?")

r/2<k<n/2

(17)

with

By, | . Bok i1 rii
— T - E J 1 —+1 Tt ] > 2
2k+1 (r—l) s(r,J) 2k+1—-r4j G=r/2)

j=t

We give details for r = 2, 3, which give us new explicit formulas for B,(f)(a:)
and BYY (x).
Thanks to B = 5(2,1) = —1, B&,, = —(2k + 1) By, (k > 1), then we have

BO@ = Y o %(%)B%Bn-%(x/zx

0<k<n/2

BY n
BO(z) = 3"Ba(z/3)-2 Y 3"—2’“—1ﬂ( )Bn_%(x/3)
o 2k + 1\ 2k
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and then for n > 4 we have
BOG) = 3Bufo/)+ 33() Buale/d

-2y 3vH(2k - 1)(%) BokBn—ok(z/3).
2<k<n/2
3.4 Euler polynomials of order r

Let r be a positive integer. The Euler polynomials and numbers of order r
are given by the equations

" 2\
(r) — zt
ZE (= )n' (et+1) ¢

n>0

and ET = E(0).

Let f(t) = (ﬁ)r The function f satisfy f(t)e! = f(—t) and the
function

RO =10 - Y r B

k>0
is an odd function. So, we obtain

r"E" (rg) = Z r2k g (2k) Eyok(2).

0<k<n/2

Then, we get a new formula for E{(z):

k(M r
E,,(LT) (.’L‘) = Z T‘n 2k (2]{:) Eék)En_gk(:L'/'l").

0<k<n/2

On the other hand, it is well-known that the numbers E®) can be express
explicitly in terms of Stirling numbers of first kind and Euler numbers Fy :=
E(0). Precisely, we have

Lemma 1. Let r be a positive integer. We have

27'1 r—1

Eg) IZ( 1 S(TT ])En+r—1 1 (18)
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Hence, we get the result

Theorem 9. Let r be a positive integer. We have

E(r)(

Z (=1)s(r,r (%) "% Botr—j1En—ai(2/7).(19)

0<j<r-1
0<k<n/2

1)'
The relation is obvious for » = 1. For r = 2 and n > 2, we obtain

EQ(z) = 2"En(z/2)+ Y (27;)2"+1‘2kE2k+1En_2k(x/r). (20)

1<k<n/2

3.5 Fourier expansions for higher Bernoulli and Euler
polynomials

We apply our main results to get Fourier series for Bernoulli and Euler poly-
nomials of order r. From our Theorem 8 and Theorem 9 we can obtain the
Fourier expansions for the polynomials B, (:c) and EY (:v)

Theorem 10 (Fourier expansion). Forx € (0,7), we have Fourier expansion
for the Euler polynomials of order r > 1 given by

21r2(m 1/2)2

(r) 21
B (@) = (r —1 (27rz yort Z en(n,7) o gy 21)
where
Cm(n,r) = Z (=1)7s(r,r — §)(7i)**(2m — 1)*Egpyr_j1. (22)
0<h<nya

For example,

(i) for r = 1, we have ¢,,(n,1) = 1 for any m € Z. We recover the known
result about periodic Euler functions.

(ii) for r =2,

en(n,2) =1/24+ Y (mi)*@m—1)*Exy (n>2).  (23)

1<k<n/2
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