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1. INTRODUCTION: ENDOSCOPY AND THE LOCAL LANGLANDS CORRESPONDENCE

This article is a summary of the author�s talk at the RIMS workshop �Automorphic forms

and related topics� on February 10, 2017. We report on some results on the endoscopic liftings
of simple supercuspidal representations of classical groups. We first recall the local Langlands
correspondence for classical groups, which is a background of the problems considered in this

article.

For a connected reductive group \mathrm{G} over a p‐‐adic field F
, we consider the set  $\Pi$(G) of

equivalence classes of irreducible smooth representations of G :=\mathrm{G}(F) and the set  $\Phi$(G) of

L‐parameters of G. Then the conjectural local Langlands correspondence for \mathrm{G} predicts that

there exists a natural map from  $\Pi$(G) to  $\Phi$(G) with finite fibers (L‐packets). In other words
there exists a natural partition of  $\Pi$(G) into L‐packets parametrized by  $\Phi$(G) :

 $\Pi$(G)= \mathrm{I}\mathrm{I} $\Pi$_{ $\phi$}.
 $\phi$\in $\Phi$(G)

In the case of \mathrm{G} = \mathrm{G}\mathrm{L}_{N} , this correspondence was established by Harris and Taylor in

[HTOI]. In this case, each L‐packet $\Pi$_{ $\phi$} is a singleton and the naturality of the partition is

formulated in terms of the local L‐factors and  $\epsilon$‐factors.

Recently Arthur established the local Langlands correspondence for quasi‐split classical

groups, namely symplectic or special orthogonal groups, in his book [Art13] (the case of

unitary group was done by Mok in [Mok15]). In these cases, each  L‐packet is not necessarily
a singleton, and the naturality of the partition is formulated via the endoscopic character

relation.

We next recall what is the endoscopic character relation. Let us assume that a quasi‐split
classical group \mathrm{G} is an twisted endoscopic group of \mathrm{G}\mathrm{L}_{N} . That is we have an involution  $\theta$

of \mathrm{G}\mathrm{L}_{N} and an L‐embedding  $\iota$ from the  L‐group of \mathrm{G} to that of \mathrm{G}\mathrm{L}_{N} such that the image
of the dual group \hat{G} of \mathrm{G} coincides with some \hat{ $\theta$}‐twisted centralizer in \mathrm{G}\mathrm{L}_{N}=\mathrm{G}\mathrm{L}_{N}(\mathbb{C}) (here
\hat{ $\theta$} is the dual involution of  $\theta$ ). For example, the dual group of the odd special orthogonal
group \mathrm{S}\mathrm{O}_{2n+1} is given by the symplectic group \mathrm{S}\mathrm{p}_{2n}(\mathbb{C}) , and \mathrm{S}\mathrm{O}_{2n+1} is a twisted endoscopic
group of \mathrm{G}\mathrm{L}_{2n} with respect to the natural embedding of \mathrm{S}\mathrm{p}_{2n}(\mathbb{C}) into \mathrm{G}\mathrm{L}_{2n}(\mathbb{C}) . Let  $\phi$ be

an  L‐parameter of G. Then, since  $\phi$ is a homomorphism from the local Langlands group

 W_{F}\times \mathrm{S}\mathrm{L}_{2}(\mathbb{C}) to the L‐group of \mathrm{G} , we get an L‐parameter of \mathrm{G}\mathrm{L}_{N} by composing  $\phi$ with  $\iota$ :
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Here  W_{F} is the Weil group of F . Thus we get a pair of L‐packets $\Pi$_{ $\phi$} \subset  $\Pi$(G) and $\Pi$_{ $\iota$\circ $\phi$} \subset

 $\Pi$(\mathrm{G}\mathrm{L}_{N}(F)) which are related via the natural operation on the dual side. In this situation,
we call the unique representation in $\Pi$_{ $\iota$\circ $\phi$} the endoscopic lifting of $\Pi$_{ $\phi$} from G to \mathrm{G}\mathrm{L}_{N}(F) .

Then the endoscopic character relation is an equality of characters of representations in these
L‐packets, and characterizes the endoscopic lifting representation‐theoretically:

$\Theta$_{ $\pi,\ \theta$}(g)=h\displaystyle \mapsto g $\pi$ G\in $\Pi$\sum\frac{D_{G}(,h)^{2}}{D_{\mathrm{G}\mathrm{L}_{N} $\theta$}(g)^{2}}$\Delta$_{G,\mathrm{G}\mathrm{L}_{N}}(h, g)\sum_{ $\rho$},$\Theta$_{ $\pi$}G(h) ,

Here,

\bullet  $\pi$ is the endoscopic lifting of  $\Pi$_{ $\phi$} from G to \mathrm{G}\mathrm{L}_{N}(F) ,
\bullet $\Theta$_{ $\pi$}G (resp. $\Theta$_{ $\pi,\ \theta$} ) is the character of $\pi$_{G} (resp. the  $\theta$‐twisted character of  $\pi$),
\bullet  D_{G} (resp. D_{\mathrm{G}\mathrm{L}_{N}, $\theta$} ) is the Weyl‐discriminant (resp. the  $\theta$‐twisted Weyl‐discriminants),
\bullet $\Delta$_{G,\mathrm{G}\mathrm{L}_{N}} is the Kottwitz‐Shelstad transfer factor,
\bullet  g is a strongly  $\theta$‐regular  $\theta$‐semisimple element of \mathrm{G}\mathrm{L}_{N}(F) ,

and
\bullet the sum is over stable conjugacy classes of norms  h\in G of g.

Since the characters of representations satisfy the linear independence, this equality charac‐

terizes the each L‐packets of G.

Here we consider the following natural problem:

Describe the local Langlands correspondence for \mathrm{G} explicitly.

Then, from the above formulation of the local Langlands correspondence for \mathrm{G} , we can divide

this problem into the following two problems:

(1) For a given irreducible smooth representation $\pi$_{G}\in $\Pi$(G) , determine the finite subset

(L‐packet) of  $\Pi$(G) containing $\pi$_{G} and the representation  $\pi$ of \mathrm{G}\mathrm{L}_{N}(F) satisfying the

endoscopic character relation.

(2) Determine the L‐parameter corresponding to  $\pi$.

Namely, we can divide the problem of explicit description of the local Langlands correspon‐
dence for \mathrm{G} into the problems of explicit description of the endoscopic lifting from \mathrm{G} to \mathrm{G}\mathrm{L}_{N}
and the local Langlands correspondence for \mathrm{G}\mathrm{L}_{N}.

In this article, we report on some results on the first problem for simple supercuspidal
representations, which were introduced by Gross‐Reeder in [GR10], of quasi‐split classical

groups.

Notation. Let p be an odd prime number. We fix a p‐adic field F . We denote its ring of

integers, its maximal ideal, and its residue field by \mathcal{O}, \mathfrak{p} , and k , respectively. For x \in \mathcal{O},
\overline{x} denotes the image of x in k . For an algebraic group \mathrm{G} over F

, we denote its F‐rational

points \mathrm{G}(F) by G.
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2. SIMPLE SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS

We recall the definition of simple supercuspidal representations of classical groups briefly.
See [GR10] or [\mathrm{O}\mathrm{i}\mathrm{l}6\mathrm{b}] for the details of the arguments in this section.

We first take a quasi‐split classical group \mathrm{G} over F
, that is a general linear group, an unitary

group, a symplectic group, or a special orthogonal group. For simplicity, we assume that \mathrm{G}

is split. We fix an F‐split maximal torus \mathrm{T} of G. Then it defines an apartment \mathcal{A}(\mathrm{G}, \mathrm{T}) of

the Bruhat‐Tits building of G. By taking a fundamental alcove C of this apartment, we get
the corresponding Iwahori subgroup I of G , which is a minimal parahoric subgroup of G . If

we take a point \mathrm{x} of the closure of C , then we get a filtration of I by the Moy‐Prasad theory.
We take this point \mathrm{x} to be the barycenter of the alcove C , and denote the first two steps of

the filtration by I^{+} and I^{++} . Then we have an isomorphism

I^{+}/I^{++}\cong k^{\oplus l+1},
where l is the rank of G. For an character  $\chi$ of  I^{+}

, we say that  $\chi$ is affine generic if  $\chi$ satisfies

the following two conditions:

\bullet  $\chi$ is trivial on  I^{++}
, and

\bullet  $\chi$ is not trivial on every summand  k of I^{+}/I^{++}.
Let  $\chi$ be an character of  ZI^{+} such that  $\chi$|_{I+} is affine generic. Here Z is the F‐valued points
of the center \mathrm{Z} of G . Then we define the normalizer N_{G}(I^{+}; $\chi$) of  $\chi$ as follows:

 N_{G}(I^{+}; $\chi$):=\{n\in N_{G}(I^{+}) |$\chi$^{n}= $\chi$\}.
Here N_{G}(I^{+}) is the normalizer of I^{+} in G , and $\chi$^{n} is the twist of  $\chi$ via  n defined by

$\chi$^{n}(x):= $\chi$(nxn^{-1}) .

Now we can define simple supercuspidal representations of G . We have the following key
proposition:

Proposition 2.1. (1) We have a decomposition

\displaystyle \mathrm{c}-\mathrm{I}\mathrm{n}\mathrm{d}_{ZI+}^{G} $\chi$\cong\bigoplus_{\tilde{ $\chi$}}\dim(\tilde{ $\chi$})\cdot$\pi$_{\overline{ $\chi$}}.
Here the sum is over the set of irreducible representations of N_{G}(I^{+}; $\chi$) containing

 $\chi$ (namely, irreducible constituents of \mathrm{c}-\mathrm{I}\mathrm{n}\mathrm{d}_{ZI+}^{N_{G}(I^{+}; $\chi$)} $\chi$), and  $\pi$_{\overline{ $\chi$}} := \mathrm{c}-\mathrm{I}\mathrm{n}\mathrm{d}_{N_{G}(I+, $\chi$)}^{G}(\tilde{ $\chi$}) .

Moreover, each $\pi$_{\overline{ $\chi$}} is irreducible, hence supercuspidal.
(2) For an another pair ($\chi$',  $\chi$  $\pi$_{\overline{ $\chi$}}\cong$\pi$_{\overline{ $\chi$}^{J}} if and only if $\chi$^{n}\cong$\chi$' and \tilde{ $\chi$}^{n}\cong(\tilde{ $\chi$}')^{n} for some

n\in N_{G}(I^{+}) .

We call the irreducible supercuspidal representations of G obtained in this way simple
supercuspidal representations.

By computing the normalizer N_{G}(I^{+}) of I^{+} , we can describe the set of equivalence classes

of simple supercuspidal representations explicitly. For example, in the case of \mathrm{G}\mathrm{L}_{N} , we can

compute an Iwahori subgroup and the set of simple supercuspidal representations as follows:

Example 2.2 (the case of \mathrm{G}=\mathrm{G}\mathrm{L}_{N} ). We take \mathrm{T} to be the diagonal maximal torus, and

choose the fundamental alcove C contained in the chamber corresponding to the upper‐

triangular Borel subgroup. Then the corresponding Iwahori subgroup and its filtration are
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given by

I= \left(\begin{array}{lll}
\mathcal{O}^{\times} &  & \mathcal{O}\\
 & \ddots & \\
\mathfrak{p} &  & \mathcal{O}^{\times}
\end{array}\right) ,
I^{+}= \left(\begin{array}{llll}
1+ & \mathfrak{p} &  & \mathcal{O}\\
 &  & \ddots & \\
\mathfrak{p} &  &  & 1+\mathfrak{p}
\end{array}\right) , and

I^{++}= \left(\begin{array}{lllll}
 &  &  &  & \\
 &  &  &  & \\
 &  &  &  & \\
 &  &  &  & 
\end{array}\right)
The normalizer of I in G is given by

Z_{G}I\langle$\varphi$_{a}\},
for any a\in k^{\times} , where Z_{G} is the center of G and $\varphi$_{a} is a matrix defined as follows:

\left(\begin{array}{ll}
0 & I_{N-1}\\
 $\varpi$ a & 0
\end{array}\right).
Here I_{N-1} is the unit matrix of size N-1 and ca is a uniformizer of F . Note that we have

$\varphi$^{N}= $\varpi$ a . Then the set of—equivalence classes of simple supercuspidal representations of G

is parametrized by the set k^{\times} \times k^{\times} \times \mathbb{C}^{\times} . To be more precise, for ( $\omega$, a,  $\zeta$) \in\hat{k^{\times}}\times k^{\times} \times \mathbb{C}^{\times},
we define a character \tilde{ $\chi$}_{( $\omega$,a, $\zeta$)} of  ZI^{+}\langle$\varphi$_{a^{-1}}\rangle by

\tilde{ $\chi$}_{( $\omega$,a, $\zeta$)}(z) := $\omega$(z) for z\in k^{\mathrm{X}}=\mathrm{Z}(k)\subset Z,

\tilde{ $\chi$}_{( $\omega$,a, $\zeta$)}(x) := $\psi$(\overline{x_{12}}+\cdots+\overline{x_{N,N-1}}+a\overline{$\varpi$^{-1}x_{N1}}) for x=(x_{ij})_{ij}\in I^{+} , and

\tilde{ $\chi$}_{( $\omega$,a, $\zeta$)}($\varphi$_{a}):= $\zeta$.
Here we fixed a non‐trivial additive character  $\psi$ of  k . Then the representation  $\pi$(w,a, $\zeta$) :=

\mathrm{c}-\mathrm{I}\mathrm{n}\mathrm{d}_{ZI+}^{G}\langle\tilde{ $\chi$} is a simple supercuspidal representation, and we can check that every

simple supercuspidal representation of \mathrm{G}\mathrm{L}_{N}(F) is equivalent to  $\pi$( $\omega$,a, $\zeta$) for a unique ( $\omega$, a,  $\zeta$)\in
 k^{\times} \times k^{\times} \times \mathbb{C}^{\times}.

In a similar way to this example, we can compute sets of representatives of simple su‐

percuspidal representations of quasi‐split classical groups, and parametrize them by triples
consisting of

(1) a central character  $\omega$,

(2) an (�equivalence class� of an affine generic character  $\chi$ on  I^{+} , and

(3) images of the normalizer of  $\chi$.

Moreover, as in the above example, the set of (2) is in fact exhausted by affine generic
characters whose only one or two components of k^{\oplus l+1} (\cong I^{+}/I^{++}) are twisted by a non‐

zero element of k^{\times} , and we can parametrize them by k^{\times} or $\mu$_{2} \times  k^{\times} . By a case‐by‐case
computation, we get the following table:

Remark 2.3. In the above parametrization of simple supercuspidal representations, we have

to fix some non‐canonical data. For example, in the case of \mathrm{G}\mathrm{L}_{N} , in order to parametrize the

set of equivalence classes of affine generic characters of I^{+}
, we have to fix a uniformizer  $\varpi$

of  F and a non‐trivial additive character  $\psi$ of  k . In the case of the unitary group \mathrm{U}_{E/F}(N)
attached to an unramified quadratic extension E/F ,

we have to fix a trace‐zero element of
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TABLE 1. Parametrizing sets and the depth of simple supercuspidal represen‐

tations of classical groups

the residue field k_{E} of E in addition to  $\varpi$ and  $\psi$ . Thus the above parametrizations are

non‐canonical and depend on such data.

Remark 2.4. We can characterize the simple supercuspidal representations via the depth of

admissible representations. For an admissible representation  $\pi$ of  G ,
we can define the depth

of  $\pi$ , which is a non‐negative rational number, by using the Moy‐Prasad theory. Then we

can check that an irreducible admissible representation  $\pi$ of  G is simple supercuspidal if and

only if  $\pi$ has the minimal positive depth. In the case of split connected reductive group \mathrm{G},
the minimal positive depth is given by the inverse of the Coxeter number of G. For example,
in the case of \mathrm{G}\mathrm{L}_{N} , it is \displaystyle \frac{1}{N}.

3. MAIN RESULTS

First we explain the endoscopic groups which we consider in this article. We put

J_{N}:= \left(\begin{array}{llll}
 &  &  & 1\\
 &  & -1 & \\
 & \cdot &  & \\
(-\mathrm{l})^{N-1} &  &  & 
\end{array}\right)
We treat the endoscopic groups of the following four types:

(1) (\mathrm{G}, \mathrm{H})=(\mathrm{G}\mathrm{L}_{2n}, \mathrm{S}\mathrm{O}_{2n+1}) : Let  $\theta$ be an automorphism of \mathrm{G}\mathrm{L}_{2n} over F defined by
 $\theta$(g) = J_{2n}{}^{t}g^{-1}J_{2n}^{-1} . Then \mathrm{S}\mathrm{O}_{2n+1} is an endoscopic group for (\mathrm{G}\mathrm{L}_{2n},  $\theta$) with respect
to a natural embedding of L‐groups:

L\mathrm{H}=\mathrm{S}\mathrm{p}_{2n}(\mathbb{C})\times W_{F}\llcorner+\mathrm{G}\mathrm{L}_{2n}(\mathbb{C})\times W_{F}=L\mathrm{G}.
(2) (\mathrm{G}, \mathrm{H})=({\rm Res}_{E/F}\mathrm{G}\mathrm{L}_{N}, \mathrm{U}_{E/F}(N)) : Let E/F be an unramified quadratic extension

of  f\succ‐adic fields. Let  $\theta$ be an automorphism of {\rm Res}_{E/F}\mathrm{G}\mathrm{L}_{N} over F defined by  $\theta$(g)=
J_{N}^{t}c(g)^{-\mathrm{I}}J_{N}^{-1} . Here c is the Galois conjugation of the quadratic extension E/F . Then

the unitary group \mathrm{U}_{E/F}(N) is an endoscopic group for ({\rm Res}_{E/F}\mathrm{G}\mathrm{L}_{N},  $\theta$) with respect
to the following embedding of L‐groups:

L\mathrm{H}=\mathrm{G}\mathrm{L}_{N}(\mathbb{C})\rangle\triangleleft W_{F}\rightarrow(\mathrm{G}\mathrm{L}_{N}(\mathbb{C})\times \mathrm{G}\mathrm{L}_{N}(\mathbb{C})) \rangle\triangleleft W_{F}=L\mathrm{G}
gx $\sigma$\mapsto(g, J_{N}^{t}g^{-1}J_{N}^{-1})\rangle\triangleleft $\sigma$.
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(3) (\mathrm{G}, \mathrm{H})=(\mathrm{G}\mathrm{L}_{2n+1}, \mathrm{S}\mathrm{p}_{2n}) : Let  $\theta$ be an automorphism of \mathrm{G}\mathrm{L}_{2n+1} over F defined by
 $\theta$(g)=J_{2n+1}{}^{t}g^{-1}J_{2n+1}^{-1} . Then \mathrm{S}\mathrm{p}_{2n} is an endoscopic group for (\mathrm{G}\mathrm{L}_{2n+1},  $\theta$) with respect
to a natural embedding of L‐groups:

L\mathrm{H}=\mathrm{S}\mathrm{O}_{2n+1}(\mathbb{C})\times W_{F}\mapsto \mathrm{G}\mathrm{L}_{2n+1}(\mathbb{C})\times W_{F}=L\mathrm{G}.

(4) (\mathrm{G}, \mathrm{H})= ( \mathrm{G}\mathrm{L}_{2n} , ramified \mathrm{S}\mathrm{O}_{2n} ): Let E/F be a ramified quadratic extension of p‐
adic fields. Let  $\theta$ be an automorphism of \mathrm{G}\mathrm{L}_{2n} over F defined by  $\theta$(g)=J_{2n}{}^{t}g^{-1}J_{2n}^{-1}.
Then the non‐split quasi‐split even special orthogonal group \mathrm{S}\mathrm{O}_{2n,E} corresponding to

E/F is an endoscopic group for (\mathrm{G}\mathrm{L}_{2n},  $\theta$) with respect to the following embedding of
L‐groups:

L\mathrm{H}=\mathrm{S}\mathrm{O}_{2n}(\mathbb{C})\rangle\triangleleft W_{F}\mapsto \mathrm{G}\mathrm{L}_{2n}(\mathbb{C})\times W_{F}=L\mathrm{G}
g\rangle\triangleleft 1\mapsto g\rangle\triangleleft 1,

1 \aleph $\sigma$\mapsto \left\{\begin{array}{ll}
1 \rangle \mathrm{t} $\sigma$ & \mathrm{i}\mathrm{f}  $\sigma$\in W_{E},\\
w\rangle\triangleleft $\sigma$ & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Here, w is the following element:

w:= \left(\begin{array}{llll}
 & 0 & 1 & \\
I_{n-1} & \mathrm{l} & 0 & I_{n-1}
\end{array}\right)
Now we state our main results.

Theorem 3.1. Let (\mathrm{G}, \mathrm{H}) be a pair of connected reductive groups overF which is a one of the

above four types. Let r\mathrm{r}_{H} be a simple supercuspidal representation of H, $\phi$_{H} the corresponding
L ‐parameter (thus its L ‐packet \mathrm{I}\mathrm{I}_{$\phi$_{H}} contained $\pi$_{H} ), and $\pi$_{G} be the endoscopic lifting of $\Pi$_{$\phi$_{H}}
to G.

(1) In the case of (1), the L ‐packet $\Pi$_{$\phi$_{H}} is a singleton and $\pi$_{G} is again simple supercus‐

pidal. Moreover, if $\pi$_{H} corresponds to (1, a,  $\zeta$) in the sense of the parametrization in

Table 1, then $\pi$_{G} corresponds to (1, 2a,  $\zeta$) .

(2) In the case of (2), the L ‐packet $\Pi$_{$\phi$_{H}} is a singleton and $\pi$_{G} is again simple supercus‐

pidal. Moreover, if $\pi$_{H} corresponds to ( $\omega$, a, 1) in the sense of the parametrization in

Table 1, then $\pi$_{G} corresponds to

\left\{\begin{array}{ll}
( $\omega$, a, - $\omega$(-1)) & if N is even\\
( $\omega$, a $\epsilon,\ \omega$(-1)) & if N is odd,
\end{array}\right.
where  $\epsilon$ is the fixed trace‐zero element of the residue field of  E used in the parametriza‐
tion in Table 1.

(3) In the case of (3), the L ‐packet $\Pi$_{$\phi$_{H}} consists of the adjoint orbit of $\pi$_{H} . The order of
this L ‐packet is 2, and its endoscopic lifting $\pi$_{G} is an irreducible tempered represen‐
tation of G given by

\mathrm{I}\mathrm{n}\mathrm{d}_{P_{2n,1}}^{G} $\pi$\ovalbox{\tt\small REJECT}$\omega$_{ $\pi$},
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where P_{2n,1} is the F ‐valued points of a parabolic subgroup of \mathrm{G}\mathrm{L}_{2n+1} whose Levi sub‐

group is given by \mathrm{G}\mathrm{L}_{2n}\times \mathrm{G}\mathrm{L}_{1},  $\pi$ is a simple supercuspidal representation of \mathrm{G}\mathrm{L}_{2n_{J}}
and $\omega$_{ $\pi$} is the central character of  $\pi$.

(4) In the case of (4), the L ‐packet \mathrm{I}\mathrm{I}_{$\phi$_{H}} is a singleton and $\pi$_{G} is again simple supercusp‐
idal.

Remark 3.2. (1) The result in the case of (1) was also obtained by Adrian in [Adr15]
under the assumption that  p\geq (e+2)(2n+1) , where e is the absolute ramification

index of F . Thus our result (1) is new for 2<p<(e+2)(2n+1) .

(2) The L‐embedding considered in the case of (2) is called the standard base change
embedding, and there exists another embedding called the twisted base change embed‐

ding from L\mathrm{H} to L\mathrm{G} . For this embedding we have analogous results (see [\mathrm{O}\mathrm{i}\mathrm{l}6\mathrm{b}] for

details).
(3) In the cases of (3) and (4), we can determine the correspondence of simple super‐

cuspidal representations explicitly as in (1) and (2). This computation is in progress
now.

(4) By the works of Bushnell‐Henniart ([BH05]) and Imai‐Tsushima ([IT15]), we have an

explicit description of L‐parameters of simple supercuspidal representations of \mathrm{G}\mathrm{L}_{N}.
Thus combining it with the above theorem, we get an explicit description of the L‐

parameters of simple supercuspidal representations of classical groups of the above

types.

Finally we comment on a rough outline of the proof of the above theorem. We show the
above statements by case‐by‐case arguments.

(1), (2): The key point of the proof in these cases is to start from a simple supercuspidal
representation of G , not H . To show the assertions directly, we first have to determine
the structure of the L‐packet containing $\pi$_{H} . However, if we start from a simple
supercuspidal representation $\pi$_{G} of G of the form in Theorem (1) or (2), we can

check easily that it is the endoscopic liftin \mathrm{g} of an L‐packet of H which is a singleton
consisting of a supercuspidal representation. Namely, we can avoid the difficulty of

determining the structure of the L‐packet.
We write $\pi$_{H}' for the supercuspidal representation of H which is �descended� from

a simple supercuspidal representation $\pi$_{G} of G . Then our task is to show that this

representation $\pi$_{H}' is simple supercuspidal and determine its parameter (in the sense

of Table 1). These are done by investigating the endoscopic character relation. Since
we can write the twisted characters of simple supercuspidal representations of G

explicitly in terms of the Kloosterman sums, we get an description of the characters
of $\pi$_{H}' via Kloosterman sums through the endoscopic character relation between $\pi$_{G}
and $\pi$_{H}' . Then, by using elementary properties of Kloosterman sums, we can recover

the simple supercuspidality of $\pi$_{H}' from its characters.

(3): In this case, we can not apply the above argument because we do not have a

way to compute the twisted characters of representations which are parabolically
induced from \mathrm{n}\mathrm{o}\mathrm{n}- $\theta$‐stable parabolic subgroups. Thus we start from  $\pi$_{H} . Our first
task it to determine the structure of the L‐packet $\Pi$_{$\phi$_{H}} . To do this, we consider
the standard endoscopy of H . By using the standard endoscopic character relation
between H and its endoscopic groups, we can bound the depth of representations
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in $\Pi$_{$\phi$_{H}} and show that every representation in $\Pi$_{$\phi$_{H}} is either depth 0 supercuspidal
or simple supercuspidal. Then the statement on the structure of $\Pi$_{$\phi$_{H}} follows from

the uniqueness of a generic representation and the constancy of formal degrees of

representations in an L‐packet.
Next we have to determine the endoscopic lifting to G . Since the order of the

L‐packet $\Pi$_{$\phi$_{H}} is 2, $\Pi$_{$\phi$_{H}} is the endoscopic lift of an L‐packet $\Pi$_{(p_{H}}' of an endoscopic
group of H . We can check that this endoscopic group is in fact a ramified even special
orthogonal group \mathrm{H}' . Since it is known that this endoscopic lifting from H' to H is

compatible with the  $\theta$‐correspondence, we can conclude that  $\Pi$_{$\phi$_{H}}' consists of a single
simple supercuspidal representation of H' by using the depth‐preservation theorem

for the  $\theta$‐correspondence ([Pan02]). Thus our problem is reduced to the case of (4).
(4): From the arguments in the case of (3), we already know the structure of the L‐

packet containing a simple supercuspidal representation of  H . Thus we can show the

claim by the same method as in the cases of (1) and (2).
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