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Abstract To investigate the energy involved by a substorm, we performed global
magnetohydrodynamics simulation for different solar wind conditions. The intensity of the auroral
electrojet increases with the southward component of interplanetary magnetic field (IMF) and the solar
wind velocity, which is consistent with observations. To evaluate the energy that enters the magnetosphere,
we first defined a solar wind effective cross‐sectional area in which all the Poynting fluxes entering the
magnetosphere pass through. We found that the solar wind magnetic energy is insufficient to provide the
magnetic energy entering the magnetosphere (intakemagnetic energy) for southward IMF. About 33–88% of
the intake magnetic energy is converted from the solar wind kinetic energy. About 2–7% of the solar wind
kinetic energy (passing through the effective area) is converted to the magnetic energy that enters the
magnetosphere. Significant contribution from the solar wind kinetic energy makes the energy coupling
function complicated. The effective area also depends on the solar wind parameters, also making it
complicated. An interesting point is that the rates of energy stored and released in the lobe also depend on
the solar wind parameters. The ionospheric Joule heating rate is well correlated with the intake magnetic
energy at onset, and during the substorm expansion. The correlation coefficients between them are better
than that of the ε parameter. These results imply that both the directly driven process (manifested by intake
magnetic energy) and loading‐unloading process (manifested by stored/released energy in the lobe) are
largely regulated by the solar wind condition.

Plain Language Summary The Sun emits energy in two different forms. One is electromagnetic
waves (including visible lights), which causes tropospheric disturbances, such as tornados and hurricanes.
The other one is solar wind (being composed of charged particles), which causes geomagnetic
disturbances and brilliant aurora, known as magnetic storms and substorms. Previously, the magnetic
energy carried by the solar wind is thought to be a major source of the geomagnetic disturbances. Using
large‐scale computer simulation, we found that about 33–88% of the magnetic energy entering the
magnetosphere comes from the kinetic energy of the solar wind. The kinetic energy is efficiently converted
to the magnetic energy just outside the magnetosphere. The amount of energy consumed in the ionosphere
is found to depend on the solar wind parameters. This may imply that the magnitude of the substorm is
determined by the solar wind parameters and is predictable.

1. Introduction

A large amount of energy, exceeding 1011 W, is consumed in the auroral ionosphere during the sub-
storm expansion phase (Ahn et al., 1983; Kamide et al., 1986; Richmond et al., 1990; Sun et al.,
1985). The ultimate source of the energy consumed in the ionosphere is the solar wind (Akasofu,
1979). The importance of the southward component of the interplanetary magnetic field (southward
IMF Bz or SBZ) is noticed in 1960s (Fairfield & Cahill, 1966; Rostoker & Fälthammar, 1967). The begin-
ning of the substorm is accompanied with either a commencement or a gradual enhancement of the
magnetospheric convection (McPherron, 1970). The period from the enhancement of the magneto-
spheric convection to the expansion onset is called a growth phase. Perreault and Akasofu (1978) con-
sidered the Poynting flux in the interplanetary space, and an opening area in which the Poynting flux
enters the magnetosphere. By multiplying the Poynting flux and the opening area, they obtained the fol-
lowing empirical equation:
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ε erg=sð Þ ¼ VSWBIMF
2l0

2 sin4 θ
2
; (1)

where l0 ≈ 7 Re, VSW is the solar wind speed, BIMF is the magnitude of IMF, and θ is the angle from the north
(≡tan−1 By/Bz). In the MKS unit, equation (1) is written as (Koskinen & Tanskanen, 2002)

ε Wð Þ ¼ 4π
μ0

VSWBIMF
2l0

2 sin4 θ
2
; (2)

where μ0 is the magnetic constant. Akasofu (1980) suggested that a substorm expansion onset occurs when ε
exceeds ~1011 W.

In addition to the electromagnetic energy, the kinetic energy of the solar wind may also be a source of the
energy entering the magnetosphere (Nishida, 1983; Vasyliunas et al., 1982). The ratio of the kinetic
energy flux to the electromagnetic energy flux through the same area is of the order of (Koskinen &
Tanskanen, 2002)

ρVSW
3

VSWBIMF
2=μ0

¼ VSW
2

VA
2 ¼ M2

A; (3)

where ρ is themass density,VA is the Alfvén speed, andMA is the AlfvénMach number. Usually,MA is much
greater than 1 in the solar wind, so that the kinetic energy flux dominates the electromagnetic energy flux.
According to the dimensional analysis made by Vasyliunas et al. (1982), the net kinetic energy can be related
to the ε parameter when the scale length of the magnetopause is proportional to (ρVSW

2)−1/6.

As the solar wind plasma approaches the magnetosphere, the solar wind kinetic energy is first converted
to the internal energy and the electromagnetic energy at the bow shock (Tanaka, 2007). After that, for
SBZ, the kinetic energy is converted to the internal energy, followed by the kinetic energy and the elec-
tromagnetic energy. The last process, conversion from the kinetic energy to the electromagnetic energy,
is regarded as a mantle dynamo (Siscoe et al., 2000; Tanaka, 1995, 2000). As the electromagnetic energy
propagates into the lobe, the magnetic energy in the lobe increases for SBZ prior to the substorm expan-
sion onset, and it decreases in the expansion phase (Caan et al., 1975). The release of the magnetic
energy stored in the lobe is thought to be large enough to sustain the substorm (Hones, 1979).
Multipoint observations have also shown that the magnetic energy stored in the lobe is sufficient to drive
observed dissipation processes (Baker et al., 1997). The energy is efficiently transferred from the open
field‐line region (lobe) to the closed field‐line region across the magnetic separatrix associated with the
near‐Earth reconnection (Hesse, 1995).

Baker et al. (1997) investigated energy budgets from the solar wind to the energy loss including the ring cur-
rent injection, ionospheric Joule heating, auroral precipitation, auroral luminosity, auroral kilometric radia-
tion, and plasmoids. However, the transport path of the electromagnetic energy to the ionosphere is a matter
of issue. The global the global magnetohydrodynamics (MHD) simulation provides a direct way to investi-
gate the flow and conversion of the energy. One such way is to draw an integral curve of the Poynting flux
(hereinafter, referred to as an S curve) (Ebihara & Tanaka, 2017; Papadopoulos et al., 1999). The S curve ori-
ginating from the solar wind penetrates the lobe region and traverses the magnetic separatrix. After traver-
sing the separatrix, a bundle of the S curve split into two. One turns to dusk and the other one to dawn. Then,
the S curves move sunward. Finally, the S curve shows a spiral with its center moving toward the Earth. The
earthward movement of the S curve is caused by the magnetic shear associated with the large‐scale field‐
aligned currents (FACs). One of the large‐scale FACs that are responsible to the earthward movement of
the S curve is Region 1 FACs (Iijima & Potemra, 1976), which develop for SBZ. During the expansion phase,
the other Region 1‐sense FACs appear in the near‐Earth region in association with the near‐Earth dynamo
(Birn & Hesse, 2005; Ebihara & Tanaka, 2015a; Tanaka, 2015), which transport the additional electromag-
netic energy to the localized region in the auroral ionosphere.

Bargatze et al. (1985) employed a linear prediction filtering technique to investigate the response of the
auroral electrojet index (AL) and the product of solar wind velocity and SBZ. There are two responses
at time lags of 20 and 60 min. They interpreted the lags as magnetospheric activity driven directly by solar
wind coupling and magnetospheric activity driven by the release of energy previously stored in the tail,
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respectively. The cycle of the storage and release of the magnetic energy in the lobe suggests the presence
of the loading‐unloading processes during the substorm (Hones, 1979; McPherron, 1970; McPherron
et al., 1973). A competing idea is that the substorm is a consequence of the directly drive processes
(Akasofu, 1979, 1981; Perreault & Akasofu, 1978; Tanskanen et al., 2002). This idea may be supported
by the following results of statistical analyses: The AL index is correlated well with the parameter
BsVSW

2 (Murayama, 1982) where Bs is SBZ. The correlation coefficient between the ε parameter and
the Joule dissipation in the ionosphere is 0.81 during the substorm expansion phase (Tanskanen et al.,
2002). The argument on the dominant processes, directly driven or loading‐unloading, is not fully settled.
Ebihara and Tanaka (2017) performed the global MHD simulation and found that the amount of the
energy released from the lobe is comparable to that continuously supplied from the solar wind. This
may explain, in part, the reason why the ionospheric energy dissipation rate is correlated with the energy
input rate from the solar wind. A question of what determines the amount of the magnetic energy stored
in the lobe still remains.

The purpose of this study is to quantify the energy transfer from the solar wind to the ionosphere and its con-
version during the substorm on the basis of the result obtained by the global MHD simulation. This paper is
organized as follows. In section 2, methodology of the simulation is mentioned. In section 3, we define the
substorm expansion onset, the magnetopause, and the efficient cross‐sectional area in the solar wind. The
simulation results are given regarding the solar wind magnetic energy and kinetic energy for different solar
wind conditions. Then, we mention the magnetic energy entering the magnetosphere, the stored‐and‐
released energy in the lobe, and the ionospheric Joule heating rate. In section 4, we discuss these results.
Because of the limitation of the MHD approximation, we cannot deal with kinetic effects, such as electrons
downwardly accelerated by parallel electrons. Thus, we omit the energy conversion to the kinetic energy,
which is supposed to occur at low altitudes in association with bright auroras.

2. Methods

We used the global MHD simulation REPPU (REProduce Plasma Universe; Tanaka, 2015). The REPPU code
is capable of reproducing many features recognized in substorms, including sudden intensification of the
auroral electrojet (Tanaka, 2015), a positive bay at midlatitude (Tanaka, 2015), a westward traveling surge
(Ebihara & Tanaka, 2015b; Tanaka, 2015), and counter electrojet at magnetic equator (Ebihara et al.,
2014). The grid system in the magnetospheric domain is based on a triangle. First, a sphere at the inner
boundary (2.6 Re) is divided into 12 pentagons. Each pentagon is further divided into 5 triangles. We call this
Level 1 in which a sphere is divided into 60 triangles. We further divide the triangle into 4, which is called
Level 2. In Level 2, a sphere is divided into 240 triangles. In this particular simulation, we used Level 6, in
which a sphere is divided into 61,440 triangles. Three hundred twenty triangular prisms were stacked from
the inner boundary outward. The number of the grid is concentrated in the plasma sheet so as to resolve the
plasma sheet sufficiently. The outer boundary of the simulation domain is located at 200 Re at midnight and
600 Re at noon. This simulation couples with the ionosphere by the followingmeans. First, we calculated the
ionospheric conductivity on the basis of the FAC and the plasma pressure at the inner boundary of the simu-
lation domain. Second, the ionospheric electric field is solved to satisfy the current continuity for given FAC
and the ionospheric conductivity. Third, the ionospheric electric field is mapped from the ionosphere to the
inner boundary of the magnetospheric domain located at 2.6 Re. Fourthly, the velocity corresponding to the
given electric field (=E ×B/B2) is imposed on the inner boundary of the magnetospheric domain as a bound-
ary condition, where E and B are the electric field and the magnetic field, respectively. The detailed equation
regarding the ionospheric conductivity is provided by Ebihara et al. (2014). To achieve quasi‐steady state of
themagnetosphere, we performed the simulation for 2 hr under the steady condition; the solar wind speed of
400 km/s, the solar wind density of 5/cm3, IMF Bx of 0 nT, IMF By of 0 nT, and IMF Bz of 3.0 nT. Then, we
changed one or two parameters at 2:00 (hour:minute) as a step function in the upstream solar wind. The
imposed parameters are as follows: the solar wind speed of 400, 600, and 800 km/s; the solar wind density
of 5, 10, and 20/cm3; and IMF Bz of −3, −5, and −10 nT. In total, 15 runs were performed. The parameters
for the 15 runs are summarized in Table 1. Simulation results for real substorms are provided in Appendix A.
A good agreement with observations is obtained in terms of auroral electrojets and Joule heating rates in
the ionosphere.
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3. Results
3.1. Auroral Electrojet and Definition of Expansion Onset

The auroral electrojet activity index AE (Davis & Sugiura, 1966) is widely
used to estimate the strength of the auroral electrojet. TheAE index is based
on the variation of theH component taken at different magnetic local times
in the auroral region. The upper and lower envelopes obtained by superpo-
sition of the H‐component variation are called AU and AL indices, respec-
tively. AE is defined by AE = AU − AL. The SME index is an extension to
AE, which can overcome the limitation of the AE index, such as a problem
arising from the small number of magnetometer stations used to derive the
AE index (Newell & Gjerloev, 2011). The SME index is based on the mag-
netometer data taken at more than 100 stations. Following the concept of
the SME index, we calculated the ionospheric Hall current and the induced
magnetic disturbance on the ground at magnetic latitudes from 50° to 90°
with an interval of 1° at all magnetic local times with an interval of 0.5 hr.
Figure 1 shows the calculated SMU and SML indices for the 15 runs. The
southward component of IMF (SBZ) arrives at the bow shock at t ~ 2:05–
2:07 (hour:minute) depending on the solar wind velocity. The SML index

shows a negative excursion immediately after the increase in the solar wind dynamic pressure. This may be
regarded as a substorm associated with a sudden commencement (Kawasaki et al., 1971) and is excluded in
this study.We focused on the subsequent negative excursion of the SML index after t= 2:30 inwhich an appar-
ent growth phase precedes the expansion onset. The vertical lines indicate the expansion onset time t0 that is
determined by the way proposed by Newell and Gjerloev (2011) as follows.

SML t0 þ 1 minð Þ−SML t0ð Þ<−15 nT (4)

SML t0 þ 2 minð Þ−SML t0ð Þ<−30 nT (5)

SML t0 þ 3 minð Þ−SML t0ð Þ<−45 nT (6)

1
26

∑
30

i¼4
SML t0 þ i minð Þ−SML t0ð Þ<−100 nT (7)

It is clearly shown that the expansion onset occurs earlier when the solar wind velocity increases and SBZ
increases. This is consistent with the statistical study showing that the integral substorm probability increases
with the solar wind velocity and SBZ (Newell et al., 2016). The rates of change in SML for the first 10 min from
the expansion onset are indicated by the numerical figures in each panel. The rates decrease with increasing SBZ
except for the highest density case in which SML does not show amonotonic decrease after the expansion onset.

Figure 2 summarizes the minimum SML index during the period from t0 to t0 + 60 min for 15 runs, where t0
is the expansion onset time determined above. There is a clear tendency that the minimum SML index
decreases with Vsw and SBZ. The dependence of the minimum SML on Nsw is small. This is consistent with
the statistical studies showing that AE depends primarily on Vsw and SBZ and thatNsw has little effect on AE
(Maezawa, 1979; Murayama & Hakamada, 1975).

3.2. Definition of Magnetopause

To evaluate the solar wind energy transmitted to the magnetosphere (intake energy), an appropriate bound-
ary surface, the magnetopause, must be identified. The magnetopause cannot be explicitly determined in the
global MHD simulation. We identified the magnetopause as follows.

1. Trace a solar wind streamline (a line integral of the plasma velocity V, hereinafter called a V curve) from
the Y‐Z plane located at X = 20 Re, which is well outside of the bow shock. The start position is specified
by the equations Y= R sinΨ and Z= R cosΨ, where R is the distance from the X axis. R changes from 0 to
12 Re with a step size of 0.15 Re. ψ changes from 0 to 360° with a step size of 1°. In total, 28,800 stream-
lines were traced.

Table 1
Solar Wind Velocity (Vsw), Solar Wind Density (Nsw), and IMF Bz
After t = 2:00

Vsw (km/s) Nsw (cm−3) IMF Bz (nT) Name

400 5 −3 Run 1
−5 Run 2
−10 Run 3

600 5 −3 Run 4
−5 Run 5
−10 Run 6

800 5 −3 Run 7
−5 Run 8
−10 Run 9

400 10 −3 Run 10
−5 Run 11
−10 Run 12

400 20 −3 Run 13
−5 Run 14
−10 Run 15
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2. Divide three‐dimensional space into 0.5‐Re cubes. The total number of the cubes is M.
3. Count the number of streamlines passing through each cube. Let it be Ni, where i is the cube identifica-

tion number.
4. Find the maximum number of Ni as Nmax = max (Ni = 1, 2, …, M).

Figure 1. Simulated SMU and SML indices for 15 runs. The solid and dotted lines indicate the SML and the SMU indices,
respectively. The vertical lines indicate the expansion onset time t0 determined based on the temporal variation of the SML
index. The numerical figures shown in each panel indicate the rate of change in SML for the first 10 min from the
expansion onset. The SMU and SML indices for the condition that IMF Bz = −20 nT are added for reference.
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5. Define the threshold number as Nt = Nmax/c, where c is a constant and is assumed to be 200 for this par-
ticular study. The constant c may be subject to change depending on the solar wind parameters.

6. Pick up the cubes where Ni ≥ Nt. Define the surface of the innermost cubes to be the magnetopause.

The search for the magnetopause is limited in the region where X ≥−35 Re. Figure 3 is a schematic diagram
showing the geometry. The numerical figures shown in the boxes indicate examples of Ni. For this example,

Figure 2. Minimum SML index within 1 hr from the onset time as a function of (left) interplanetary magnetic field (IMF)
Bz and solar wind velocity Vsw and (right) IMF Bz and solar wind density Nsw.

Figure 3. The magnetopause, the bow shock, and example of cubes placed in space. The red curve indicates an integral
curve of the Poynting flux (S curve), and the blue curve indicates an integral curve of the plasma flow velocity (V
curve). The effective cross‐sectional area is located on the Y‐Z plane at X = 20 Re. PS(SW), PK(SW), and PS(MP) indicate
power of the solar wind magnetic flux, power of the solar wind kinetic energy, and power of the magnetic energy passing
through the magnetopause, respectively.
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Nt is set to be 4. The yellow boxes represent the innermost cubes that indicate the magnetopause. This
method is different from that suggested by Palmroth et al. (2003), who also determined the magnetopause
location by the V curves. An example of the magnetopause identified by the above method is shown in
the left panel of Figure 4. The color on the magnetopause indicates the Poynting flux (positive inward).
The general characteristics of the distribution of the Poynting flux are similar to that obtained by
Palmroth et al. (2003).

3.3. Pathway of Magnetic Energy From Solar Wind to Ionosphere

In the ideal MHD approximation, three types of energy can be defined, namely, the electromagnetic energy,
the kinetic energy, and the internal energy (Birn & Hesse, 2005). According to Poynting's theorem, the con-
tinuity equation for the electromagnetic energy is given by

∂
∂t

B2

2μ0

� �
þ ∇⋅S ¼ −J⋅E; (8)

where S is the Poynting flux (=E × B/μ0), μ0 is the magnetic constant, and J is the current density. The term
related to the electric energy is omitted. Hereinafter, we reword the electromagnetic energy by the magnetic
energy because the magnetic energy dominates the electric energy in the MHD approximation. The continu-
ity equation for the kinetic energy is given by

∂
∂t

ρ
2
V2

� �
þ ∇⋅

ρ
2
V 2V

� �
¼ V⋅ J×B−∇Pð Þ; (9)

where ρ is the mass density of plasma and P is the plasma pressure. The continuity equation for the internal
energy is given by

∂u
∂t

þ∇⋅ γuVð Þ ¼ V⋅∇P; (10)

where u and γ is the thermal energy density of plasma (=3p/2) and the ratio of specific heat (=5/3),
respectively. Readers may refer to Birn and Hesse (2005) and Ebihara and Tanaka (2017) for the

Figure 4. Magnetopause identified for Run 2 (in which Vsw = 400 km/s,Nsw = 5/cm3, and IMF Bz =−5 nT) at the expan-
sion onset. The Poynting flux is indicated on the magnetopause with color code (positive inward). The reddish plane
indicates the solar wind effective area at X = 20 Re. The white lines indicate the integral curves of Poynting flux (S curve).
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derivation of equations (9) and (10). The energy conversion takes place through the right‐hand sides of
equations (8)–(10).

Figure 5 shows integral curves of the Poynting flux S (S curve) and flow velocityV (V curve) at the expansion
onset for Run 2. The color code of the S curve represents J · E, and the color codes of the V curves represent
V ·∇P,V · (J × B–∇P), and J · E. The S curve starts at X= 20 Re in the solar wind. As the S curve encounters
the bow shock, it undergoes the first dynamo region where J · E < 0 (bow shock dynamo). Three V curves
passing through near the bow shock dynamo indicate the conversion from the kinetic energy to themagnetic
energy and the internal energy (in which V · (J × B–∇P) < 0, J · E < 0, and V · ∇P > 0). After the passage of
the bow shock, the S curve is deflected toward the equatorial plane of themagnetosphere. The S curve passes
through the second dynamo region just outside the magnetopause, which is called a mantle dynamo
(Tanaka, 2000, 2007). According to the color codes on the V curves passing through the mantle dynamo,
the conversion from the internal energy to the magnetic energy and the kinetic energy is identified (in which
V · ∇P < 0, J · E < 0, and V · (J × B–∇P) > 0). This conversion is also demonstrated by Tanaka et al. (2016).
The S curve traverses the magnetopause defined above and moves toward the equatorial plane. The S curve
undergoes the third dynamo region in the near‐Earth region, which is called a near‐Earth dynamo (Ebihara
& Tanaka, 2015a; Tanaka, 2015). The conversion from the internal energy to the kinetic energy and the mag-
netic energy is found (in which V · ∇P < 0, J · E < 0, and V · (J × B–∇P) > 0). It is also shown that the mag-
netic energy in the lobe is converted to the internal energy consumed in the near‐Earth dynamo. The
conversion of the energy in the near‐Earth dynamo is also mentioned by Birn and Hesse (2005) and
Ebihara and Tanaka (2017) in detail. The S curve travels sunward, and subsequently, it shows a spiral with
its center moving toward the Earth. The center of the spiral moves toward the ionosphere because of the
magnetic shear, that is, the presence of the large‐scale FACs.

Figure 6 shows ∂/∂t(B2/2μ0)in the meridional plane for Run 2. About 5 min before the onset, the value is
positive in the almost entire region of the lobe, which means that the magnetic energy is stored in the growth
phase. The value is negative near the equatorial plane at X ~ −13 Re in association with the formation of
near‐Earth reconnection. (The near‐Earth reconnection takes place closer to the Earth in comparison with
most of the observations; Angelopoulos et al., 2008; Nagai et al., 1998. In the global MHD simulation, the
near‐Earth reconnection takes place at ~X ~ −17 Re; Tanaka et al., 2017, and X ~ −42 Re; Ebihara &

Figure 5. Line integral of the Poynting flux (S curve; whitish, thick line) and line integral of flow velocity (V curve; thin
line) at expansion onset for Run 2. The color code on the S curve indicates J · E and that on the V curve indicates V · ∇P,
V · (J × B–∇P), and J · E. The yellow line indicates the magnetic field line. The sphere indicates the Earth.
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Tanaka, 2015b, depending on the solar wind parameters and simulation settings. We believe that the
location of the near‐Earth reconnection is not far from reality because Sergeev et al., 2008, observed the
near‐Earth reconnection at 9–13 Re. We confirmed that the physical processes leading to the substorm are
essentially the same regardless of the location of the near‐Earth reconnection.) At onset, the value is
negative in the lobe region above the near‐Earth reconnection at |Z| < ~7 Re. This is a clear indication of
the release of the magnetic energy previously stored in the lobe. The S curve shown in Figure 5 does not
pass through the negative‐value region. About 5 min after the onset, the negative‐value region that is
evident at the onset almost disappears. Instead, another negative‐value region appears in the vicinity of
the plasmoid. The negative‐value region has gone by about 10 min after the onset. It is interesting to point
out that the auroral electrojet seen by the SML index keeps decreasing at least for ~15 min from the onset.
The release of the magnetic energy seems to end by ~10 min from the onset, much earlier than the end of
the expansion phase. It may take, at least, several minutes to propagate energy from the lobe to the
ionosphere. Thus, it is too early to conclude that the development of the auroral electrojet is not fully
sustained by the energy stored in the lobe. Further studies are needed to conclude this.

3.4. Original Amount of Solar Wind Energy

The ultimate source of the energy consumed in the ionosphere is the solar wind. To evaluate the original
amount of the solar wind energy that enters the magnetosphere, we defined an effective cross‐sectional area
in the solar wind. The effective area is an area in which all the Poynting fluxes entering the magnetosphere
pass through. The method to identify the solar wind effective area is summarized as follows:

1. Divide the Y‐Z plane located at X = 20 Re into 1‐Re squares.
2. Trace the S curve backward from the magnetopause until it reaches the Y‐Z plane located at X = 20 Re.
3. Count the number of the S curves passing through each square.

Figure 6. (top) SMU and SML indices and (bottom) time derivative of the magnetic energy in the meridional plane for
Run 2.
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4. Define the region where the number is greater than 0 to be the solar wind effective area.

An example of the solar wind effective area is shown by the reddish plane in the right panel of Figure 4, indi-
cating that all the Poynting flux connecting to the magnetopause passes through the effective area. Figure 7
summarizes the solar wind effective area Aeff for the 15 runs. The effective area decreases with Vsw and Nsw,
which is attributed to the contract of the magnetosphere owning to the increase in the solar wind dynamic
pressure. The effective area also decreases with SBZ probably due to the draping of the IMF.

Figure 8 summarizes power of the solar wind magnetic energy and kinetic energy passing through the effec-
tive area in the solar wind Aeff. The power of the solar wind magnetic energy PS(SW) is given by

Figure 7. Solar wind effective area Aeff as a function of Vsw, Nsw, and IMF Bz.

Figure 8. (top) Power of solar windmagnetic energy PS(SW) and (bottom) power of kinetic energy PK(SW) passing through
the effective area Aeff.
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PS SWð Þ ¼ ∫S⋅dA
¼ SAeff ;

(11)

where dA is the normal surface vector. As shown in the top panel of Figure 8, PS(SW) increases with Bs, while
the dependence on Vsw and Nsw is weak. One prime reason for the weak dependence is the decrease in Aeff

with Vsw and Nsw.

The power of the solar wind kinetic energy PK(SW) is calculated by

PK SWð Þ ¼ ∫
1
2
mN swV sw

2Vsw⋅dA

¼ 1
2
mN swV sw

3Aeff ;

(12)

wherem is the mass of the solar wind (which is assumed to be 1.6 × 10−27 kg). As shown in the bottom panel
of Figure 8, PK(SW) increases with Vsw and Nsw. PK(SW) decreases with SBZ because of the decrease in the
effective area with SBZ. PK(SW) is more than 1 order of magnitude larger than PS(SW). For example, for
Run 1 (IMF Bz = −3 nT, Vsw = 400 km/s, and Nsw = 5/cm3), PK(SW) is about 88 times larger than PS(SW).

3.5. Energy Penetrating Into Magnetosphere

Knowing the location and the normal vector of the magnetopause, we can calculate the magnetic energy
passing through the magnetopause per unit time as

PS MPð Þ ¼ ∫S⋅dA: (13)

The results are summarized in Figure 9. The power passing through the magnetopause increases with Vsw,
Nsw, and SBZ. The influence ofNsw on the power is smaller than that of Vsw and SBZ. It is noted that PS(MP) is
much larger than PS(SW) (original amount of power of the magnetic energy passing through the solar wind
effective area). This means that the solar wind magnetic energy is insufficient to supply the magnetic energy
entering the magnetosphere. Conversion from the solar wind kinetic energy to the magnetic energy is neces-
sary before reaching the magnetopause. It is noted that the kinetic energy passing through the magneto-
pause is very small and negligible as compared with the magnetic energy.

Figure 10 shows the ratio of PS(SW) (original amount of the magnetic energy passing through the solar wind
effective area per unit time) to PS(MP) (total amount of magnetic energy passing through the magnetopause
per unit time) for 15 runs. The ratio is much smaller than 1. Again, this indicates that the solar wind mag-
netic energy is insufficient to supply the magnetic energy entering the magnetosphere. For Run 1 (IMF
Bz = −3 nT, Vsw = 400 km/s, and Nsw = 5/cm3), the ratio is 0.25, meaning that ~25% of PS(MP) comes from
PS(SW) and that ~75% of PS(MP) must be converted from the solar wind kinetic energy PK(SW). (The internal
energy of the solar wind is negligible.) It is noted that the ratio is almost 1 for northward IMF (data not
shown), meaning that PS(SW) is almost sufficient to supply energy to PS(MP) and that the contribution from

Figure 9. Magnetic energy passing through the magnetopause per unit time PS(MP).

10.1029/2018JA026177Journal of Geophysical Research: Space Physics

EBIHARA ET AL. 370



PK(SW) is very minor for northward IMF. This is simply understood to the absent of the mantle dynamo for
northward IMF (Tanaka, 1995).

Figure 11 presents the ratio (PS(MP) − PS(SW))/PK(SW) that means the relative contribution from the solar
wind kinetic energy to intake magnetic energy. In other word, this ratio is regarded as a proxy for the effi-
ciency of the bow shock/mantle dynamos. For Run 1 (IMF Bz = −3 nT, Vsw = 400 km/s, and Nsw = 5/
cm3), about 2–7% of the solar wind kinetic energy is converted to the magnetic energy penetrating into
the magnetosphere. There is a tendency that this ratio decreases with Vsw and Nsw.

3.6. Storage and Release of Magnetic Energy in Lobe

The characteristics of storage and release of the magnetic energy in the lobe can be represented by the rate of
the change in the magnetic energy as

PS LOBEð Þ ¼ ∫
∂
∂t

B2

2μ0

� �
dV : (14)

Positive (negative) PS(LOBE) value means that the magnetic energy is stored (released). Figure 12 shows the
maximum PS(LOBE) during the period from t0–30 min and t0 (growth phase) and the minimum PS(LOBE) dur-
ing the period from t0 and t0 + 60 min (expansion phase). The power is calculated by integrating the rate of
the change in the magnetic energy over the rectangular volume (X ranging from −20 to −10 Re, Y ranging
from −3 to 3 Re, and Z ranging from 4 Re to 15 Re). The integration range in the X direction is the same as
that used by Akasofu (2013). There are three points to be noted. First, the amplitude of the maximum
released power is slightly larger than, or almost comparable to that of the stored power. Second, both the
stored power and the released power tend to increase with Vsw, Nsw, and SBZ. Third, the dependence on
Nsw is large. The result implies that both the stored power and the released power in the lobe are regulated
by the solar wind condition.

Figure 10. Ratio of PS(SW) to PS(MP).

Figure 11. The (PS(MP) − PS(SW))/PK(SW)ratio, which indicates relative contribution from solar wind kinetic energy to
the solar wind magnetic energy entering the magnetosphere per unit time.
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3.7. Energy Consumption in Ionosphere

Figure 13 shows the hemispheric Joule heating rate in the ionosphere, which is calculated as

PS ISð Þ ¼ ∫j⋅EdA;
j ¼ ΣpE;

(15)

where Σp is the height‐integrated Pedersen conductivity and j is the electric current density in the iono-
sphere. The top panels show the Joule heating rate at the expansion onset, which increases with Vsw, Nsw,
and SBZ. The influence of Vsw and SBZ on themaximum Joule heating rate is large, whereas the dependence
of Nsw is small. The bottom panels show the maximum Joule heating rate during the expansion phase (from
t0 to t0 + 60 min), indicating the similar tendency except for the dependence on Nsw. The dependence of the
maximum Joule heating rate on Nsw is very weak. This result is consistent with the study by Tanskanen
et al. (2002).

Themaximum Joule heating rate during the expansion phase is comparable to themaximum power released
from the lobe as shown in Figure 12. For some runs, the maximum Joule heating rate is smaller than the
maximum power released from the lobe (Runs 3, 4, 5, 6, and 8). This is not a surprising result because the
contribution from the magnetic energy directly supplied from the solar wind is significant and is comparable
to that released from the lobe (Ebihara & Tanaka, 2017).

3.8. Solar Wind‐Ionosphere Coupling

Figure 14 represents the relationship between PS(MP) (the total amount of power of the magnetic energy
penetrating into the magnetosphere) and the ε parameter. Roughly speaking, PS(MP) is larger than the ε para-
meter by a factor of 3 and 4. This is consistent with the previous simulation result (Palmroth et al., 2003). One
of the plausible reasons is underestimation of the ε parameter. The ε parameter was derived based on the
Poynting flux in interplanetary space, so that the conversion from the solar wind kinetic energy is not

Figure 12. (top) Maximum PS(LOBE) during the growth phase (from t0–30 min to t0) and (bottom) minimum PS(LOBE)
during the expansion phase (from t0 to t0 + 60 min). Only the Northern Hemisphere is considered.
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explicitly considered. With this regard, the underestimation may come from the exclusion of the contribution
from the solar wind kinetic energy. Perreault and Akasofu (1978) originally assumed the length l0 in

equations (1) and (2) to be 7 Re. Recently, Akasofu (2017) suggested the
length l0 to be 15 Re for geomagnetic storms. Replacing the length l0 of 7
Re by that of 15 Re, one may almost resolve the discrepancy between
PS(MP) and the ε parameter. The ε parameter will be still valid for
estimating roughly the incoming magnetic energy into the magnetosphere
if the length l0 is properly (or arbitrarily) chosen. In this case, the length l0
will be meant to include the contribution from the solar wind kinetic
energy and will be probably regarded as a magic number, which includes
relevant physical processes involved in energy transfer from the solar
wind to the magnetosphere as suggested by this study.

Table 2 summarizes correlation coefficients of ε, PK(SW), PS(SW), and PS(MP)

with minimum SML, the ionospheric Joule heating rate at onset, and the
maximum ionospheric Joule heating rate during the expansion phase (t0
and t0 + 60 min). The best correlation is found for PS(MP), suggesting that
ε is better than PS(MP) in determining the minimum SML and the maxi-
mum ionospheric Joule heating rate. The correlation between PK(SW)

and the ionospheric parameters is poor, which has already been pointed
out by Akasofu (1981).

3.9. Northward IMF

Finally, we mention the result for northward IMF. We imposed the fol-
lowing parameters, Vsw of 400 km/s, Nsw of 5/cm3, and IMF Bz of 3.0 nT
to the upstream solar wind to the simulation until t = 2:00 to establish
the quasi‐steady magnetosphere. At t = 2:00, the magnetosphere is

Figure 13. (top) Joule heating rate in the ionosphere (one hemisphere) at the expansion onset, and (bottom) maximum
Joule heating rate from the expansion onset to 60 min after the onset. Only the Northern Hemisphere is considered.

Figure 14. Magnetic energy entering the magnetosphere per unit time
(PS(MP)) versus ε.
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exposed to northward IMF. The effective area is ~11 × 1015 m2, which is about 18% of that in the SBZ case
(Run 1, Vsw of 400 km/s,Nsw of 5/cm3, and IMF Bz of−3.0 nT after t= 2:00). PS(SW) is ~0.086 × 1012W, which
is about half of that in the SBZ case. PK(SW) is ~2.8 × 1012 W, which is ~19% of that in the SBZ case. PS(MP) is
~0.079 × 1012 W, which is ~12% of that in the SBZ case, and is comparable to PS(SW). This means that the
solar wind kinetic energy is not efficiently converted to the magnetic energy for the northward IMF case.

4. Discussion

The above results show that in addition to the contribution from the solar wind magnetic energy, the con-
tribution from the solar wind kinetic energy is significant for the southward IMF case. The power of the solar
wind kinetic energy is proportional to Nsw, but the intake magnetic energy per unit time (PS(MP)) shows a
weak dependence on Nsw. The reasons may be summarized as follows. First, the solar wind effective area
decreases with Nsw (Figure 7). Second, the original amount of the power of the solar wind magnetic energy
decreases with Nsw (Figure 8), resulting from the decrease in the effective area. Third, the relative contribu-
tion from the solar wind kinetic energy to PS(MP) decreases with Nsw (Figure 11). The combination of these
factors is thought to give rise to the weak dependence of Nsw on PS(MP).

Based on global MHD simulation results, Wang et al. (2014) suggested that the energy coupling function
between the solar wind and the magnetosphere is proportional to Nsw

0.24Vsw
1.47B0.86. The complicated form

of the coupling function can be reasonably explained by the contribution from the two types of energy flux
(magnetic energy flux being proportional to VswB

2 and kinetic energy flux being proportional to NswVsw
3).

The dependence of the effective area on the solar wind parameters also makes the coupling function com-
plicated. Wang et al. (2014) also estimated that about 13% of the solar wind kinetic energy is transferred into
the magnetosphere. This is different from our results that about 2–7% of the solar wind kinetic energy
appears to be converted to the magnetic energy that enters the magnetosphere as shown in Figure 11. The
difference may come from the difference of the definition. They calculated the ratio such as PS(MP)/PK(SW)

to show the efficiency of the conversion from the solar wind kinetic energy to the intake magnetic energy.
However, the original contribution from the solar wind magnetic energy is neglected. The ratio
(PS(MP) − PS(SW))/PK(SW)seems to be better for describing the efficiency as we introduced. Wang et al.
(2014) used the maximum cross section of the magnetopause to calculate PK(SW). However, use of the max-
imum cross section of the magnetopause is improper to evaluate the solar wind energy input because the
cross section of the magnetopause is totally different from the solar wind effective area as shown in
Figure 4.

Tanskanen et al. (2002) showed that the correlation coefficient between energy input into the magneto-
sphere and the ionospheric Joule dissipation is 0.81 during the expansion phase of an isolated substorm.
They used the ε parameter to evaluate the energy input into the magnetosphere. The result is consistent with
our results. As shown in Table 2, the correlation coefficient between the ε parameter and themaximum Joule
heating rate is 0.90. The correlation coefficient is found to increase to 0.97 when PS(MP) is used. Tanskanen
et al. (2002) also pointed out that the directly driven processes are important for the ionospheric Joule dis-
sipation because the energy input and the Joule dissipation are well correlated. Our global MHD simulation
results also show that they are well correlated. There are two prime reasons for the high correlation. First,
the magnetic energy stored in the lobe is not only the energy source that is consumed in the ionosphere.
A large amount magnetic energy originating from the solar wind is continuously and directly supplied
toward the plasma sheet during the expansion phase (Ebihara & Tanaka, 2017). Second, the rates of the

Table 2
Correlation Coefficients With Minimum SML, Ionospheric Joule Heating Rate at Onset, and Maximum Ionospheric Joule
Heating Rate From the Expansion Onset to 60 Min After the Onset

Type of power Minimum SML Joule heating rate at onset Maximum Joule heating rate

Perreault and Akasofu's ε −0.74 0.77 0.90
Kinetic energy in solar wind PK(SW) −0.53 0.53 0.28
Magnetic energy in solar wind PS(SW) −0.69 0.70 0.87
Magnetic energy into
magnetosphere PS(MP)

−0.90 0.93 0.97
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magnetic energy stored in the lobe and released from the lobe depend on the solar wind parameters, Vsw,
Nsw, and SBZ. These two results imply that both the directly driven and the loading‐unloading processes
depend on the solar wind parameter. This may explain the reason that the good correlation between the
intake magnetic energy and the Joule dissipation is achieved. It is noted that the good correlation between
a certain parameter and the energy input does not always mean the dominance of the directly driven
processes. That is because, as shown Figure 12, the energy released from the lobe is regulated by the solar
wind parameters.

A part of the energy entering the magnetosphere is thought to escape from the system as a plasmoid (Baker
et al., 1997; Hones et al., 1984). The magnetic energy, the internal energy, and the kinetic energy extracted
from the system as a plasmoid are estimated to be 1.6 × 1013 J, 2.3 × 1014 J, and 1 × 1014 J, respectively, for a
typical plasmoid (Hesse, 1995). Baker et al. (1997) estimated the amount of energy loss due to the ejection of
the plasmoid is 1011–1012 W. To estimate the amount of the energy loss due to the ejection of the plasmoid,
a careful integration is needed. Our intension, in this particular paper, is to evaluate the amount of the
energy that is fed into the ionosphere. For a reference, we calculated the magnetic energy escaping from
the magnetotail in the Y‐Z plane at X = −35 Re at the expansion onset. The magnetic energy escaping from
the magnetotail is the same order of magnitude as that released from the lobe (not shown). This is under-
standable because of the following reasons. First, both the energy released from the lobe and the energy
directly supplied from the solar wind are comparable. Second, the energy passing through the magnetic
separatrix from the open region (lobe) to the closed region splits into the earthward energy and the
antiearthward energy.

The inner boundary of the magnetospheric domain is located at 2.6 Re. We did not solve the gap between the
inner boundary of the simulation domain and the ionosphere. During the substorm expansion phase, a large
number of electrons are known to be accelerated downward by quasi‐electrostatic electric field along a field
line. The parallel electric field is probably extended at altitude greater than 3 Re (Mozer & Hull, 2001). When
the parallel electric field is present, the electromagnetic energy is converted to the kinetic energy (Song &
Lysak, 2001), which contributes to the heating of the ionosphere. According to the statistical study, the
kinetic energy flux is largely enhanced near midnight during magnetically active time as compared with
the Poynting flux (Cosgrove et al., 2014). The energy flow and the distribution factors at low altitude are still
controversial. Ahn et al. (1983) estimated that the particle energy injection rate into the ionosphere is about
one fourth of the Joule dissipation rate. The conversion of the energy at low altitude must be solved and be
taken into consideration in the global simulation in the future to evaluate the overall energy flow.

We cannot rule out the possibility that non‐MHDplasma instability leads to and sustain the substorm expan-
sion. The plasma instability can explain the disruption of the cross‐tail current (Cheng & Lui, 1998; Lui et al.,
1990), but it is uncertain if the plasma instability can sustain the large‐amplitude FACs that manifest the
substorm expansion phase. A full Vlasov simulation or a full particle simulation will be necessary to verify
the role of the non‐MHD plasma instability.

5. Conclusions

On the basis of the global MHD simulation results, we reached the following conclusions regarding the
energy transfer from the solar wind to the ionosphere.

1. Minimum SML index (which is an extension of the AL index) during the expansion phase decreases with
southward component of IMF (SBZ) and solar wind velocity (Vsw). The dependence of the minimum
SML index on the solar wind density (Nsw) is weak. These features are consistent with the observations.

2. We defined the solar wind effective cross‐sectional area in which all the integral curves of the Poynting
flux (S curve) entering the magnetosphere pass through. About 33–88% of the magnetic energy entering
the magnetosphere (PS(MP)) is converted from the solar wind kinetic energy. About 2–7% of the solar
wind kinetic energy (passing through the effective area) is converted to the magnetic energy that enters
the magnetosphere. Both the solar wind magnetic energy and the solar wind kinetic energy are the prime
sources for the intake magnetic energy into the magnetosphere for southward IMF.

3. For southward IMF, the effective area decreases with SBZ, Vsw, and Nsw. PS(MP) increases with Bs, Vsw,
andNsw, but its dependence onNsw is weak. This is consistent with previously suggested energy coupling
functions.
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4. PS(MP) is proportional to neither VswB
2 (Poynting flux) norNswVsw

3 (kinetic energy flux). The complexity,
which is consistent with previous studies, comes from the combination of the Poynting flux and the
kinetic energy flux as well as the effective area depending on the solar wind parameters.

5. The ionospheric Joule heating rate increases with SBZ and Vsw and is well correlated with PS(MP) at onset
(correlation coefficient of 0.93) as well as during the substorm expansion (correlation coefficient of 0.97).
It seems that both the directly driven and unloading processes depend on the solar wind condition. A
good correlation between some parameter and the energy input does not always mean the dominance
of the directly driven process.

6. The rates of the magnetic energy stored in the lobe and released from the lobe depend on the solar wind
parameters, SBZ, Vsw, Nsw. This can explain the reason why the ionospheric Joule dissipation is well cor-
related with the intake magnetic energy.

7. For northward IMF, PS(MP) is small because the effective area is small, and the solar wind kinetic
energy is not efficiently converted to the magnetic energy outside the magnetopause.

Appendix A

To show the quality of the simulation results, we performed the global MHD simulation for the substorms
that occurred on 28–29 March 1998. Solar wind and IMF data from the OMNI database with a resolution
of 1 min (King & Papitashvili, 2005) are used to provide the boundary condition of the global MHD

Figure A1. (a) SMU/SML indices calculated by the global magnetohydrodynamics simulation (solid) and those observed
(dotted), (b) hemispheric Joule heating rate calculated by the global magnetohydrodynamics simulation, and (c) hemi-
spheric Joule heating rate observed based on the Polar satellite and Super Dual Auroral Radar Network (SuperDARN)
measurements (adapted from Palmroth et al., 2005).
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simulation. In Figure A1a, the calculated SMU/SML indices are shown to agree with the observed ones. The
calculated Joule heating rate in the Northern Hemisphere is given in Figure A1b, which is comparable to the
one observed in the Northern Hemisphere as shown in Figure A1c (Palmroth et al., 2005). The Pedersen con-
ductivity was calculated from the Polar satellite measurements, and the global electric field in the iono-
sphere was obtained by the SuperDARN radars. The agreement with the observations indicates that the
global MHD simulation is capable of reproducing real substorms in terms of the auroral electrojets and
the Joule heating rates
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