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Abstract At substorm expansion onset, upward field-aligned currents (FACs) increase abruptly, and a
large amount of electromagnetic energy starts to consume in the polar ionosphere. A question arises as to
where the energy comes from. Based on the results obtained by the global magnetohydrodynamics
simulation, we present energy flow and energy conversion associated with the upward FACs that manifest
the onset. Our simulations show that the cusp/mantle region transmits electromagnetic energy to almost the
entire region of the magnetosphere when the interplanetary magnetic field is southward. Integral curve of
the Poynting flux shows a spiral moving toward the ionosphere, probably suggesting the pathway of
electromagnetic energy from the cusp/mantle dynamo to the ionosphere. The near-Earth reconnection
initiates three-dimensional redistribution of the magnetosphere. Flow shear in the near-Earth region results
in the generation of the near-Earth dynamo and the onset FACs. The onset FACs are responsible to transport
the electromagnetic energy toward the Earth. In the near-Earth region, the electromagnetic energy
coming from the cusp/mantle dynamo is converted to the kinetic energy (known as bursty bulk flow) and the
thermal energy (associated with high-pressure region in the inner magnetosphere). Then, they are converted
to the electromagnetic energy associated with the onset FACs. A part of electromagnetic energy is stored
in the lobe region during the growth phase. The release of the stored energy, together with the continuously
supplied energy from the cusp/mantle dynamo, contributes to the energy supply to the ionosphere during
the expansion phase.

Plain Language Summary In the polar region, sudden brightening and quick spread of aurora can
be seen. This is called substorm expansion. The bright aurora is caused by electrons accelerated in the region
of upward field-aligned electric current. Generation of the upward field-aligned current is one of the
controversial issues in the substorm research. In order to generate the field-aligned current, dynamo must
exist somewhere in the magnetosphere. By using numerical simulation, we identified the pathway and
conversion of energy from the solar wind to the ionosphere. When the interplanetary magnetic field turns
southward, the cusp/mantle dynamo starts to supply energy persistently into the magnetosphere to
activate the large-scale magnetospheric convection. For a while, the near-Earth dynamo, initiated by the
near-Earth reconnection, appears to generate the onset field-aligned current. The pathway of the energy is a
spiral from the cusp/mantle dynamo to the ionosphere. Just before the onset, a part of the spiral starts to
show a significant kink on the nightside, which is associated with the onset field-aligned current and the
near-Earth dynamo.

1. Introduction

Sudden brightening of an aurora followed by the formation of an auroral bulge and a traveling surge is
known as the onset of a substorm expansion phase (Akasofu, 1964). The bright aurora that characterizes
the substorm expansion phase is primarily caused by precipitation of electrons accelerated toward the
Earth. Observations have shown that the accelerated electrons in bright aurorae are associated with upward
field-aligned currents (FACs) (e.g., Armstrong, Akasofu, & Rostoker, 1975; Arnoldy, 1974; Murphy et al., 2013;
Sakanoi, Fukunishi, & Mukai, 1995). The upward FACs connect with the ionospheric current, which appears to
be an auroral electrojet (e.g., Atkinson, 1967; Boström, 1964; Connors et al.,2014; Gjerloev & Hoffman, 2014;
Kamide & Akasofu, 1976; Kamide, Richmond, & Matsushita, 1981; Rostoker et al., 1975, references therein).
The sudden intensification of the westward electrojet is regarded as additional manifestation of the onset
of the substorm expansion phase (e.g., Kamide & Akasofu, 1975). A huge amount of electromagnetic
energy consumes in the ionosphere. Using ground-based magnetometer data and the ionospheric conduc-
tivity inferred from the Dynamics Explorer 1 satellite, Kamide et al. (1986) estimated the Joule heating
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production rate to be ~6–9 × 1011 W. The ultimate source of the energy that consumes in the polar
ionosphere during the substorm expansion is the solar wind, but the energy flow from the solar wind to
the ionosphere is still unclear. One of the keys in understanding the energy flow is the FACs, in particular,
suddenly enhanced FACs because the FACs are known to guide the electromagnetic energy to go into the
ionosphere (e.g., Strangeway et al., 2000).

1.1. Origin of Onset FAC

The current wedgemodel has been applied to understand the sudden intensification of FACs associated with
the expansion phase onset (e.g., Kepko et al., 2015; McPherron & Chu, 2016; McPherron, Russell, & Aubry,
1973). The current wedge consists of a pair of FACs in which a downward current flows into the ionosphere
on the dawnside and an upward current flows out of the ionosphere on the duskside. Thus, the polarity of the
current wedge is the same as that of the Region 1 FAC (Iijima & Potemra, 1976). The downward and upward
FACs connect with the cross-tail current that flows westward in the equatorial plane. The current wedge is
thought to appear when the cross-tail current is deviated and “short circuited” to the ionosphere. The current
wedge model was recently revised (Kepko et al., 2015). A major revision from the original picture drawn by
McPherron et al. (1973) is the addition of Region 2-sence FACs earthward of the Region 1-sense FACs. The
formation of the current wedge is most likely related to magnetospheric processes but is still one of the
central issues in the substorm study.

A near-Earth neutral line (NENL) is known to be closely associated with substorms (e.g., Hones Jr. et al.,
1973; Nishida & Nagayama, 1973). Based on the concept of bulk “motion” of magnetic field lines (e.g.,
Brice, 1967; Dungey, 1961), it has been thought that a substorm expansion onset is triggered when the
merging rate in the tail exceeds that on the dayside magnetosphere and that the onset is regarded as
release of magnetic energy stored in the tail (e.g., Russell & McPherron, 1973; Schindler, 1974). In the vicinity
of the NENL, strong flow vorticities and FACs (Baker et al., 1993) and a Hall current system (e.g., Treumann
et al., 2006) are suggested to appear. Recent particle-in-cell simulations have shown that kinetic Alfvén
waves are transmitted from the reconnection region, which probably reach the bright aurora (Shay
et al., 2011).

If one assumes that the FACs are generated in the vicinity of the NENL, that is, the current wedge overlapping
with the NENL, one will encounter a problem in explaining the position of the expansion onset (Lui, 1991).
Auroral observations have shown that the expansion onset starts near the equatorward boundary of the
auroral oval, that is, well equatorward of the open-closed boundary (e.g., Elphinstone et al., 1991; Kadokura
et al., 2002; Lui & Burrows, 1978; Samson et al., 1992; Samson et al., 1992). A current disruption model
attempts to explain the position of the expansion onset without introducing the NENL (Lui, 1996). The current
disruption is supported by the observation of large-amplitude oscillations of the magnetic field in the near-
Earth plasma sheet at a radial distance of ~8 Re at the onset (e.g., Takahashi et al., 1987). Data from Time
History of Events and Macroscale Interactions during Substorms (THEMIS) satellites show that the current
density was rapidly decreased by ~40% in the neutral sheet with a timescale of seconds at XGSM = �8.1 Re,
and the frozen-in condition was broken down (Lui, 2011). Major characteristics of the current disruption
can be summarized as follows: large changes in the electric field and magnetic field with a broad frequency
range, reduction in the cross-tail current, no propagation of the current disruption from the tail region, and
breakdown of the magnetohydrodynamics (MHD) assumption (Lui, 1996). The current disruption is sug-
gested to take place in association with unloading instability (Kan, 1993), ballooning instability (Pu, Korth,
& Kremser, 1992; Roux et al., 1991; Xing et al., 2013; Xing & Wolf, 2007; Yue et al., 2015), or cross-field current
instability (Lui et al., 1991). When the current disruption occurs, Region 1-sense FACs are generated in the
current disruption region by the requirement of the current continuity (Lui, 1996). The magnetic energy
stored in the lobe supplies electromagnetic energy to the current disruption region as a series of fast-mode
waves (Lui, 1996).

Some NENL-based models may resolve the problem of the onset position. If an earthward flow channel, or
burst coming from the NENL (e.g., Hones, 1984), consists of low-entropy plasma (bubble), the cross-tail cur-
rent must be connected with Region 1-sense FACs to maintain the current continuity (e.g., Birn et al., 2004,
2011; Chen & Wolf, 1993; Wolf et al., 2009; Yang et al., 2012). As the earthward flow channel approaches
the inner magnetosphere, the tailward force decelerates the plasma moving earthward. The consequent
inertial current may connect with the Region 1-sense FACs (Haerendel, 1992; Shiokawa, Baumjohann, &
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Haerendel, 1997). This process may be equivalent to energy conversion from bulk flow energy to electromag-
netic energy. According to simulations (Birn & Hesse, 1991; Birn et al., 2004, 2011), the earthward flow channel
splits into two directions, and each of them deflects toward dawnside and duskside. The directional change
results in the flow vorticity (shear), which may favor in leading the generation of the Region 1-sense FACs.
Such flow vorticity (shear) in the equatorial plane has been observed and thought to lead to the onset
FACs (Keiling et al., 2009; Yao et al., 2012). It is a general presumption in these models that the onset FACs
come from the equatorial plane along a field line. On the contrary, it is shown that the current line deviates
from the magnetic field line at off-equator (Tanaka, 2015) and that the vortex being responsible for the onset
FAC appears at off-equatorial low-altitude region (Ebihara & Tanaka, 2015a).

1.2. Dynamo for Onset FAC

In the ionosphere, the Joule dissipation is known to increase at onset (e.g., Ahn et al., 1983; Kamide, Sun, &
Akasofu, 1996; Østgaard et al., 2002; Palmroth et al., 2005; Richmond et al., 1990; Tanskanen et al., 2005;
Zhou et al., 2011). A question arises as to where the energy comes from. It has been shown that the solar wind
parameter, ε, known as the energy coupling function probably reflecting the excitation rate of the dynamo,
correlates with the AE index (Akasofu, 1979a) and power consumption in the magnetosphere (Kan, Lee, &
Akasofu, 1980). The ε parameter is defined by the equation ε = VB2sin4(θ/2)l0

2, where V, B, θ, and l0 are the
solar wind speed, the interplanetary magnetic field, the clock angle of the interplanetary magnetic field
(≡ tan�1(By/Bz)), and a constant length being 7 Re, respectively. A substorm onset is suggested to take place
when ε exceeds ~1018 erg/s (~1011 W) (Akasofu, 1980). Kan et al. (1980) emphasized that a substorm is a
direct consequence of the enhancement of power out from the dynamo located in the magnetotail. With
regard to transmission of energy from the solar wind to the magnetosphere, Akasofu et al. (1981) suggested
the following processes. When the solar wind passes through the magnetic field on the magnetopause, the
electric field associated with the electromotive force provides electric potential at the magnetopause. The
electric power is transmitted to the convective motion of plasma in the magnetosphere. The convective
motion of plasma in the tail acts as the MHD dynamo that generates FACs connecting with the ionosphere.
Geotail satellite observations show that ion bulk velocity, particle pressure, thermal energy flux, and field-
aligned current increase with the ε parameter (Kaufmann, 2012). However, as far as we know, the energy
flow and the dynamo regions that are related to the expansion onset have not been confirmed
by observations.

Akasofu (2003, 2015) further considered the dynamo in the tail region. He started with a pair of field-aligned
current sheets known as Boström’s Type 2 current (Boström, 1964). Upward current sheet is located equa-
torward of downward one. This type of the current system was not considered by Kepko et al. (2015). In
order to maintain the current continuity, the radially outward current must flow to connect the two current
sheets in the magnetosphere. Akasofu (2003, 2015) has assumed that the electric field pointing inward
(earthward) exists in the magnetosphere. The direction of the electric field E is opposite to that of the cur-
rent J, indicating a dynamo (J · E < 0). An immediate question is concerned with the generation of the elec-
tric field pointing inward (earthward). Some external forces must work to set up the dynamo. Lui and
Kamide (2003) suggested that during the dipolarization, magnetized electrons move earthward together
with the motion of the magnetic field, whereas unmagnetized ions remain. This causes charge separation.
Positive charge is concentrated in the outer region and negative charge in the inner region. The charge
separation caused by nonmagnetized motion of ions gives rise to the earthward directed electric field, gen-
erating a dynamo (J · E < 0).

Miyashita et al. (2001) performed a statistical study on the mass and energy transport in the near-Earth tail
region on the basis of the data from Geotail. The expansion onset was defined by Pi2 pulsations. A large
amount of energy starts to be transported from the lobe to the plasma sheet in the form of the Poynting flux
about 0–2 min before the expansion onset. The kinetic energy flux is minor in comparison with the Poynting
flux. Haerendel (2009) proposed a concept of squeezing of the magnetosphere. When the stretched mag-
netic field becomes dipole-like, a thin layer of the high-beta region is expected to cover the outer boundary
surface of the dipolar magnetosphere near 7–8 Re. This thin layer is squeezed from the outside by the high
magnetic field in the lobe. The magnetic energy is released in the tail and is fed into the thermal energy. The
thermal energy is then fed into the load in the ionosphere. The loss of the thermal energy by Poynting flux
toward the ionosphere results in the recovery of the magnetic field configuration.
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1.3. Dynamo Predicted by Global MHD Simulation

Three-dimensional distribution of the current system and related dynamo was first provided by Tanaka
(1995) who solved the MHD equation with magnetosphere-ionosphere coupling in a self-consistent manner.
This approach made the magnetospheric dynamo clear. From this method, Tanaka (1995) and Siscoe et al.
(2000) pointed out that the cusp/mantle region is the significant dynamo region in the magnetosphere to
drive the current system associated with the Region 1 FACs and to drive the convection. This is different
from the view in which the Region 1 FACs are mapped along a field line to the low-latitude boundary layer
where a viscous-like interaction between the solar wind and the magnetosphere occurs (Axford & Hines,
1961). Wing et al. (2010) investigated precipitating particles and FACs and found that the Region 1 FACs
are mapped to the low-latitude boundary layer at noon and the plasma sheet boundary in the morning
and afternoon regions. The difference may come from the inclusion of the perpendicular current. The
Region 1 current is almost field aligned at low altitude, whereas it will be diverted from the original field line
by the perpendicular current. Based on the consideration that the convection, plasma regimes, the dynamo,
and the FAC should be organized in a self-consistent manner, Tanaka (2007) and Tanaka et al. (2016) suggest
the following mechanism for the solar wind-magnetosphere interaction. Behind the bow shock, decelera-
tion and pressure gradient along the streamline inside the magnetosheath contribute to the generation
of Poynting flux. This Poynting flux is transported inside the magnetosphere to result in an increase in
the plasma pressure in the cusp. Thermal energy stored inside the cusp is then converted to the electromag-
netic energy for the region 1 FAC through the slow-mode expansion. This dynamo works steadily even dur-
ing the substorm cycle.

From the results of the substorm simulation, at least three dynamo regions are identified, including the
cusp/mantle dynamo. First, the cusp/mantle dynamo supplies electromagnetic energy when interplanetary
magnetic field (IMF) is southward or during the substorm growth phase (Tanaka, 2015; Tanaka et al., 2010).
Second, the near-Earth dynamo appears at the onset of substorm expansion (Birn & Hesse, 2005; Ebihara &
Tanaka, 2015a; Tanaka, 2015). Birn and Hesse (2005) showed that the energy conversion takes place in multi-
ple steps. The magnetic energy in the lobe is converted to the bulk kinetic energy through the reconnection.
The bulk kinetic energy is then converted to the thermal energy and successively converted to electromag-
netic energy in the near-Earth dynamo. Third, the dynamo action starts to appear near the interface between
the magnetosphere and the ionosphere when the ionospheric Hall current has a large gradient (Ebihara &
Tanaka, 2015b, 2018). During the expansion phase, the ionospheric Hall conductivity is locally enhanced,
resulting in overflow of the ionospheric Hall current and charge accumulation near the conductivity gradient
(bright aurora) (e.g., Fujii et al., 2011; Kan, Williams, & Akasofu, 1984; Kan & Kamide, 1985; Kan & Sun, 1996).
Ebihara and Tanaka (2015b) showed that a westward traveling surge appears in the global MHD simulation
and that the dynamo associated with the overflow of the ionospheric Hall current is essential for the forma-
tion of the westward traveling surge.

The global MHD simulation has made the current system and the dynamo regions clear. On the analogy of an
electrocircuit, the dynamo feeds electromagnetic energy, which is consumed in the load. However, the elec-
tromagnetic energy is not directly fed from the cusp/mantle dynamo into the ionosphere because energy
conversions are suggested to occur in the region between them, according to the global MHD simulation
(Birn & Hesse, 2005; Ebihara & Tanaka, 2015a; Tanaka, 2015). The pathway of the energy from the dynamo
to the ionosphere and associated energy conversion are still unclear and controversial. The purpose of this
study is to investigate the energy flow and the energy conversion to understand the expansion onset in
terms of energetics.

2. Methodology
2.1. Global MHD Simulation

We solved the global MHD simulation developed by Tanaka (2015) and used the same simulation results
obtained by Ebihara and Tanaka (2015a). The inner boundary of the magnetospheric domain is located on
a spherical surface at 2.6 Re, and the outer boundary is located at 200 Re at midnight and 600 Re at noon.
In order to concentrate the number of grid points on the nightside, the outer boundary is deformed. The total
variation diminishing scheme was applied for the MHD equations (Tanaka, 1995). The present simulation is
designed to realize high resolution for the calculation of the FAC. In order to obtain such performance, the
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unstructured grid with no apparent singularity is most essential. First, we divided the sphere at the inner
boundary into 12 pentagons. A pentagon was further divided into five triangles. The number of triangles is
60. This is called Level 1. A triangle was further divided into four, which is called Level 2. We used Level 6
in which a sphere was divided into 61,440 triangles because of the following reasons. With regard to the
onset mechanism, the simulation result is essentially the same as that obtained with Level 7 as shown in
Ebihara and Tanaka (2015b). In order to display three-dimensional perspective view of the magnetosphere,
we used a computer software, named VisIT. Data from the Level 7 simulation are too large, so that VisIT
cannot handle the data for the three-dimensional rendering. To develop a three-dimensional grid, we
stacked the triangular prisms 320 times. We mapped field-aligned current and plasma pressure from the
inner boundary of the magnetospheric domain to the ionosphere along a dipole magnetic field line. The
field-aligned current and the plasma pressure were used to estimate the ionospheric conductivity tensor.
The detailed information about the calculation of the ionospheric conductivity is described by Ebihara,
Tanaka, and Kikuchi (2014). For the mapped field-aligned current J‖ and the ionospheric conductivity tensor
Σ, we solved the following elliptic partial differential equation to obtain the ionospheric electric potential Φi

with satisfaction of the current continuity as

∇�Σ ∇Φið Þ ¼ J‖: (1)

The ionospheric potential is mapped to the inner boundary of the magnetospheric domain and is used to
determine the boundary condition at the inner boundary. The solar wind parameters used are as follows.
At t = 0, the Z component of the interplanetary magnetic field (IMF) was changed from +5 nT to �5 nT,
and the solar wind speed was increased from 372 to 500 km s�1 at X = 39 Re. The solar wind density and Y
component of the IMF were kept constant at 5 cm�3 and 2.5 nT, respectively. All of the simulation settings,
grid systems, and ionospheric conductivities were the same as those used by Ebihara et al. (2014) and Ebihara
and Tanaka (2015a). Following Ebihara and Tanaka (2015a), the onset of the substorm expansion was identi-
fied on the basis of the sudden intensification of the upward FAC close to midnight. The onset occurred at
66.7 magnetic latitude (MLAT) and 2318 magnetic local time (MLT) at t ~ 57.3 min. More detailed information
about the simulation setting can be found in Ebihara and Tanaka (2015a).

2.2. Related Equations

The global MHD simulation solves the evolution of the eight variables, including the mass density ρ, the
plasma pressure P, the velocity V, and the magnetic field B. The plasma pressure is assumed to be isotropic
and a scalar in the simulation. In the ideal MHD, the electric field E is given by

E ¼ �V�B; (2)

and the current density J is given by

J ¼ 1
μ0

∇�B; (3)

where μ0 is the magnetic constant.

From Faraday’s law and Ampère’s law, the equation that describes the generation of the FACJ‖ is given by

∂J‖
∂t

¼ � 1
μ0

∇�∇�E½ �‖: (4)

Equation (4) yields (Song & Lysak, 2001a, 2001b)

∂J‖
∂t

¼ 1
μ0

�∇ ∇�Eð Þ þ ∇2E
� �

‖ ¼ 1
μ0

∇‖ ∇⊥� V�Bð Þð Þ þ ∇⊥
2E‖

� � ¼ 1
μ0

∇‖ B� ∇⊥�Vð Þ þ V� ∇⊥�Bð Þð Þ þ ∇⊥
2E‖

� �

¼ 1
μ0

∇‖ B�Ω‖ þ μ0V�J⊥ð Þ þ ∇⊥
2E‖

� �
: (5)

Here we defined the vorticity as Ω ≡ ∇ × V. In the ideal MHD, the last term on the right-hand side of
equation (5) vanishes. For simplicity, we assumed that the second term is negligibly small (Song & Lysak,
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2001a, 2001b). We confirmed that the second term is about 2 orders magnitude smaller than the first term
along the magnetic field line extending from the onset position. Then, equation (5) yields

∂J‖
∂t

≅
1
μ0
∇‖ BΩ‖ð Þ

¼ 1
μ0

B
B
�∇ BΩ‖ð Þ

¼ 1
μ0

B
B
� B∇Ω‖ þΩ‖∇B½ �

≅
1
μ0
B�∇Ω‖:

(6)

We assumed that the termΩ‖∇B is negligible because the termΩ‖∇B is about 20–30% smaller than the term
B∇Ω‖, for example, in the region where the onset FACs are generated in the near-Earth region.

The momentum equation is given by

ρ
dV
dt

¼ J�B� ∇P: (7)

The first term of the right-hand side is called Lorentz force. The second term is called pressure gradient force.
The plasma pressure is assumed to be isotropic and a scalar in the simulation. Regardless of this assumption,
the simulation is capable of reproducing many observable features that manifest the substorm expansion
(Ebihara & Tanaka, 2015a, 2015b; Tanaka, 2015; Tanaka et al., 2010, 2016). Of course, the validity of the
assumption, isotropic plasma pressure, should be evaluated in the future.

By taking the curl of equation (7), we obtain the equation that describes the generation of the vorticity.

∇� ρ
dV
dt

� �
¼ ∇� J�Bð Þ

ρ∇�dV
dt

¼ ∇� J�Bð Þ � ∇ρ�dV
dt

dΩ
dt

¼ 1
ρ
∇� J�Bð Þ � 1

ρ
∇ρ�dV

dt
:

(8)

In accordance with Faraday’s law, the rate of change in the magnetic field is given by

∂B
∂t

¼ ∇� V�Bð Þ
¼ � V�∇ð ÞBþ B�∇ð ÞV� B ∇�Vð Þ:

(9)

The rate of change in the plasma pressure (∂P/∂t) is given by

∂P
∂t

¼ � V�∇ð ÞP � γP∇�V; (10)

where Γ is the ratio of specific heat (= 5/3). The first and second terms on the right-hand side are associated
with advection and compression, respectively.

Regarding the electromagnetic energy, we used Poynting’s theorem as

∇�S ¼ � ∂
∂t

B2

2μ0

� �
� J�E

¼ � ∂
∂t

B2

2μ0

� �
� V⊥� J�Bð Þ;

(11)

where

S≡
E�B
μ0

: (12)
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S is called a Poynting flux. By taking a scalar product of the velocity V with equation (7) and the continuity
equation for mass, the transport equation of the bulk flow is given by

∂
∂t

ρ
2
V2

� �
¼ �∇� ρ

2
V2V

� �
þ V� J�B� ∇Pð Þ; (13)

where V = |V|. The second term on the right-hand side governs the conservation of the kinetic energy and
mediates the energy transfer from another. From equation (7) and the continuity equation for mass, the
transport of thermal energy is given by

∂u
∂t

¼ �∇� γuVð Þ þ V�∇P: (14)

where u is the thermal energy (≡3P/2). The second term on the right-hand side governs the conversation of
the thermal energy. Following Birn and Hesse (2005), we defined enthalpy flux H and bulk kinetic flux K as

H ¼ γuV (15)

and

K ¼ 1
2
ρV2V; (16)

respectively.

3. Results
3.1. Evolution of Field-Aligned Current, Auroral Electrojet, and Joule Dissipation in the Ionosphere

Figure 1 shows the calculated AU and AL indices and the FACs at the ionospheric altitude. We calculated the
magnetic disturbance on the ground at 48 different magnetic local times (MLTs) at 67° magnetic latitude
(MLAT). The magnetic disturbance was calculated on the basis of the ionospheric Hall current that is given
by JH = ΣHEi, where ΣH is the Hall conductivity. Ei is the ionospheric electric field given by the equation
Ei = �∇Φi, where Φi is the ionospheric potential that is obtained by solving the elliptic partial differential
equation of equation (1). After superposing the 48 temporal variations of the magnetic disturbance, we took
a lower bound (envelope) as the AL index and an upper bound (envelope) as the AU index. The methodology
to derive the AU and AL indices is essentially the same as that proposed by Davis and Sugiura (1966). The
calculated AL index shows an abrupt decrease at t ~ 57 min. (We define t = 0 to the moment when the south-
ward IMF arrives at X = 39 Re.) In the lower half part of Figure 1, the FACs are shown, which are obtained by
mapping those at the inner boundary of the magnetospheric domain to the ionosphere along the dipole
magnetic field. Before the onset, strong FACs are found on the dayside, which are related to the main part
of the Region 1 FACs (Tanaka et al., 2010). The upward FAC is abruptly enhanced in the premidnight at
t ~ 57.3 min. We call this onset of the expansion phase. The magnitude of the enhanced FAC is largest at
66.7 MLAT and 2318 MLT and is denoted by a cross. The electric potential is indicated by contour lines.
The onset takes place in the middle of the Harang discontinuity, which is consistent with observations
(e.g., Lyatsky et al., 2001; Nielsen & Greenwald, 1979; Untiedt & Baumjohann, 1993; Weygand et al., 2008;
Zou et al., 2009). The FACs associated with the onset increase with time.

Figure 2 shows the radial component of the Poynting flux on the spherical surface at the geocentric distance
of 3.5 Re and the Joule heating rate in the ionosphere. In Figure 2 (top row), negative values mean the
Poynting flux pointing earthward. The earthward Poynting flux appears to increase near midnight at onset.
It is speculated that a large part of the earthward Poynting flux would penetrate into the ionosphere, and
the electromagnetic energy would consume in the ionosphere. Indeed, the Joule heating rate increases near
midnight in the ionosphere at onset, which is consistent with the observations (e.g., Kamide et al., 1996).

3.2. Global Pathway of Electromagnetic Energy

Figure 3 shows a perspective view of the magnetosphere. The coordinates are the same as the Solar
Magnetosphere (SM) coordinate system with a dipole tilt angle of 0. The SM coordinate system is centered
on the Earth, which has the X axis pointing toward the Sun and the Z axis being antiparallel to Earth’s dipole
moment. The Y axis is defined as the cross product of the Z and X axes. The whitish, thick line indicates the
integral curve of the Poynting flux S. The integral curve of S is given by ∫S � ds/S. Hereinafter, we call this
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an S-curve. The S-curve presented here is a snapshot, so that S-curve is probably different from the actual
propagation path of the Poynting flux. No temporal variation is considered in the calculation of the
S-curve. In spite of the limitation, we think that the S-curve is still useful to visualize the instantaneous
direction of S and to estimate the approximate path of the electromagnetic energy. The light blue line
indicates the magnetic field lines. At the onset (Figure 3, right), a near-Earth neutral line (NENL) has
formed, and the earthward and tailward flows appear in the equatorial plane. The NENL formed at
X ~ �11.5 Re at t ~ 48 min. The location of the NENL is relatively close to the Earth in comparison with
most of the observations (e.g., Angelopoulos et al., 2008; Nagai et al., 1998). We believe that the location of
the NENL is not so unrealistic. The reason is that near-Earth reconnection taking place at 10–12 Re was
observed (Sergeev et al., 2008). In the global MHD simulation used by Ebihara and Tanaka (2015b), the
NENL took place at X ~ �42 Re with the solar wind speed of 372 km/s, the solar wind density of 5 cm�3,
and IMF Bz of �3 nT. One of the reasons for the different location of NENL may come from different solar
wind conditions. We confirmed that the processes are essentially the same with that in the simulation
result presented by Ebihara and Tanaka (2015b).
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Figure 3. Perspective views of the magnetosphere (left) at 15 min before the expansion onset and (right) at the onset. The
whitish, thick line indicates the integral curve of the Poynting flux S. The color on the line represents the value of J · E.
The bluish shade represents the region where J · E = �5 × 1012 W/m3 (dynamo region). The thin, yellow line indicates the
one extending from the onset position. The thin, blue lines indicate the magnetic field lines extending from the ionosphere
at midnight. The X component of the plasma velocity is drawn in the equatorial plane. Only the integral curve related
to the duskside convection cell is drawn. A similar integral curve, with opposite polarity, exists on the dawnside.
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At the onset, the S-curve appears to come from the solar wind and passes through the cusp/mantle dynamo
region (J · E < 0) (Siscoe et al., 2000; Tanaka, 1995, 2000). After passing through the cusp/mantle dynamo
region where the kinetic energy is converted to the electromagnetic energy, the S-curve further travels
tailward and toward the equatorial plane. It turns to the west on the nightside. Then, the S-curve travels
sunward and traverses the region where magnetic field lines pass through the dayside reconnection line.
The S-curve tends to complete the circular motion but tends to be displaced toward the Earth for every
circulation. The S-curve shows a sharp kink near the magnetic field line extending from the onset position
(“onset field line,” the yellow line) and near the near-Earth dynamo. We note that overall, the S-curve tends
to show a spiral moving toward the Earth. The primary reason for the spiral is the presence of FACs that twist
the magnetic field line. The twisted magnetic field line results in the downward (earthward) component of
the Poynting flux. The contribution from the Region 2 FACs can also be seen, in general, as a bend in the
counterclockwise direction when one views the Earth from space. At 15 min before the onset (Figure 3, left),
a sharp kink of the S-curve on the nightside is absent. The near-Earth dynamo is also absent.

Figure 3 suggests the following.

1. Large amount of the electromagnetic energy is transmitted from the cusp/mantle dynamo and is trans-
ported toward the ionosphere along the S-curve. In the sense that the magnetospheric convection is
represented by motion of plasma under the E × B drift, the S-curve is an alternative view of the magneto-
spheric convection because the direction of the E × B drift is tangential to the S-curve.

2. A sharp kink appears near the onset field line, which is closely associated with the negative accumulation
of charge or flow vorticity (shear). The kink is a part of the large-scale S-curve, which corresponds to the
convection in the sense that the convection is represented by the E × B drift motion.

Figure 3 also shows that the near-Earth dynamo seems to be embedded in the pathway of the energy from
the cups/mantle dynamo to the ionosphere. In the sense that the S-curve is an alternative view of the
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magnetospheric convection, we may be able to say that the near-Earth
dynamo, which is a consequence of the NENL, is embedded in the
convection system.

Figure 4 shows ∇ · V⊥ and ∇ · S in the meridional plane at midnight. At
15 min before the onset (Figure 4, left column), ∇ · V⊥ and ∇ · S are sys-
tematically negative in the large part of the lobe. Negative values of
∇ · V⊥ and ∇·S mean an increase in the magnetic energy or magnetic
field according to equations (9) and (11). (The absolute value of J · E
is very small in the lobe.) At the onset (Figure 4, right column), ∇ · V⊥

and ∇ · S are systematically positive in some part of the lobe, for exam-
ple, at X = �10 Re and Z = 5 Re. This change exhibits a part of the
loading-unloading process. The red lines indicate the trajectories of a
plasma element given by ∫V⊥(t)dt, which is probably associated with
the path of the electromagnetic energy. The red dot indicates the posi-
tion of the plasma element. The plasma elements are located in the
lobe at 15 min before the onset, whereas they are located in the inner
magnetosphere at the onset. A part of the electromagnetic energy
released in the lobe seems to traverse the separatrix as the magnetic
field reconnects and go into the inner magnetosphere.

Figure 5 summarizes the integrated energy. Figure 5a shows the elec-
tromagnetic power passing thorough the spherical surface at the geo-
centric distance of 3.5 Re (positive outward). The surface integral,
∫S � dA, where A is the area vector normal to the surface (looking out-
ward), was performed over the nightside region. The electromagnetic
power penetrating into the spherical surface remains at ~5.0–
5.5 × 1011 W, whereas it increases during the expansion phase by
~1011 W. This is consistent with the observation (Sun, Ahn, & Akasofu,
1985). Figure 5b shows ∂(B2/2μ0)/∂t, J · E, and ∇ · S integrated over
the rectangular volume (box) bounded by X = �10 to �20 Re, Y = �3
to 3 Re, and Z = 4 to 15 Re. The box is located in the northern lobe. At
t< 56 min, the magnetic energy increases in the lobe (positive power),
which corresponds to the convergence of the Poynting flux (∇ · S < 0).
At the onset, the magnetic energy decreases (negative power),
corresponding to the divergence of the Poynting flux (∇ · S > 0).
Dynamo effect (J · E < 0) remains scarce inside the lobe. Figure 5c
shows the Z component of the integrated Poynting flux passing

through the upper plane (at Z = 15 Re) and lower plane (at Z = 4 Re) of the box. The surface integral was per-
formed over the top and bottom sides of the box, that is, the area bounded by X =�10 to�20 Re and Y =�3
to 3 Re. The negative value means the electromagnetic energy pointing toward the equatorial plane. At
t< 50 min, the Poynting flux at Z = 15 Re (incoming flux) exceeds that at Z = 4 Re (outgoing flux). This implies
that the Poynting flux is partially stagnated, and the magnetic energy is stored. At t ~ 42 min, the magnetic
field configuration starts to be changed largely near the region where the near-Earth neutral line will form. At
t ~ 48 min, the NENL starts to form. After a while, the outgoing flux (red line) exceeds the incoming flux (blue
line), which implies the release of the magnetic energy. It is emphasized that a large amount of the electro-
magnetic power with magnitude of 0.7–1.1 × 1011 W steadily comes in through the upper plane (Z = 15 Re,
blue line) throughout the growth and the expansion phases. It is speculated that two types of the Poynting
flux are transported from the lobe toward the equatorial plane during the expansion phase. One is the energy
previously stored, which is associated with the partial stagnation of the Poynting flux. The other one is the
energy steadily supplied from the cusp/mantle dynamo. The amount of the released energy is estimated
to be ~1.6 × 1011 W, which is comparable to that additionally supplied to the ionosphere after the
onset. From these variations, there certainly exists the so-called loading-unloading process supported by tail
magnetic field. The loading-unloading process generates a considerable fraction of Poynting flux additionally
supplied to the ionosphere after the onset.

Figure 5. (a) Electromagnetic power passing through the sphere at 3.5 Re
integrated over the nightside (positive outward), (b) power in a rectangular
region in the lobe, and (c) Z component of the electromagnetic power passing
through the X-Y planes at 4 Re (red) and 15 Re (blue). In Figure 5b, the volume
integral was performed in the rectangular volume bounded by X = �10 to
�20 Re, Y = �3 to 3 Re, and Z = 4–15 Re. In Figure 5c, the surface integral was
performed in the area bounded by X = �10 to �20 Re and Y = �3 to 3 Re.
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3.3. Energetics in the Near-Earth Region

As shown in Figure 3, a drastic change in the pathway is found in the
near-Earth region on the nightside. To see the energetics in the near-
Earth region in detail, we first present Figure 6 showing the plasma pres-
sure P and the rate of change in the plasma pressure ∂P/∂t in the meri-
dional plane at midnight at t = 57.3 min. The black lines indicate the
magnetic field lines. The plasma pressure increases significantly, in par-
ticular, in the innermagnetosphere. The increase in the plasma pressure
is primarily attributed to the compression of plasma (not shown). We
note that the plasma pressure is not necessarily constant along a field
line because this is a transient phenomenon, and it takes a finite time
to reach the steady condition in which the isotropic plasma pressure is
constant along a field line. The decrease in the plasma pressure (e.g.,
at X = �7.0 Re and Z = 1.3 Re) is primarily caused by the advection of
low-pressure plasma coming from the lobe. The solid, red lines indicate
the trajectories of plasma elements, which are given by ∫V(t)dt. The line
integral was performed backward in time from the onset t = 57.3 min to
t = 52.3min. The plasma originating in the lobe (inflow region) traverses
separatrix as the magnetic field reconnects, and moves to the outflow
region, as shown in Figure 1 of Eastwood et al. (2013) and Figure 5 of
Zweibei and Yamada (2016). Only the earthward flow is shown in
Figure 6a. For reference, the dashed, red lines indicate the trajectories

given by ∫V⊥(t)dt, where V⊥ is the perpendicular velocity. The dashed, red lines are tangential to the instan-
taneous Poynting flux S, suggesting the penetration of the Poynting flux into the inner magnetosphere.

Figure 7 summarizes V·(J × B � ∇P), V · ∇P, and V·(J × B) in the meridional plane at midnight at onset
(t = 57.3 min). Similar plots were also presented by Birn and Hesse (2005) and Tanaka et al. (2017). At mid-
night, the following features are noticeable.

1. Near the equatorial plane closed to the NENL (e.g.,, at R = 10
and Z = 0 Re), the electromagnetic energy splits into the
thermal energy and the kinetic energy (V·(J × B) > 0,
V · ∇P > 0, and V·(J × B � ∇P) > 0). This is consistent with the
simulation results by Birn et al. (2010) and Birn, Hesse, and
Zenitani (2011).

2. Near the equatorial plane closer to the Earth (e.g., at R = 8 Re and
Z = 0 Re), the kinetic energy is converted to the thermal energy
and the electromagnetic energy (V·(J × B � ∇P) < 0, V · ∇P > 0,
and V·(J × B) < 0). This is probably associated with flow braking
(Haerendel, 1992; Shiokawa et al., 1997).

3. In the near-Earth region at off equator (e.g., at R = 5.0 Re and
Z = 2.3 Re and at R = 7.0 Re and Z = 1.3 Re), the electromagnetic
energy is converted to the thermal energy (V·(J × B) > 0 and
V · ∇P> 0). A similar tendency (V·(J × B)> 0 and V · ∇P> 0) is found
in the inner region, for example, at R = 5.0 Re and Z = 2.3 Re. This
may be associated with the Region 2-sense FACs, which is beyond
the scope of this study.

Figure 8 is the same as Figure 7 except for 2318 MLT (onset meridian).
At the onset meridian (2318 MLT), the following feature is noticeable.

4. The thermal energy is further converted to the electromagnetic
energy (V · ∇P < 0 and V·(J × B) < 0) at off-equator (e.g., at
R = 5.2 Re and Z = 2.2 Re). This is pointed out by Birn and Hesse
(2005). This is near-Earth dynamo, which is in close relation with
the onset FAC (Ebihara & Tanaka, 2015a, 2015b; Tanaka, 2015).

Figure 6. (a) Plasma pressure P and (b) rate of change in plasma pressure ∂P/∂t in
the meridional plane at midnight at onset t = 57.3 min. The black line indicates a
magnetic field line. The solid, red line indicates the trajectory of a plasma
element, which is a line integral of the plasma velocity Vwith respect to time for
5 min. The dashed, red line is the same as the solid, red line except for the
perpendicular plasma velocity V⊥.
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The energy conversion is associated with mechanical work done by
V · ∇P, V·(J × B � ∇P), and V·(J × B). It is obvious that the plasma
flow velocity V is important to evaluate the mechanical work and
energy conversion.

3.4. Pathway of Energy in the Near-Earth Region

In order to understand the pathway and conversion of energy in the
near-Earth region, we present Figure 9 showing a perspective view of
the magnetosphere at the onset (t = 57.3 min). The thick lines indicate
magnetic field lines, and the thin lines indicate integral curves of the
velocity V. The integral curve of V is a curve that is tangential to instan-
taneous V and is given by ∫V � ds/V, where s is a line element. This is a
snapshot, so that the integral curve of V is different from the trajectory
of a plasma element. However, we think that the use of the integral
curve is valuable to visualize the instantaneous direction of the velocity
and to estimate approximate path of the plasma. In Figure 9 (top), the
colored horizontal plane indicates the X component of the velocity in
the equatorial plane. In Figure 9 (bottom), the colored plane indicates
∇ · S. The fast earthward flow is found because of the presence of
reconnection. Two integral curves of V are drawn. They are denoted
by Roman numerical figures (i) and (ii), respectively. The integral curve
of V (i) comes from the lobe, gets close to the plasma sheet, and moves
toward the Earth. As the plasma enters into the plasma sheet, the ther-
mal energy and the kinetic energy increase (∇ ·H> 0 and ∇ · K> 0). The
energy is converted from the electromagnetic energy as shown in
Figure 3. As the plasma proceeds in the plasma sheet toward the
Earth, the kinetic energy decreases (∇ · K < 0) because of the mechan-
ical work (V·(J × B� ∇P)< 0), according to equation (13). The decelera-

tion of plasma results in compression of plasma and an increase in the plasma pressure as shown by the grey
surface. Then, the kinetic energy is converted to the thermal energy and the electromagnetic energy
(∇ · H > 0 and ∇ · S > 0). The integral curve of V (ii) also comes from the lobe and traverses the separatrix
as the magnetic field reconnects. When it approaches the high-pressure region (grey surface), it turns to
the west at off-equator. The perpendicular motion of the integral curve of V (ii) can also be explained below.
As the plasma moves toward the region where the plasma pressure is high (high-pressure region as denoted
by grey surface), the thermal energy increases (∇ · H > 0) due to the mechanical work (V · ∇P > 0). As the
plasma leaves the high-pressure region moving westward, the thermal energy decreases (∇ · H < 0), and
the electromagnetic energy increases due to the mechanical work (V·(J × B) < 0 or J · E < 0), that is, the
dynamo. The magnetic field line extending from the onset (onset field line) is also indicated by a thick line
colored with (top) J · E and (bottom) J‖. This dynamo region is found to coexist with upward FACs at
off-equator as shown in Figure 9 (bottom). It can be said from Figure 9 that the electromagnetic energy is also
generated in the near-Earth region on the nightside in association of two types of flow shear. One is asso-
ciated with the flow shear near the equatorial plane as indicated by the integral curve (i). The other is asso-
ciated with the flow shear at off-equator as indicated by the integral curve (ii).

Figure 10 summarizes the plasma pressure, parallel vorticity, FACs, and J · E in the Y-Z plane at X =�5 Re. The
plasma pressure is high at Z< 2.4 Re, and the increase in the plasma pressure is attributed to the compression
(not shown). In Figure 10b, the parallel vorticity is present. The perpendicular flow velocity is indicated by the
arrow. The plasma coming from the lobe traverses the separatrix as the magnetic field reconnects near the
equatorial plane (as is shown in Figures 4 and 6). Then, the flow splits into the westward one and the eastward
one. The westward flow is responsible for the positive vorticity and upward FAC as shown in Figure 10c. The
upward Region 1-sense FAC appears on the westside of the high-pressure region that is centered at Z ~ 2 Re.
A pair of the Region 1-sense FACs is found in the high-latitude part of the high-pressure region indicated in
Figure 10a. The flow associated with the upward Region 1-sense FAC corresponds to the integral curve of V
(ii) shown in Figure 9. The dynamo region (J · E < 0) is embedded in the upward FAC region including the
point (�5.0, 1.0, 2.3) Re at which the magnetic field line extending from the onset position passes through.
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The eastward one is responsible for the negative vorticity and downward FAC. A pair of the Region 2-sense
FACs is also found in the low-latitude part of it.

Figure 11 summarizes the quantities related to energetics taking along the trajectory of plasma. The tra-
jectory was obtained by integrating the velocity with respect to time ∫V(t)dt backward in time. The inte-
gration was performed from the point A at (�5, 1, 2.2) Re at t = 57.3 min. The point A is indicated in
Figure 9. The point A belongs to the dynamo region (J · E < 0). The trajectory considers time-dependent
velocity, which is morphologically similar to the integral curve of V (ii) shown in Figure 9. We note that due
to unwanted numerical errors, these quantities do not exactly satisfy equations (11), (13), and (14). The
plasma came from the high-latitude magnetosphere where the plasma pressure is low. As the plasma
moves from the lobe toward the point A, V · ∇P increases together with V·(J × B) until t ~ 56.5 min.
The good coincidence between V · ∇P and V·(J × B) probably indicates that the electromagnetic energy

Figure 9. Perspective view of the magnetosphere at expansion onset (t = 57.3 min). The blue sphere indicates the Earth.
The thick lines indicate magnetic field lines, and the thin lines indicate integral curves of the velocity of plasma. Onset
field line represents the magnetic field line extending from the onset position (cross in Figure 1). The magnetic field lines
and the integral curves are colored with physical quantities: (top) J · E, ∇ · H and (bottom) J‖ (field-aligned current), V · ∇P,
∇ · K. The grey surface is an isopressure surface at 2 nPa. The X component of the plasma flow and ∇ · S are shown in the
equatorial plane in the top and bottom panels, respectively.
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at onset (t = 57.3 min). In Figure 10b, the arrow indicates the perpendicular flow velocity mapped on the Y-Z plane.

Figure 11. (a) Plasma pressure, (b) ∂u/∂t, ∂(ρV2/2)/∂t and ∂(B2/2μ0)/∂t, (c) ∇ · H, ∇ · K, and ∇ · S, (d) V · ∇P, V (J × B� ∇P), and
V (J × B), and (e) position. They are taken along the trajectory of a plasma element backward in time, starting at (�5, 1,
2.2) Re and t = 57.3 min.
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is converted to the thermal energy. Near the point A (t ~ 57.3 min),
V·(J × B � ∇P) > 0, V·(J × B) < 0, and V · ∇P < 0. This probably
means that the thermal energy splits into the kinetic energy and
the electromagnetic energy. The dynamo (J · E < 0) is evident
at t > 57.1 min.

3.5. Generation of Field-Aligned Current

Finally, we focused on the origin of the upward FACs that manifests the
expansion onset in the ionosphere shown in Figure 1. In order to find
the relevant region where the upward FACs are generated, we traced
a possible path of the Alfvén wave backward in time because the
FACs are thought to be closely associated with Alfvén waves (Song &
Lysak, 2001a, 2001b). The possible path R(t) was obtained by solving
the equation

R tð Þ ¼ a ∫
t

t0
VA τ; rð ÞB τ; rð Þ

B τ; rð Þ
� 	

dτ; (17)

where VA is the local speed of the Alfvén wave being B=
ffiffiffiffiffiffiffiffi
μ0ρ

p
; t0 is the

onset time (57.3 min), and a is a constant being 1 or �1 depending on
the direction of the integral. Since the starting point was situated in the
Northern Hemisphere and dτ < 0, we chose 1 for a. Figure 12 sum-
marizes relevant quantities taken along the possible path of the
Alfvén wave backward from (�2.02, 0.36, 2.19) Rewhere the onset posi-
tion is mapped from the ionosphere to the 3 Re surface along the
dipole field line. (In order to evaluate the spatial derivatives numeri-
cally, we needed to start the calculation just above the inner boundary
of the simulation. Only the values at the radial distance greater than
3.5 Re are shown.) The vertical line on the right-hand side of
Figure 12 represents the starting point of the tracing (corresponding
to the onset time of 57.3 min). Figure 12a shows the FAC. The negative
FAC means the upward one in the Northern Hemisphere. The FAC is
almost zero near the equatorial region (|Z| < 0.2 Re). The upward FAC
increases with time (distance from the equatorial plane). The maximum
of upward FAC takes place at (�5.5, 1.1, 2.0) Re (geocentric distance of
5.9 Re). Figure 12b shows the FAC multiplied by Bi/B, where Bi is the
intensity of the magnetic field at the ionosphere. The normalized
FAC, J‖0, is introduced to show the net current flowing in a flux tube
regardless of the area of the flux tube. The magnitude of J‖0 increases

near the equatorial plane, whereas J‖0 is almost held constant from t ~ 56.4 to t ~ 57.1 min. J‖0 starts to
approach to zero at t ~ 57.1 min. However, J‖0 does not reach zero at the onset. We defined the onset as
the moment at which the upward FAC starts to increase in the ionosphere. Therefore, at the onset, the
upward FAC just starts to increase at the inner boundary of the simulation, which leads to the increase in
the upward FAC in the ionosphere in the simulation. Figure 12c shows divergence of three current density
vectors, the FAC, the diamagnetic current (Jd), and the inertial current (Ji). They are given by

J‖ ¼ J‖
B
B
¼ ∇�B

μ0
�B
B
; (18)

Jd ¼ B�∇P
B2

; (19)

and

Ji ¼ ρ
B

B2
�dV⊥

dt
; (20)

respectively. The FACs are coupled to the diamagnetic current near the equatorial plane, whereas they are
coupled to the inertial current at off-equator. Figure 12c only represents the continuity of the current, so

Figure 12. (a) FAC (negative upward); (b) normalized FAC; (c) divergence of the
current density: divergence of FAC (black), divergence of diamagnetic current
(blue), and divergence of inertial current (red); (d) rate of change in the FAC;
(e) parallel vorticity; (f) rate of change in parallel vorticity due to two terms;
(g) J · E; and (h) position of the field line. These quantities are taken along a path
of the Alfvén wave transmitted backward in time from the onset position and
the onset time indicated by the vertical line on the right-hand side. The region
near the far left edge bounded by the vertical line on the left-hand side indicates
the equatorial plane (|Z| < 0.2 Re).
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that more diagnosis is necessary to understand the generation of the upward FACs. Figure 12d shows the
rates of change in the FACs ∂J‖/∂t calculated by using two different equations (equations (4) and (6)). They
are almost identical. This means that the approximation of equation (6) is valid and that the generation of
the upward FAC can be reasonably explained in terms of vorticity. ∂J‖/∂t is largely negative at off-equator,
meaning that the strong upward FAC is generated at off-equator at this moment. We should note that the
instantaneous FAC is not necessarily proportional to instantaneous ∂J‖/∂t because the instantaneous FAC is
a result of the integral of ∂J‖/∂t with respect to time. It is also expected that the generation of the upward
FAC results in redistribution of the ambient current and the Lorentz force that adjusts the force balance.
The generation of FAC is associated with the field-aligned gradient of the vorticity Ω‖ as shown in
Figure 12e. The vorticity slightly increases and peaks at off-equator at ~57.0 min. The negative gradient of
the vorticity in the earthward part of the peak seems to generate the upward FACs that connect to the
ionosphere, according to equation (6). Figure 12f shows rate of change inΩ‖. The solid and dotted lines indi-
cate the first and the second terms of the right-hand side of equation (8). It is shown that, in general, the first
term, curl of the Lorentz force, dominates the second term, so as to increase Ω‖. Figure 12g shows J · E, indi-
cating that J · E is largely negative at off-equator at t ~ 56.4–57.2 min. This corresponds to the near-Earth
dynamo shown in Figure 10 and probably means that the onset FACs are primarily generated or powered
at off-equator. Of course, we cannot exclude the possibility that the onset FACs are generated near the
equatorial plane.

4. Discussion

First, we discuss the processes regarding the substorm expansion. The following is probably one of the most
commonly accepted models to explain the expansion onset (e.g., Cowley, 2000; Kepko et al., 2015, and
references therein):

1. Dayside reconnection gives rise to the transfer of open flux from the dayside to nightside. When nightside
reconnection occurs in the tail region, newly closed field lines return sunward to complete the Dungey
cycle.

2. A collapse or dipolarization of the stretched field lines occurs in association with reduction of the cross-tail
current.

3. A current wedge appears to form as a result of a collapse of the cross-tail current or a superposition of
some current loops including FACs generated by flow shear in the plasma sheet.

4. The Region 1-sense FAC newly developed on the nightside is more powered by the reduction of the mag-
netic field in the tail lobe than by a generator situated in the magnetosheath or at the magnetopause.

The global MHD simulation is capable of reproducing many observable features that are regarded as key
manifestations of substorm expansion, for example, sudden decrease in the AL index, westward traveling
surge, dipolarization, azimuthal deflection of the magnetic field at geosynchronous orbit, positive bay at
midlatitude, and overshielding (Ebihara et al., 2014; Ebihara & Tanaka, 2015a, 2015b, 2018; Tanaka, 2015;
Tanaka et al., 2010, 2017). Based on the simulation results, we discuss each of the processes.

For the item 2, the dipolarization is also found in the global MHD simulation. The dipolarization delays in the
inner part of the plasma sheet. The dipolarization can take place after the onset depending on the distance
from the NENL (Tanaka et al., 2017). This is consistent with the observation (Runov et al., 2009) and is
discussed in detail by Tanaka et al. (2017).

For the item 3, the current wedge-like structure also appears in the global MHD simulation. However, the
structure is different from the traditionally thought because the perpendicular current, including the dia-
magnetic current, is also intensified at the onset (Ebihara & Tanaka, 2015a, 2015b; Tanaka, 2015). By sum-
ming up the perpendicular and parallel currents, one may find that the current vector is not always aligned
with the magnetic field line. If one draws a current line like a magnetic field line, the current line extending
from the ionosphere at the onset position is diverted from the original field line by the perpendicular cur-
rent. It does not reach the equatorial plane because the perpendicular current is strong in the plasma
sheet. Braking of the earthward fast flow is suggested to cause flow shear and generate the Region 1-sense
FACs in the plasma sheet (e.g., Birn et al., 2004, 2011; Birn & Hesse, 2014; Keiling et al., 2009). The flow shear
at off-equator seems to be responsible for the generation of the onset field-aligned current. We cannot rule
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out the possibility that the flow shear near the equatorial plane also contributes to the generation of the
onset field-aligned current.

For the item 4, the pathway of the energy from the magnetospheric dynamo to the ionosphere was obscure.
The plasma pressure in the inner magnetosphere (or in the inner part of the plasma sheet) is suggested to be
a mediator for the energy conversion (Birn & Hesse, 2005; Haerendel, 2009; Tanaka et al., 2010, 2017; Hamrin
et al., 2012; Ebihara & Tanaka, 2015a, 2015b). We think that the pathway of the energy and associated energy
conversion are clearly illuminated by the global MHD simulation. This may be similar to the concept of
squeezing of the magnetosphere (Haerendel, 2009).

The substorm is suggested to consist of two components, the directly driven (DD) component and the
unloading (UL) component (e.g., Akasofu, 1979b). The DD component is fairly well correlated with the ε para-
meter, whereas the UL component is less correlated with it (Sun, Xu, & Akasofu, 1998). The DD component is
known to be associated with the convection driven by reconnection, and the UL component is known to be
associated with the current wedge system (Kamide & Kokubun, 1996). In the sense that the convection and
the “current wedge system” are related to the cusp/mantle dynamo and the near-Earth dynamo, respectively,
we can rephrase it as follows: The DD component is associated with the cusp/mantle dynamo, and the UL
component is associated with the near-Earth dynamo. It seems in the simulation result that the near-Earth
dynamo is embedded in the pathway of the energy from the cusp/mantle dynamo to the ionosphere,
namely, convection system, as shown in Figure 3. In this sense, the expansion onset may be regarded as a
sudden, localized intensification of the convection.

The simulation result is consistent with a statistical study performed by Miyashita et al. (2001, 2012) and
Machida et al. (2009). The onset was determined by Pi2 pulsations (Miyashita et al., 2001) and satellite-borne
auroral images (Machida et al., 2009; Miyashita et al., 2012). At off-equator, the Poynting flux pointing toward
the equatorial plane began to appear at least 10 min prior to the onset and further increased ~4 min before
the onset (Machida et al., 2009). The magnetic field also increased at off-equator. They defined the direction
of the Poynting flux to be the same as the plasma convection. This means that the flow toward the equatorial
plane began to intensify ~4 min prior to the onset. The statistical study was limited at X =�9 Re owing to the
orbit of the Geotail satellite. Further study is required to confirm the simulation result that the flow shear also
begins to intensify at closer distance, such as at X = �5 Re, at off-equator. The recently launched satellite,
Arase (previously known as ERG), is suitable for investigating it because Arase has an orbital inclination of
~31° and the apogee of ~6 Re.

Ebihara and Tanaka (2015a) reported that in addition to the J · E term, part of themagnetic field energymight
be converted to the electromagnetic energy flow near the leading edge of the high-pressure region at off-
equator, in accordance with Poynting’s theorem. Because thermal and kinetic energy must be considered
together with the electromagnetic field energy, careful diagnosis is required to understand the radiation of
the Poynting flux. From this perspective, we note that the description regarding the conversion of the mag-
netic field energy to the electromagnetic energy flow was probably incomplete, and it was too early to draw
conclusions. We leave the energetics regarding the change in the magnetic field energy for future study.

5. Conclusions

The major conclusions obtained from this study are summarized as follows.

1. The Poynting flux originating from the cusp/mantle dynamo is responsible for the large-scale convection
(Siscoe et al., 2000; Tanaka, 1995) and is partially stagnated in the lobe during the growth phase. After the
formation of the NENL, the accumulated energy is released and is transported toward the equatorial
plane. In addition to the accumulated one, a large amount of the Poynting flux is continuously supplied
from the cusp/mantle dynamo toward the equatorial region by way of the lobe. The released energy is
estimated to be comparable to the energy continuously supplied from the cusp/mantle dynamo.

2. Two types of pathways of energy are probably involved for the generation of the upward FACs that man-
ifest the expansion onset. The first one is associated with the earthward flow near the equatorial plane. In
the plasma sheet, the electromagnetic energy coming from the lobe splits into the thermal energy and
the kinetic energy. The kinetic energy is converted to the electromagnetic energy and the thermal energy
due to compression in the inner magnetosphere when the earthward flow decelerates (flow braking). This
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is also discussed by Birn et al. (2010, 2011). The second one is associated with the flow at off-equator. A
large part of the electromagnetic energy is converted to the thermal energy. When the plasma with large
enthalpy moves toward dusk, the thermal energy is converted to the electromagnetic energy (probably
by way of the kinetic energy). The first (second) type of the pathway is associated with the generation
of the upward FACs near the equatorial plane (at off-equator). The onset-associated FACs are probably
powered by the second one because of the presence of the near-Earth dynamo (where J · E < 0) at off-
equator. However, the contribution from the first one is probably nonnegligible.

3. The pathway of the electromagnetic energy is associated with the large-scale convectionmanifested by the
S-curve. The near-Earth dynamo seems to be embedded in the pathway of the energy from the cusp/mantle
dynamo to the ionosphere, namely, the magnetospheric convection system. In this sense, the expansion
onset may be regarded as sudden, local intensification of the convection initiated by the formation of NENL.
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