SRR S A 2 Sk 24
H2055% 201 74F 24-34

ON GANGL-ZAGIER’S ENHANCED ZETA VALUE FOR IMAGINARY
QUADRATIC FIELDS
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1. INTRODUCTION

1.1. Main theme. The main theme of this article is a certain refinement of Zagier’s polylogarithm
conjecture. The Zagier conjecture is one of the conjectures about special values of arithmetic zeta
functions. In 2000, Gangl-Zagier gave a certain refinement of the Zagier conjecture for imaginary
quadratic base fields, which they called an enhancement of the Zagier conjecture.

Gangl-Zagier’s conjecture only deals with unramified abelian extension of imaginary quadratic fields
(i.e. partial zeta values of ideal classes). In this article, we generalize their conjecture to arbitrary
abelian extension of imaginary quadratic fields (i.e. partial zeta values of ray classes).

1.2. Gangl-Zagier’s method VS our method. Gangl-Zagier’s method and our method seems quite
different at first glance. Gangl-Zagier’'s method is based on the Eichler integral of a holomorphic
Eisenstein series, while our method is based on the theory of partial derivative of Shintani L-functions
of two variable. The advantage of our method is that it is applicable to higher number fields with

exactly one complex place.
One of our main result is an equality between Gangl-Zagier’s method and our method (in unramified

extension case). We also give several numerical examples of our generalized conjecture.

1.3. General notations. Throughout this article, we specify ourselves to imaginary quadratic base
fields. Therefore, we fix an imaginary quadratic field F', an embedding

p: F—C,

and use the following notations:

o Cly: the ray class group of modulus m, Cl := Cl;: the ideal class group of F.
U(m): the subgroup of F'* formed by the elements congruent to 1 mod m.
W = [U(m)NOF|,w = wy.
rec: Artin’s reciprocity map.

P& := {P € Q[r]|deg P < k}, P = {P € Q[r,7]|P = P,deg P < k}.
Q(k) := (2mi)*Q.

Ry : C/Q(k) — R: the map defined by R (2) = R(F12).

e CX: the universal covering group of C*.

e : the upper-half plane.

2. ZAGIER’S POLYLOGARITHM CONJECTURE

Very roughly speaking, the Zagier conjecture is an equality of the form
(zeta value) = (polylog value).

In the most classical sense, the Zagier conjecture refers to a conjecture about the special values of the
Dedekind zeta function of a number field. For each m € Z2 and a number field F', the conjecture
predicts that the value (z(m) of the Dedekind zeta function is expressible as a multiple of a power of
27 and a determinant whose entries are linear combinations of special values of a certain real-valued
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m-logarithm evaluated at the numbers in F. This is an apparent analog of the Dedekind’s analytic
class number formula, where (z(m) is replaced by the residue (the leading coefficient in the Laurent
expansion) of (r(s) at s = 1, and the polylogarithm by log |z]|.

In this article, we use the term “Zagier conjecture” for a more general conjecture about special values
of partial zeta functions of number fields. Firstly, let us define the partial zeta function and a certain
real-valued polylogarithm which we need in the formulation of the Zagier conjecture.

Definition 1. For a ray class A, we define the partial zeta function associated to A by
1
C(s,A) =Y -
acA N(a)s
Here, the sum runs through all integral ideals in .A.

It is known that the Dirichlet series on the right-hand side is absolutely convergent for R(s) > 1
and analytically continued to C except for a simple pole at s = 1.

Definition 2. For k € Zy2, we define a real-valued k-logarithm Ly (z) by
k—1
£al2) = e 3 = (2log2)) Tix-y 2
=0 "
where B; is the j-th Bernoulli number, and Li;(z) is the j-logarithm function defined by the analytic

continuation of the power series
o0

zm
> — (2l <)
m
m=1
Note that despite the monodromy of Lix(z) around 0,1, Li(z) is well-defined on C\ {0,1}. Thus
we can linearly extend its domain of definition to Z[C \ {0, 1}].
For a subfield H of C, we define the k-th Bloch group Bi(H), which is a quotient

Ax(H)/Cx(H)

of certain submodules Cx(H) C Ax(H) C Z[H \{0,1}] (see [2] for the definition of A (H) and Cx(H)).
It is known that Ly vanishes on Cx(H). So, Li(z) is well-defined on By (H).
Using these notions, the Zagier conjecture for an imaginary quadratic field is stated as follows.

Conjecture (Zagier [2]). Fiz k € Z>2, an abelian extension H of F, and a complex embedding pr of
H lying over p. Then, there ezists unique € € Bi(H) ® Q such that

k-4 (k— 1)!((k7rec“1(o)) = Li(pn 0 0(£))

[Dr| 2(2r)*

for o € Gal(H/F).

Here, ((k,rec™!(0)) is a (finite sum of) partial zeta values of an ideal class. This conjecture is a
higher analog of the abelian Stark conjecture.

3. GANGL-ZAGIER'S ENHANCED CONJECTURE
3.1. The enhanced conjecture. To formulate Gangl-Zagier’s enhanced conjecture, one needs two
objects: the enhanced polylogarithm map and the enhanced zeta value.
e Gangl-Zagier constructed the enhanced k-logarithm
Ly : Bi(C) - C/Q(k)
with the property
§Rk o Ek = Ek.
We remark that Ly, is a more delicate object than Ly, since it is defined only on a submodule

Ax(C) of Z[C\ {0, 1}].
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e For an ideal class A, they also constructed the enhanced partial zeta value
Ix(A) € C/Q(k)

with the property
_ k—% (IC — 1)'

Thus they formulated the following conjecture.

¢k, A).

Conjecture (Gangl-Zagier [2]). Let H be an unramified abelian extension of F. Fiz k € Z>2 and a
complez embedding pr of H lying over p. Then there exists unique £ € Bi(H) ® Q such that
Ix(rec (o)) = Li(pn 0 0(€))
for o € Gal(H/F).
By taking Ry, of both-sides, this conjecture reduces to the polylogarithm conjecture for the partial
zeta value ((k,rec™(0)).

3.2. Gangl-Zagier’s construction of the enhanced zeta values. In this section, we review Gangl-
Zagier’s construction of the enhanced zeta values. Fix k € Z>;. Let us start from the specific Eichler
integral

- i 2k+1 s 2mimT
) m=1

of holomorphic Eisenstein series Egxq2(7). It is known that

a

Lemma. For ( . b ) € SLy(Z), we have

d

ar +b
cr+d

(w+@%i%( >7E4uﬂe@mW“Pml

Set ’{/Js = (?—’7') % — S, dk- = ’l/)_k_l O’lﬁ_k_z (o o’(/)_gk and

gk(T) = dkE_zk(T).

Since diP*) i%), it holds that
2%k ar+b
ler +d|™" & (CT d
Let A € Cl, and wy,ws € F* be a Z-basis of any fractional ideal a in A. Let B denote the set of
SLqy(Z)-equivalence classes of positive definite integral binary quadratic forms. Then we can associate

A, :=[Q.] € B with A, where

)-@me@mWHﬂm.

(W1 X — wY) (W1 X — wzY)
(X, Y) = .
For Q(X,Y) € B, we define A\g € Z~q, 7q € ) by
QUX,Y) = Ag(X — 1Y )(X —7QY).
Then we have the following theorem.
Theorem (Gangl-Zagier [2]). The value I(Q) = 2w‘1(27ri)1"°/\’5_18k_1(TQ) modulo Q(k) is inde-
pendent of the choice of Q € A7Y. Thus the element
Ik(A) := (Ix(Q) mod Q(k)) € C/Q(k)
1s well-defined. Moreover, Ix(A) satisfies

R (Ik(A)) = | Dr|

k-3 (k=1)!

W((k’ A)

where ((s, A) is the partial zeta function of A.

26
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4. THE SHINTANI L-FUNCTION OF TWO VARIABLES FOR A LATTICE IN C.

4.1. The definition of the Shintani L-function. Let . C C be a lattice. We assume that L is of
the form Z + 7Z with some 7 € §). We study L-functions of the form

w€L\ {0}
Such L-functions are well-studied for s; — so € Z, where they reduce to real analytic Eisenstein
series. To deal with more delicate case, where these L-functions have ambiguity that comes from the
branch of the map z +— 2° for complex values of z, it is necessary to consider z as an element of Cx.
Let p : CX — C* be the covering group hom and £ (L) the set of periodic functions on L, with
respect to some sublattice of L. Set L := p~'(L \ {0}) and define A(L) as the Z-module generated
by characteristic functions of rational open cones in Cx. Here, a rational open cone means a cone

spanned by the elements of L all of which lie in the set {z € Cx argz € (—%, %)} if rotated by some

angle simultaneously.

Definition 3. For s = (s1,52) € C? with R(s1 +s2) > 2, ¢ € Z(L), and f € A(L) we define the
Shintani L-function L(s, ¢, f) by

P(w)f(w)

w2

L(s,6, )=

wel
Roughly speaking, f € A(L) chooses the branch of w®.
4.2. Basic notions and properties of the Shintani L-function. We define an action of & € kerp
on A(L) by (ef)(2) := f(e"12), and we set f := > eckerp -
Definition 4. We say D € A(L) is a fundamental domain, if D = 1
That is to say, a fundamental domain D is characterized by pD = 1¢x where (pD)(2) = 3_ep-1(z) D(w)-
We denote by € € C* the unique element with £° = 2. Thus ker p is generated by «.

Lemma 5 ([1]). If f =0, then there ezists g € A(L) such that f = (1—¢)g. In other words, if Dy, D2
are fundamental domains, there exists g € A(L) such that D1 — Dy = (1 — €)g.

We fix ¢ € 2 (L) and denote by L(s, f) for L(s, ¢, f), if there is no risk of confusion.

Lemma 6 ([1]). For f € A(L), Z(s, f) := (e?"(s1752) — 1) L(s, f) is an entire function on C2.
Moreover,

(1) Z(s — k, f) = O(s1, 82) for k € Z2,,

(2) Z(s — k, D) = O(s, 5151, 83) for k € Z%,\ {(0,0)} and a fundamental domain D.

Put L,(s, f) == L((s, s), f) for f € A(L). Then from the integral representation for Z(s, f), we can
prove the following lemma.
Lemma 7 ([1]). Fork € Zx¢ and f € A(L),

L*(_k7 f) € Q
Fix a modulus m, A € Cln, and consider the case where the lattice L is a fractional ideal a € A~!

coprime to m and ¢ is the characteristic function of a N U(m). Then the partial zeta function is
expressed by the Shintani L-function as

¢(s,4) = wg'N(a)*Ly(s, D)
where wy = |U(m) N OF|. Put
LY (—k, D) := %(—k +(s,s),D)|  forie{1,2}

5=0
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for a fundamental domain D. These values are well-defined, thanks to the property (2) of Lemma 6.
We thus define the “partial derivatives at —k” of ((s,.A) as follows.

Definition 8. For i € {1,2}, k € Z>; and a € A~1, we define A®(~k, D, a).
AD(—k, D, a) := wi' N(@) L ((<k, k), D).
Then, using Lemma 6, one can show the following theorem.

Theorem 9 ([1]). For i € {1,2} and k € Zy1, the values A®)(—k, D, a) modulo Q(1) does not depend
on the choice of D and a € A~1. Hence the ray class invariant

AD(~k, A) := (AD(~k, D,a)mod Q(1)) € C/Q(1)
is well-defined. Moreover, they satisfy A (—k, A) = m and
¢(~k,A) = 22: AD (=K, A)
i1
= 2% (A(l)(—k, A)) .
We will see later that, for an ideal class A (i.e. m = 1), our A1) (—k, A) is equal to Irxy1(A~1) up

to a simple factor of 27i.

4.3. The equivalence of the Iti(A) and A®Y(—k, A). In this section, we basically fix a funda-
mental domain D. Therefore, we use simpler notation L(s) for L(s, D), if there is no risk of confusion.

Recall the operators ¥, := (T — 7) aa_T —sand dg :=1%_g—10%_g_20---0Y_ox. Next lemma shows
that 1y, effects on the value A (—k) as a shifting operator.

Lemma 10 ([1]). For k = (k1, k2) € Z>1 X Z>o,
Yot (L0 (=) = kLD (—k +9)

where § := (1,-1). In particular,

e (29 ((-24,0))) = B 20 (-, 1)

fork e Zzl.

Now define Ry, by the coefficient of s? in the Taylor expansion of Z((—k; — s, —kz2 + s)) at s = 0.
For k = (ki, k2) € Z%, we put

1

LW (=k) := %ﬁl(—k +(s,0)) S

LO(—k) = %(_k +(0,5))

s=0
Then LY (—k) and L) (—k) are related by Ry as follows.
Lemma 11 ([1]). For i € {1,2} and k € Z2,,

LO(_k) = LO(_k) — __1 R
* = B .
(=F) (=) 8mi ®

The proof of Lemma 11 uses an analysis of the singularity at s = —k of L(s).
Since both L) ((—2k, 0)) and Ry, have closed contour integral representations, they can be expressed
in terms of residues. We avoid writing down the general formula, and only note the special case where

¢ =1y and D = 1x with X := {ze&'argze[o,mr)}.

28
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Lemma 12 ([1]). For k € Z>;,

(2k) e2mimT
LM((—2k,0),1x) = i) {§(2k +1)+2 Z W}

and

2k
Ro, o)(lx) = _2(27”)2((%—-1-1)(7 _ ?)2k+1.

From Lemma 11 and 12, we see that

Lo 10 ((-2,0)1x)
=2k +1) + %(2“( ) 42 Z %T)

2k+1 )2k+1'

and EZk('r) defined by (3.1) are mostly equal, except that 7 is replaced by (7 —

Lemma 13 ([1]). We have dy, (725+! — 1(r — 7)2%k+1) ¢ pPFHD),

Proof. The lemma follows from the equalities

di (7°) = k! Zk: (;) (2::;) oI (4.1)

j=0
di (T — 7% 1) = (=1)Fkl(r — 7)% 1, (4.2)
for k € Z>o,s € Z. (4.1) can be shown by using an induction, while (4.2) follows from the relation
Y (T =7)) =[G —s)(r —7)°. o
Theorem 14 ([1]). For k € Z>; and an ideal class A of F, we have
(27rz)

Ty (A7Y) = =AM (—k, A)
as an element of C/Q(k +1).

Proof. Choose any ideal a € A™! and let wy,w2 € F* be any Z-basis of a such that ¢(w; lwg) € 9.
Recall that, in Zagier’s construction, the direct correspondence from w to I;H.l(.A_l) is given by

Ex(wi 'ws)

-1 —
fena (A7) w (2miN (wia))

= mod Q(k + 1).

On the other hand, by setting L = w; la and ¢ = 1, we have
A (—k, A) = AD(—k, D,w a) mod Q(1)
_ LS}) ((*k7 *k)v lX)

d Q(1).
wN(wl_la)k mod Q(1)
From Lemma 11, 12 and 13, we have
£ur) - 0710 (k) 1)
~ 2
=dj, (E—zk(T) - ((;r;)), LY ((~2k,0), 1X))

—au etk - I (et L ppen)) € et ag)

29
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Since wilwy € F, (4.3) yields

2
Ep(wilws) — ( ’Z) L ((—k, —k), 1x) € Q(2k + 1).
That is to say
oA — ZEA0 4y € Qe+ )
Hence we obtain the theorem. a

Led by Theorem 14, we naturally expand Conjecture 3.1 as follows.

Conjecture. Let k € Z>1, H/F an abelian extension of modulus m. Fix an embedding pr of H lying
on p. Then, there exists an element £ € B1(H) ® Q such that

(2mi)* A (=, rec™ (0)) = Li+1(p(c™'€))
for o € Gal(H/F).
Remark 15. One theoretical support of this conjecture is that one can show that the value (21ri)k AD (=K, rec (o))

is a period in the sense of Konstevich and Zagier, by using its relation to Eichler integrals of Eisenstein
series.

5. NUMERICAL EXAMPLES

Here, we give several numerical examples in support of our conjecture. We shall check our conjecture
in the form R
(2mi) P A1 — k,rec™(0)) = (2mi) T Li(p(071€))  (mod Q).
To calculate the values A()(1 — k,rec=1(¢)) € C/Q(1) and Lx(¢,L) € C/Q(k), we defined certain
quantities AAD(1 — k, A, a) € C and Li(§,L) € C such that
AM(1 -k, A, 0) mod Q1) = AD(1 — £, A),

Lx(¢,L) mod Q(k) = Lk(€)-
For the definitions of them and more detail of the calculation, see {1]. The calculations were performed
using the open-source mathematical software Sage. In each example, we have verified the equalities
up to 60-digits precision.

5.0.1. Ezample 1. Let F = Q(v/-1), k = 2 and H = F[a]/(a® + (V=1 1) @ +1). The conductor of
H/Fis (4 +2v/~1), and Gal(H/F) = {id, 0} ~ Z/2Z where o(a) = a~!. We embed H into C by
a +— 0.25706586412167716 . . . + 0.52908551363574612 . . . .
Then, we have
(2mi) 1Ay (-1,1d, (1, v=1))
= —0.828006117285954164340955731026 . . . + 0.116811405960393667783690172415. . .1,
(2mi)"TAL(~1,07L,(3,3vV 1))
= +0.742172783952620831007622397693 . . . — 0.101343619597444827660608339898 . . . 7.
Put 2o = v—1, 21 = a, a + v/—1 and g(ko, k1, k2) =[50z 2%2]. Then Bo(H) ® Q is generated by &
and &2, where
&1 =49(0,-2,-3) + g(-1,5,6),
& =24¢(0,-1,0) — g(—1,5,6).
Put € = égl + %52. and take any homomorphism L : H*/uy — C such that

{eXD(L(z)) =z
-7 <L) <n
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for z € {z1,z2}. Then we have

(2mi) 2L, (¢, L)
= —0.410436672841509719896511286582. .. + 0.116811405960393667783690172415. . .1,

(2mi) "2 La(0(€), L)
= —0.648591104936268057881266491195 ... — 0.101343619597444827660608339898 . . . 7.

Therefore, the following equalities hold in high accuracy.

(@ri) 1 Ax (=1, id, (1, V=) — (2mi)~2L5(6, L) = 2631252 x 6013,
(2mi) 1Ay (—1,071, (3,3v—1)) — (2mi) 2La(c(€),L) = 263252 x 20027.

5.0.2. Example 2. Let F\,H, g be as in Example 1 and & = 3. Then

(2mi) A1 (-2,id, (1, v—1))
= +22.551395299623280967293134627914 . . . — 0.965351077820958862319864732841127 . . .1,

@2m) 1A (-2,071,(3,3V-1))
= —25.076395299623280967293134627914 . . . + 0.878122673714396064702344979624005 . . . 1.

B3(H) ® Q is generated by &; and &3, where

gl =g(17 07 0)
§2 =2g(0’ _17 O) + 2g(_17 _1> 0) - g(_17 27 0) + 9(27 _27 0)
Put £ := 1168&; + 96&2. Then we have
(2mi)"La(¢, L)
= —4.366104700376719032706865372085 . . . — 0.965351077820958862319864732841 . . .1,

(2mi)~3L3(0(€), L)
= —3.633895299623280967293134627914 . . . + 0.878122673714396064702344979624 . . . 1.

Therefore, the following equalities hold in high accuracy.

(2mi) 1A1(~2,1d, (1, V=1)) — (2mi) 3Ls(£,L) = 2452 x 10767,
(2mi) " A1 (=2,07 1, (3,3V=1)) — (2mi) 3 L3(c(€), L) = 24152 x 8577.

5.0.3. Ezample 3. Let F H, g be as in Example 1 and k = 4. Then we have
(2m3) " A1(=3,1d, (1,v-1))
= —1649.956754323663658721263100094474 . . . + 17.378488635838497309162077981703 . . . <,
(2mi)"'A1(=3,071, (3,3v=1))
= 41955.960837656996992054596433427807 . . . — 16.497252745225743566155151381111. ...

On the other hand, B4(H) ® Q is generated by & and &3, where
51 :g(_17 07 0)7
&9 =6030g(1, —2, —4) — 38592¢g(—1, -1, —1) + 6300g(2, —2, 0) — 4288¢(—1, 3, 3)
+38592¢(2,1,1) + 14472¢(1, 2,2) — 315¢(2, —4, 0) — 20160¢(0, 1, 0).

Put
1523024

215

1— E&-
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Then we have

(2mi) 4 La(€,L)
= 572.659133192486212079770491636791 ... + 17.378488635838497309162077981703. . . ¢,

(2mi)~*L4 (o (€), L)
= 394.962771684774769832374211205585 ... — 16.497252745225743566155151381111.. .1.

Therefore, the following equalities hold in high accuracy.

- 1
N—1 . -\ -4 _
(2TI'Z) 1\1(--37 ld7 (1, Vv —1)) - (27”) [,4(6, L) = '—m X 27524875151,
o _ NP 1
2mi) T A1 (=3,071, (3,3v—1)) — (2mi) "4 Ly(0(€),L) = 3 X 449567443.

5.0.4. Example 4. Consider the case where F = Q(v/—1), k = 2 and
H =Fla]/(a®+a*+ (-V-1+1)a+1)
= Qla]/(ab + 2a° + 3a* + 4a® + 4a® + 22 + 1).
The conductor m of the abelian extension H/F is (3 +2y/—1), and the Galois group of the extension
is given by Gal(H/F) = {id, 0,02} ~ Z/3Z, where
o(a) =a® +v—1.
‘We embed H into C by
a— —1.049136453746963 . . . — 0.552653068016644 . . . <.
Then we have
(2m)~A1(~1,id, (1, v~1))
= —0.475223569256714546951256467303 . . . + 0.039887184735200527119999658349 . . . ¢,
(2mi)rA1(=1,071, (3,3v-1))
= +1.187070396353502328207258813635 . . . — 0.010841653214171453932922393362. . . 4.
(2m) 1Ay (~1,07%, (7, 7V-1))
= —0.944218621968582653050874141203 . . . — 0.075448890609875593556322762536 . . . ¢
We put
zo =+v/~1
r1=a*4+a®+2a%2+2a+1
we=a*+a®+a®+a+1
and g(ko, k1, k2) = [zkex¥12k2]. Then By(H) ® Q is generated by &1, &2 and &3, where
&1 =39(0,—4,-3) +g(0,-3,-1) + g(—1,4,2),
€2 =9(0,—4,-3) +39(0, -1, -2),
&5 =g(0, -3, —1) + 79(0, -1, -2).
Put
e=-26+ 26 - g,
and take any homomorphism L : H* /ug — C such that

?wﬂm=x
- < QL)) <7
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for z € {z1,%2}. Then we have
(2mi)"2L(¢, L)
= 6.579931345273199982963273447226 . . . + 0.039887184735200527119999658349.. . . 1,
(2mi)~2La(0(€),L)
= 2.495964627122733097438028044404 . . . — 0.010841653214171453932922393362. . . %,
(2mi) "2L2(0%(€), L)
= 1.866812360937400252932031841702 . . . — 0.075448890609875593556322762536 . . . 7.

Therefore, the following equalities hold in high accuracy.

(2mi) "t A1 (—1,id, (1, v—1)) — (2mi) 2L(£, L) = ~ T3 321 5 X 52829,
(2mi) A1 (—1,071, (3,3V=1)) — (2mi) "2L(0(€),L) = 2611 3 * 1089,
(2mi) " Ay (—1,072,(7,7V=1)) = (2mi)"2L(c2(€),L) = 2631213 x 21049.

5.0.5. Ezample 5. Consider the case where F = Q(a), a = i@, k=2 and

H = Fla]/(a* + aa® + (¢ — 2)a® — aa + 1)
=Qla]/(a® + a7 +a® + 5a® — 5a® 4+ 2% —a +1).

The conductor m of the abelian extension H/F is (2a), and the Galois group of the extension is given

by Gal(H/F) = {id, 0, 02,6°%} ~ Z/4Z, where
__95 6_ 11 5 4 3.9, 1 9
o(a) = 1% 2a 79 8a* — 5a”° + 1% + 2a+ 1

We embed H into C by
a+~» —1.472308583487351 . .. + 0.228052190401739.. . .13.
Then we have
(2mi) " A1 (-1,id, (1, @)
= —0.549416488595748965839780338275 . . . + 0.481759817457910604093198974724.. . . 1,
(27”:)_1A1(_1’ a_lv (37 1+ a))
= —0.425192449605512455515210548757 . . . — 0.079868750342814762877192227070. . . ,
(2mi) A1 (=1,072,(3, 3a))
= —0.200583511404251034160219661724 . . . — 0.415608524583768735914291912355 . . . 1,
2r) " A1 (-1,073,(9,3 + 3a))
= —1.824807550394487544484789451242 . . . + 0.053468466816602995293288148807 . . . 1.

We put
To = 711 -l—g + 24° + 5a% + 2a3 19 2+ Sa—1
Ty = —a, +3a5+a +a—13 %
Xy =xp— a
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and g(ko, k1, k2, k3) = [z‘k%k‘z :1:33] Note that, despite its appearance, 2§ = —1. Then By(H) ® Q
is generated by &;,&2,&3 and &4, where

& =9(-1,0,0,0),

€2 =29(3,-1,1,1) — g(—1,1,1,0) — 29(2,1,-1,-1),

€ =69(3,-1,1,1) — 29(-2,1,0,0) — g(2,1,—1,-1) + g(0,—1, -2, 1),
€4 =29(3,-1,1,1) +29(-2,1,0,0) — g(-2,1,1,2).

-

Put 23 17 11
§i= —‘Efl - '2—52 + Z£3 + 64,
and take any homomorphism L : H*/ug — C such that
{exp(L(w)) =
—m <L) <n
for € {z1, %2, z3}. Then we have
(2mi) 2L (€, L)
= —0.301673433040193410284224782719 . . . 4 0.481759817457910604093198974724 . . .1
(2mi)*La(0(€), L)
= —4.260088282938845788848543882091 . . . — 0.079868750342814762877192227070. . .4,
(2mi) L (0?(€), 1)
= +5.679103988595748965839780338275 . . . — 0.415608524583768735914291912355. . . ¢,
(2m8) 2La(0®(€), 1)
= —6.982620050394487544484789451242 . . . 4 0.053468466816602995293288148807 . . . .

Therefore, the following equalities hold in high accuracy.

(2m3)"TA1(—1,id, (1, @) — (2ms) "2La(E, L) = 27325 x 1427,
(218) A1 (1,071, (3,14 @) — (2ni) 2 La(0(€),L) = 27315 x 7363,
(2mi) " A1(~1,072,(3,3a)) — (2mi) 2L, (c2(€), L) = —% x 3763,
(2mi) AL (~ 1,073, (9,3 + 3a)) — (2mi) "2 L2(c(€), L) = ﬁ x 3301.
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