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THE LP-APPROACH TO GLOBAL STRONG WELL-POSEDNESS OF THE
PRIMITIVE EQUATIONS OF OCEAN DYNAMICS

MATTHIAS HIEBER

ABSTRACT. In this short note we summarize recent results on the LP-approach to the prim-
itive equations. By this approach, one obtains global strong well-posedness results for the
primitive equations for arbitrarly large data in D((—Ap)'/?) for 1 < p < oo, where A, denotes
the hydrostatic Stokes operator on LZ(f2), and © C R? is a cylindrical domain subject to
mixed, periodic Dirichlet and Neumann boundary conditions. The above space D((—A,)*/?)
may be identified by a Bessel potential space on (2, satisfying certain boundary conditions.
Furthermore —A, admits a bounded H*-calculus on LE(S2) for all p € (1,00) with H*-angle
0 and in particular one obtains thus maximal L? — L?— regularity estimates for the linearized
primitive equations.

1. INTRODUCTION

The primitive equations for ocean and atmospheric dynamics were introduced by Lions,
Teman and Wang in a series of articles [27-29] and they serve since then as a fundamental model
for many geophysical flows. This set of equations describing the conservation of momentum
and mass of a fluid, assuming hydrostatic balance of the pressure, coupled to the equations for
temperature as well as salinity, are given by

ov+u-Vv—Av+Vygr =, in Q@ x (0,7),

dive =0, in Q x (0,T),

(1.1) r+u-Vr— At =g, in Qx (0,T),
So+u-Vo—Aoc =g, in Qx(0,7),

O +1~-B(tr—=1)+Bs(c—1) =0, in Q x (0,7),

with initial conditions v(0) = a, 7(0) = b/, 0(0) = b, and forcing terms f, g, and g,. Here
=G x (—h,0) C R®, with G = (0,1) x (0,1). The velocity u of the fluid is described by
% = (v, w), where v = (v;,v2) denotes the horizontal component and w the vertical one. In
addition, the temperature and salinity are denoted by 7 and o, respectively, and = denotes the
pressure of the fluid. Moreover, we assume fS;, 3, > 0. Denoting the horizontal coordinates by
z,y € G and the vertical one by z € (—h,0), we use the notation Vg = (a,,,a,,)T, whereas A
denotes the three dimensional Laplacian and V and div the three dimensional gradient and
divergence operators.
The above system is complemented by the boundary conditions

Ov=0, w=0, 97+ar=0, 8,0=0 onT, x (0,00),
(1.2) v=0, w=0, 9,7=0, 0,0=0 onT}yx(0,00),
v,m,T,0 are periodic on Iy x (0, 00),

where

I, =Gx{0}, Tpy=Gx{-h} and TI;=0G x (—h,0),
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and a > 0.

The rigorous analysis of the primitive equations started with the pioneering work of Lions,
Temam and Wang [27-29], who proved the existence of a global weak solution for this set of
equations for initial data @ € L? and b, € L2, b, € L. For recent results on the uniqueness
problem for global weak solutions, we refer to the work of Li and Titi {26] and Kukavica, Pei,
Rusin and Ziane [21].

The existence of a local, strong solution for the decoupled velocity equation with data ¢ € H!
was proved by Guillén-Gonzélez, Masmoudi and Rodiguez-Bellido in [14].

In 2007, Cao and Titi [4] proved a breakthrough result for this set of equation which says,
roughly speaking, that there exists a unique, global strong solution to the primitive equations
for arbitrary initial data a € H! and b, € H' neglecting salinity. Their proof is based on a
priori H'-bounds for the solution, which in turn are obtained by L*(L®) energy estimates.

Kukavica and Ziane considered in [23,24] the primitive equations subject to the boundary
conditions on I', UT} as in (1.2) and they proved global strong well-posedness of the primitive
equations with respect to arbitrary large H!-data. For a different approach see also Kobelkov
[20]. '

For recent results dealing with only horizontal viscosity and diffusion or with horizontal
or vertical eddy diffusivity, we refer to the work of Cao, Li and Titi in [5-7]. Here, global
well-posedness results are established for initial data in HZ2.

For local well-posedness results concerning the inviscid primitive equations, we refer to Bre-
nier (3], Masmoudi and Wong [31], Kukavica, Temam, Vicol and Ziane [22] as well as Hamouda,
Jung and Temam [15].

" Recently, an LP-approach for the primitive equations was developed in [16], [17] and [13] and
it is the aim of this note to describe and summarize the results obtained by this approach.

Roughly speaking, the existence of a unique, global strong solution to the primitive equations
was proved in [16] [17] for initial data a € Vy/,, for p € (1,00). Here, Vj,, denotes the
complex interpolation space between the ground space X, and the domain of the hydrostatic
Stokes operator, which was introduced and investigated in [16] and [13].

Choosing in particular p = 2, the space of initial data V} /2,2 coincides with the space V
introduced by Cao and Titi in [4] (up to a compatibility condition due to different boundary
conditions), see also [4,14,23,33]. Note that V;/,, — H?/PP(Q)? for all p € (1,00). Hence,
choosing p large, one obtains a global well-posedness result for initial data a having less differ-
entiability properties than H(f).

At this point, we also would like to draw the attention of the reader to the recent the survey
article by Li and Titi [30] on the primitive equations.

2. GLOBAL EXISTENCE IN THE NON-ISOTHERMAL SITUATION
The primitive equations may be reformulated equivalently as

Sv+v-Vgv+w-8,v—Av+Vgrns, = f+1(r,0), inQx(0,T),

@.1) divgvs =0, in @ x (0,T),
: Gr+v-Vgr+w-8,71— A1 =g, in Q x (0,7),
8o +v-Vygo+w-8,0—Ac =g, in  x (0,7,

using the notation

0
div HV = amvl + 31/”2 and 7:= %/ U('; '5£)d£’
—h

121



ON THE LP-APPROACH TO GLOBAL STRONG WELL-POSEDNESS OF THE PRIMITIVE EQUATIONS

and where we took into account the boundary condition w = 0 on I';,, Making use of the
boundary condition w = 0 on Iy, the vertical component w of the velocity u is determined by

w= —[-zhdiVH‘lJ(~,',§)d§.

Furthermore, the pressure 7 is determined by the surface pressure 7;(z,y) = 7(z,y, —h), while
the part of the pressure due to temperature and salinity is given by

1(r,0) = —V / h Br7(+€) = Boc (- E)dE,  Br By > .

Periodic boundary conditions in the horizontal direction are modeled using function spaces as
in [16, Section 2].
The linearized problem for the velocity is given by the hydrostatic Stokes equation
v —Av+Vgm, = f,
divygs =0,
with initial value v(0) = a and boundary conditions as in (1.2). The study of the hydrostatic
Stokes system started with thw work of Ziane [35,36], who considered the L? situation. The

general L? setting for p € (1,00) has been studied in detail in [16, Section 3 and 4]. In
particular, it has been shown there that the hydrostatic solenoidal space

P (@)

12(92) = v € C5 () [ div go = 0}~

is a closed subspace of LP(2)?, compare [16, Proposition 4.3]. Furthermore, there exists a
continuous projection P, onto it — called the hydrostatic Helmholtz projection, and one has
IZ(?) = Ran P,. In particular,

LE(S) = {v € I(Q)? | (B, Vo) (g = O for all 7, € HLZ (G)),
where 117 + 51’ = 1. Following [16], we then define the hydrostatic Stokes operator A, by
Apv i= P,Av, D(4p) :={v € H22(Q)?| (8.v)Ir, = 0,v|r, =0} N LE(R).
Furthermore, we define the operators A, on LI(2) for o > 0 and A, by
Ar=Ar, DA;)={re Hzég.’(ﬂ) | 8,7+ ar) p,=0, 8,7 |r,=0},
A, =Ac, D(A,)={oce H2 Q)]0 |r,=0, 8,0 |r,=0}.

Resolvent estimates for A, within the LP-context were obtained in [16, Theorem 3.1] and the
operators A, and A, were investigated in detail by Nau in [32, Section 8.2.2], also in the
L4-context. For the precise definition of the periodic Sobolev spaces we refer to [16]. We thus
obtain the following result.

Proposition 2.1. ([16], [32]). Let p € (1,00). Then the operator A, generates an analytic
semigroup T, on LZ(S2), which is ezponentially stable with decay rate B, > 0. Furthermore, the
operators Ay and A, are generators of analytic contraction semigroups Ty and T, on LP(S2)
and T, is exponentially stable with decay rate B, > 0.

After reformulating the original system (1.1) and (1.2) into its equivalent form (2.1), we are
now in the position state the following result.
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Theorem 2.2 (Existence of unique, global strong solutions, [17]).
Let p,qr,q5 € (1,00) with q-,q, € [%?,p] N (1,p] and suppose that
f € Higl((0,00); LP(2)* N LA(@)?),
9r € Hig (0,005 L" (@) NIXQ), g7 € Hyp2((0,00); L% (@) N LX(®).
a) Assume that
a€ {ue HAP?PQPNLEQ) |v|r,=0}, b, € HAI"(Q), b, € HLI(Q).
Then there is a unique, global, strong solution to (2.1) and (1.2) satisfying
v € CL((0,00); I(®)) N C%((0, 00); D(4y)),
s € C2((0, 00); Hp2(G) N L(G)),
7 € C((0,00); L% (2)) N C°((0, 00); D(A,)),
o € C((0,00); L% (€2)) N C°((0,00); D(A,))-
b) If in addition
a€ D(Ap) and b € D(A;), by € D(A,)
then the above solution extends to [0, 00).
Considering the primitive equations without salinity we obtain furthermore the following

result.

Theorem 2.3 (Decay at infinity, [17]).
In addition to the assumptions of Theorem 2.2, let by = 0 and g, = 0, and assume that there
are ﬂf > ﬂv: ﬂg'r > ﬁT; such th'at ’

£ |zo (e = O(e™1*) and gzl ar (@) = O(e™P"), as t — o0,

where By, Br are given as in Proposition 2.1. Then the strong solution (v,7s,T) to (2.1) and
(1.2) satisfies

8wl + [Ave = O™, |87 |lzar + |AT[1er = O(e™P), [[Vams|lze = O(e™)
as t — 0o and where B := min{f,, B, }.
The strategy to construct a unique, global, strong solution to (2.1) and (1.2) within the L?-
setting is to consider the L2-situation first and to prove a priori estimates. In the second step
we consider then the existence of unique, strong, local L? solution to (2.1) and (1.2), which due
to the regularization properties of the underlying linear equation, lies after short time, inside
L2
Proposition 2.4. Let a € D(Az2), b€ D(A¢) for =2, and

fe HY((0,T; L2 (%), g€ HY((0,T); L*(Q)?).

Assume that v, 7, is a strong solutions to (2.1) and (1.2) on [0,T]. Then there are functions
B}, By, Bﬁiz, continuous on [0, T], such that for all t € [0, T

K@@ < Bi®), vl @) < Bi®), | I7s®line < Bjn®), -
where the bounds depend on ||b]| g2, ||allz2, || fl|zr2z2), 19l mrzcrzy and T, only.
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The explicit characterization of the initial data in Theorem 2.2 for which we obtain global
strong well-posedness of the primitive equations relies on the following characterization of the

complex interpolation space
Vo = [LE(Q), D(Ap)le,

which arises in the construction of local solutions. Here 0 < 6 < 1 and [-,]9 denotes the
complex interpolation functor; see [16]. For p,gq € (1,00), these spaces are characterized as
follows,

Proposition 2.5. If p,q € (1,0), then
{HXP (@2 NIE(Q) | 8,0 |r,= 0,0 [r,= 0}, 1/2+1/2p<6<1,
Vo = { {H25P(2)2 N LE(Q) | v |r,= 0}, 1/2p<6<1/2+1/2p,
Hpe (0)2 N LE(9), 6 <1/2p,

We note that, by the work of Amann [1], results on the interpolation of boundary conditions for
Sobolev spaces are known for second order elliptic operators on domains with C*°-boundaries
subject to mixed boundary conditions on disjoint parts of the boundaries. The proof of above
‘assertion relies then on the construction of suitable retractions of interpolation couples trans-
fering results from such a situation to the one considered here.

3. PROPERTIES OF THE ISOTHERMAL HYDROSTATIC STOKES EQUATION

Starting from the fact that the negative hydrostatic Stokes operator —A, in LZ(Q) for
1 < p < o0 is a sectorial operator of spectral angle 0, see Proposition 2.1, it is an interesting
question to ask whether —A, admits a bounded H*-calculus on LZ(£2). Here we consider the
situation where the underlying domain is a cylindrical domain with laterally periodic boundary
conditions and with Dirichlet and/or Neumann boundary conditions on the bottom and top
part of 992.

In [13] an affirmative answer to this question was given and it was shown in particular
that —A, admits a bounded H*-calculus on LZ(£2) with H*®-angle equal to 0 by means of a
perturbation argument. As a consequence, one obtain maximal L? — LP-regularity estimates
for the linearized primitive equations. For a recent survey concerning regularity results for the
classsical Stokes equation, we refer to [18].

Combining the explicit description of the complex interpolation spaces [L2(S2), D(Ap)]s given
above in Proposition 2.5 with the existence of a bounded H*-calculus for —A, implies further
that the domains of the fractional powers (—Ap)® can be characterized explicitly as Bessel
potential spaces satisfying appropriate boundary conditions depending on the value of the in-
terpolation parameter 8 € [0, 1]. We finally state that the hydrostatic Stokes semigroup satisfies
global L? — L2-smoothing estimates, similarly to the well-known siutation of the classical Stokes
semigroup.

We consider again the linearization of equation (2.1), the hydrostatic Stokes equations, whlch
are given by
» Qv—Av+Vgrs=f, inQx(0,T),

(3.1) divgr =0, inQx (0,T),
v(0) =vp in Q.

These equations are supplemented by the mixed boundary conditions on
IFo=Gx{a}, Ty=Gx{b} and I;=06G x(a,b),
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i.e. the bottom, upper and lateral parts of the boundary 942, respectively, are given by
v,ms are periodic on Ty x (0, 00),
v=00onTpx (0,00) and &,v=0o0n Ty X (0,00),
where Dirichlet, Neumann and mixed boundary conditions are comprised by the notation
Tpe{d,T,TpToUl} and I';y=(T,UTl)\Tp.
Using this notation, the hydrostatic Stokes operator A, in I2(f) is then given by
Apv = P,Av, D(Ap) = {v € HZ2(Q)?: 6zv|rN =0, v|FD =0} N LE(Q).

Let us recall that I'p # 0 means that Dirichlet conditions are imposed on either T',, T’y or
T’y UT, with Neumann conditions on the remaining part of I'y U T'.
The following result was proved in [13].

Theorem 3.1. ( [13]) Let p € (1,00) and v > 0. Then the operator —Ap+ v admits a bounded
H>-calculus on LZ(SY) with ¢ = 0 provided v > 0. IfT'p # 0, then the above assertion holds
true even for v =0.

Corollary 3.2. Let p € (1,00) and v > 0. Then the operator —Ap + v admits a bounded
RH®-calculus on LE(Q) with ¢5° = 0 provided v > 0. IfTp # 0, then the above assertion
holds true even for v =0.
The existence of the bounded H*®-calculus for —A, implies that
D((—4p)°) = [L5(R), D(4p)le, 8 € [0,1],
where [-,-]p denotes the complex interpolation functor. Since D(A,) C H?P(Q)?, we may
conclude that D(—Az) C H??(Q)2. In [17, Section 4], a suitable retract to compute the

interpolation spaces in terms of boundary conditions was constructed and adapting this to the
present situation allows us to characterize the domains of (—A4,)? for 8 € [0, 1] as follows.

Corollary 3.3. Let 1 < p < oo and @ € [0,1] with 8 ¢ {1/2p,1/2 +1/2p}. Then
{v e Hpe?(? N I5(Q) : 8ol =0, 0| =0}, 1/2+1/2p <0<,
D((-4,)) ={ {ve H,?,?;P(a) NLEQ) : vl =0}, 1/2p <0 < 1/2+1/2p,
{ve Hper P(Q)% N LE(Q)}, 6 < 1/2p.

For the corresponding result for the classical Stokes operator, see [12].

As a further consequence of Theorem 3.1, we obtain maximal L? — LP-regularity estimates
for the linearized primitive equations. For 1 < ¢ <o00,0< T < o0 and a closed operator A in
a Banach space X consider the Cauchy problem
(3.2) W) + Aut) = f(t), te€(0,T), u(0)=uo,

where ug € X, = (X, D(A))1/¢,¢» 1/¢' +1/q =1 and (:,-)1¢,, denotes the real interpolation
functor. We say that (3.2) admits mazimal Li-regularity or A € M,(0,T; X), if for each
f € L90,T; X) and ug € X,, the equation (3.2) admits a unique solution u satlsfymg u €
W14((0,T); X) and Au € LI((0, T); X).

Corollary 3.4. Let p,q € (1,00) and T € (0,00). Then —A, € My((0, T);L%’(Q)). In par-
ticular, Ap is the generator of an analytic semigroup on LE(Q). If Tp # O, then the above
assertion also holds true for T = oo.
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Amann considered in [2] real interpolation spaces of second order elliptic operators on smooth
domains subject to Dirichlet and/or Neumann boundary conditions on disjoint sets of the
boundary and was able to characterize them in terms of boundary values. Using the same
retract and co-retract as defined in [17, Section 4], this characterization carries over to the
present situation.

Corollary 3.5. Let p,q € (1,00) with 1/p+2/q ¢ {1,2} and 1/q+1/¢' = 1. Then
{U € Bg,qi/g-(ﬂy n L;(Q) : Oy |FN= 0,v |I‘D= 0}7 1+1/p<2~ 2/q <2,

(LE(2), D(Ap))1/qr.q = { {v € Bpger(0)? N IA(R) : v [rp= 0}, 1/p<2-2/q<1+1/p,
{v € By d& (@)% N LE(@)}, 0<2-2/g<1/p.

Considering (— Aﬁ)l/ 2 we obtain from Coro]la.ry 3.3 the LP-boundedness of the hydrostatic Riesz
transformations associated with Ap.

Corollary 3.6. Let 1 < p < oo. Then the hydrostatic Rz’esz transform
R,: IE(Q) = LP(Q)P?  given by Ryv:= V(—A,) Y%
is bounded provided T'p # 0.

We next state the global L? — L%-smoothing properties of the hydrostatic Stokes semigroup.

Proposition 3.7. ([13]). Let T'p # 0 and p,q € (1,00) such that p < q. Then there exists a
‘constant C > 0 such that '
3(1_1 .
4 By flaqaye < 0t ~2(70) lpor,  JorfeP@? 120

IV By flliaay < 02670 2 flpan,  for ferr@P, >0,
e Byiv fllzaiaye < O 20 2 S, for £ € P@P2, t>0.
The proof of Theorem 3.1 is based on perturbation methods. The key observation is that A4,
may be represented as
A = Av+VyAYL Ydivg D,v Irp, v € D(4p),
where
Do lrp= 545 (1(B)Bs Ir, —¥(a)8:v Ir.),

and for ¢ € {a,b} we set v(c) =1 if ' € T'p and (c) = 0, otherwise.
In order to obtain the above representation of A,, we consider for A € £, and f € LP(Q)

the resolvent problem for the hydrostatic Stokes equation, which is given by
AW—Av+Vgr=f inQ,

(3.3) vET =1

divgg =0, 1inQ,

subject to the boundary conditions
v, 7 are periodic on I',
v=0onTp and f,v=0o0nTy,
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where Dirichlet, Neumann and mixed boundary conditions are comprised by the notation
I'pe {@ Te,Tp,Tg UI‘b} and Ty = (F UI‘b) \Tp.

We consider in the following only the case, where I'p # (). Taking the vertical average of
(3.3) yields

AU — AT+ Vygr =__f+ Do |1"D,

(3.4) divgv =0,
‘and applying divy implies ’
(3.5) Vagr = VHA;II diVH7+ VHA;_II divgD,v [rp -

Inserting this expression for Vg into (3.3) yields
v — Av + VHA,'{ldivHDzv lrp=f— VHAI}I divgf.
For f € LP(Q) we interpret this equation now as operator equation in L?(Q) as
Av — Apv — Bpu = By f,
where P, denotes the hydrostatic Helmholtz projection as described above and
Bpv:= —VgAgdivgD,v [rp,  with D(B,) := H'*1/rrér(Q)?
for some § € (0,1 — 1/p). Obviously, D(A,) C D(B,). Moreover, we have

DB, " BE (G = Wi (@R Ir@? VAR [pGy < 1P,

where Wo?(G) denotes the Sobolev-Slobodeckii space on G of order . Boundedness of the
trace operator, interpolation and Young’s inequality imply

| Bpvllzo(ny2 < ellBpvllrs(n)z + CellvliLeyz, v € D(Ap),
for £ > 0 arbitrarily small and some C, > 0. Therefore, B, is a relatively bounded perturbation

of Ap. Perturbation results for the H*-calculus, see e.g. [9], [19], [34], imply then the assertion
of Theorem 3.1.

The proof of the global LP — L9-estimates for the hydrostatic semigroup given in Proposition
3.7 is based on the following lemma.

Lemma 3.8. There is a continuous extension operator S: LP(Q) — LP(R3), p € (1,00),
which is also continuous with respect to the H*P-norm for all s € [0,00). In particular,
[LP(Q), H2P(Q)]s = H??(Q) for 6 € [0,1].

Having Lemma 3.8 in hand the proof of Proposition is now rather short. Setting a := 3(- -1
and assuming !- - —| < , the first mequahty follows from

1—2 a
lle? Py fllLayz < Clle Ppf | gan(ayz < Clle™? Bof| Lp(?;)zﬂem”]’pf | Er2.0 (02
1-g -8 s
< C“f”[,p(n)zllApe pr”Lp(Q)z < C”f“Lp(g)a (t' lllf”LI’(Q)z)\f
_3(1_1 '
= ot G D flpap, >0,

where we used the Sobolev embedding H*?(2) — L%(Q2), Lemma 3.8 and the fact that the
semigroup et4? is bounded analytic. Iterating, we obtain the first inequality for all 1 < p <
q < 0o. The other inequalities follow similarly.
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