Olfactory cues play a significant role in removing fungus from the body surface of Drosophila melanogaster

AUTHOR(S):
Yanagawa, Aya; Chabaud, Marie-Ange; Imai, Tomoya; Marion-Poll, Frederic

CITATION:
Yanagawa, Aya ...[et al]. Olfactory cues play a significant role in removing fungus from the body surface of Drosophila melanogaster. Journal of Invertebrate Pathology 2018, 151: 144-150

ISSUE DATE:
2018-01

URL:
http://hdl.handle.net/2433/237238

RIGHT:
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/; この論文は出版社版でありません、引用の際には出版社版をご確認ご利用ください。; This is not the published version. Please cite only the published version.
Olfactory cues play a significant role in removing fungus from the body surface of
Drosophila melanogaster

Aya Yanagawa¹, Marie-Ange Chabaud², Tomoya Imai¹, Frederic Marion Poll³, ⁴

¹ RISH, Kyoto University, Uji city, Japan 611-0011, Japan
² UMR Physiologie de l’Insecte : Signalisation et Communication, INRA Centre de Versailles, F-78026 Versailles Cedex, France
³ UMR Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
⁴ AgroParisTech, F-75005 Paris, France

Abstract

Many insects and Dipterans in particular are known to spend considerable time grooming, but whether these behaviors actually are able to remove pathogenic fungal conidia is less clear. In this study, we examined whether grooming serves to protect flies by reducing the risk of fungal infection in *Drosophila melanogaster*. First, we confirmed that fungi were removed by grooming. Entomopathogenic, opportunistic, and plant pathogenic fungi were applied on the body surface of the flies. To estimate grooming efficiency, the number of removal conidia through grooming was quantified and we successfully demonstrated that flies remove fungal conidia from their body surfaces via grooming behavior. Second, the roles of gustatory and olfactory signals in fungus removal were examined. The wildtype fly Canton-S, the taste deficiency mutant *poxn 70*, and the olfactory deficiency mutant *orc1* were used in the tests. Comparisons between Canton-S and *poxn 70* flies indicated that gustatory signals do not have a significant role in fungal removal via grooming behavior in *D. melanogaster*. In contrast, the efficiency of conidia removal in *orc1* flies was drastically decreased. Consequently, this study indicated that flies rely on mechanical stimulus for the induction of grooming and olfaction for more detailed removal.

Keywords

Drosophila melanogaster, grooming behavior, fungus, insect pathogen
1 Introduction

Dipterans spend a significant amount of time grooming (Dawkins and Dawkins, 1976). Grooming behaviors involve brushing the body and the wings with the legs and cleaning the legs and the antenna with the mouthparts. It is reported that grooming may help clean external chemosensory receptors (Böröczky et al., 2013) and contributes to removal of dust particles (Phillis et al., 1993). However, there are very limited data to support the hypothesis that grooming behavior plays a role in the resistance against microbial infection. Most dipterans live in highly humid habitats containing microbes (Rohlfs, 2008) and frequently perform spontaneous grooming (Szebenyi, 1969). It is reported that flies decrease spontaneous exploratory activity when they perceive the presence of other individuals on food resources (Kamyshev et al., 2002). Instead, flies increase individual behaviors, such as preening (when the legs are rubbed together), which are interpreted as signaling movements that maintain flies at a certain minimum distance apart from each other (Connolly, 1968; Kamyshev et al., 2002). Grooming systematically occurs after egg laying (Rieger et al., 2007; Yang et al., 2008). Considering that many microbes can eventually invade insects through their cuticles, self-grooming in Diptera may help to prevent infections from microorganisms living in their habitats.

In insects, hygiene behavior is realized as an integral part of the strategy to cope with pathogens (Vega and Kaya, 2011). If the purpose of grooming is directly linked to the need for cleaning the body from potential ectoparasites, then this behavior may be triggered by signals emanating from microorganisms. Several recent observations performed on social insects indicate that grooming is involved in the resistance against pathogen infection (Zhukovskaya et al., 2013). Spores of entomopathogenic fungi first adhere to the cuticle and then penetrate the surface of the insect by sending hyphae through the epidermis (Yanagawa et al., 2008). Mutual contacts like allogrooming in several species of termites make them less prone to infection by pathogens (Boucias et al., 1996; Shimizu and Yamaji, 2002; Traniello et al., 2002; Yanagawa and Shimizu, 2007). In honeybees, allogrooming is used to remove debris and parasitic mites (Peng et al., 1987; Bozic and Valentincic, 1995; Rath, 1999). It is also known that ants use grooming to protect themselves from ectoparasites (Tranter and Hughes, 2015; Westhus et al., 2014; Okuno et al., 2012). Drosophila performs self-grooming, although no reports demonstrated the effects of self-grooming on the removal of parasites in Drosophila by using bioassays. Self-grooming is often triggered by touch (Page and Matheson, 2004) or by noxious chemicals (Newland, 1998; Elwood, 2011) detected with nociceptive receptors, which respond to damage or by taste sensilla. The stimulated part of the body or appendage is moved away from the stimulus, and upon increasing stimulation, a
brushing movement is generated in either of the legs and directed to the site of
stimulation (Dürr and Matheson, 2003). Considering these reports, the central nervous
system has an important role in generating self-grooming behaviors (Yellman et al.,
1997).

We investigated whether self-grooming contributes to preventing infection from fungi
in fruit flies, D. melanogaster. First, the susceptibility of the wildtype D. melanogaster
strain “Canton-S” to three fungal species and isolates: The entomopathogen Beauveria
bassiana F1286, the opportunist Aspergillus niger ASN5131, and the plant pathogen
Fusarium oxysporum 544H had been tested. Then conidia removal from the Drosophila
body surface of all three fungal species of three D. melanogaster strains: The wildtype
“Canton-S”. The taste mutant strain “poxn 70”. The olfactory deficiency mutant strain
“orco1”. In this study, we confirmed that flies remove fungal conidia by comparing three
strains of fungi with different virulence levels. We then examined the roles of taste and
olfactory signals.

2 Materials and methods
2.1 Insects
Drosophila melanogaster were maintained on a standard cornmeal agar diet and at
20°C and 80% RH. The wildtype strain Canton-S was used for all experiments. The poxn
70 (Yanagawa et al., 2014) and orco1 strains (Bloomingston stock # 23129) were used in
the behavioral assays with Beauveria bassiana. In order to establish if these responses
were mediated by taste sensilla, we performed the same experiments on flies deprived
of their external taste chemoreceptors by means of a poxn 70 mutation, which deters
development of external chemoreceptors (Nottebohm et al., 1994). To investigate the
importance of olfactory perception on fungal removal, we used orco1 mutant flies. Or83b
is abolished in orco1 mutant flies. This protein is essential for Drosophila olfaction
(Lausson et al., 2004). Four-day-old flies were used in all experiments. All experiments
were conducted in a room without window and under normal room light. All rooms were
maintained at 23-26 °C. Flies were placed in the experiment room for about one hour
before use to get use to the new environment so that the light in the test room was not
affecting the behavior of the insect.

2.2 Fungi and preparation of conidial suspension
Three different fungi were used in our experiments: Beauveria bassiana, Aspergillus
niger, and Fusarium oxysporum. B. bassiana is an entomopathogenic fungus, which is
known to infect *Drosophila* (Clarkson and Charnley, 1996; Lemaitre et al., 1997). *A. niger* is an opportunistic microbe (Klainer and Beisel, 1969) and *F. oxysporum* is a plant pathogen (Snyder and Hansen, 1940).

Laboratory maintained isolates were used for the experiments. *B. bassiana* F1286 was maintained on L-broth agar (1% polypeptone, 0.3% yeast extract, 2.0% sucrose, 0.5% NaCl, and 2.0% agar) at 25°C. *A. niger* ASN5131 and *F. oxysporum* 544H were maintained on potato dextrose agar (PDA) (0.4% potato extract, 2.0% glucose, and 1.5% agar) at 25°C. Conidia were harvested from 10-day-old to 15-day-old cultures using a brush and were suspended in various solutions as follows. The conidial suspensions (A series) of all fungal strains were prepared in a 0.025% aqueous solution of Tween 20 to evaluate virulence. These solutions were diluted 10¹, 10², 10³, and 10⁴ times. On each PDA petri dish, 0.1 ml of the diluted suspension was pipetted and then spread using a sterilized glass spreader. The Petri dishes were incubated at 25°C for 3 days. The numbers of colony-forming units per milliliter (CFU/ml) were determined on the basis of the numbers of colonies on these PDA plates. To detect the conidia on the cuticles, the conidia were surface-labeled with 0.01% fluorescein isothiocyanate solution (FITC, Sigma Chemical) according to the protocols outlined by Hung and Boucias (1992). The FITC-labeled conidia in a 0.025% aqueous solution of Tween 20 were counted using a Thoma hemocytometer (Erma Inc, Japan) and adjusted to a concentration of 1.0 × 10⁷ conidia/ml (B series). Over 95% of viability was confirmed on both series of conidia suspension.

2.3 Fly susceptibility to fungal infection

We first tested the susceptibility of the flies to each fungal strain. For inoculation, Canton-S flies were collected and placed on ice for 3–5 minutes to induce light anesthesia. The flies were then placed in microcentrifuge tubes containing the conidial suspensions (A series) (*A. niger*, 1.63 × 10⁷ CFUs/ml; *F. oxysporum*, 1.30 × 10⁷ CFUs/ml; and *B. bassiana*, 6.25 × 10⁶ CFUs/ml). The flies were submerged in conidial suspensions with gentle swirling for 5 seconds and allowed to dry on a Whatman No. 1 filter paper. When they recovered from anesthesia and started to move, a group of 10 flies (5 male and 5 female) were transferred on a filter paper disc to 90 × 15 mm Petri dishes and fly medium in a cup (10 × 5 mm). Flies treated only with a 0.025% aqueous solution of Tween 20 were reared as controls. They were incubated at 25°C and 60% RH in the dark room. Mortality and median lethal dose (LD₅₀) values were calculated seven days after inoculation.

2.4 Removal of conidia from the fly cuticle
Flies were inoculated with the FITC-labeled conidial suspensions (B series), as described above. After treatment with FITC-labeled conidia, the flies were incubated at 25°C. At intervals of 0, 3, 24, 48, and 72 hours, 10 flies were removed and stored at -20°C. Flies were carefully mounted in a drop of Vectashield (Vector Laboratories, USA) to stabilize the fluorescence and were examined using an epifluorescence microscope (Axioplan, Carl Zeiss, Germany) at 200× magnification through a common UV filtering cubes FT510. Photos were taken with a charge-coupled device camera (DP74, Olympus, Japan). Four defined sites (head, thorax, wing, and abdomen) were examined on each fly for attachment of conidia, which was calculated in relation to the whole body. To compare the attachment and persistence of the three different fungi (A. niger, F. oxysporum, and B. bassiana), the number of conidia on the insect body surface was counted. We then examined the abilities of the three different Drosophila strains (wild-type fly Canton-S, taste deficient mutant p oxn70, and olfactory deficient mutant orco1) to remove conidia. The B. bassiana suspension (B series) was used to compare fungus removal ability in flies, as it had the best initial attachment. Removal efficiency for the initial attachment was compared using the removal index (RI) (number of conidia attached to the insect body surface at each time interval)/(number of conidia initially attached to the insect body surface).

2.5 Taste signals and the induction of grooming

Grooming induction was assayed in decapitated four-day-old Canton-S flies using the method described by Yanagawa et al. (2014). Olfaction is perceived by antennae and maxillary palps, and gustation is perceived by the proboscis, legs, wings, and genitalia (Vosshall and Stocker, 2007). Since decapitated flies were employed in this test, the influence of olfaction was ruled out and only taste signals were examined. Decapitated flies are capable of self-grooming movements either spontaneously or following specific stimulation, such as touching. These movements mostly involve the meta-thoracic legs, which are raised and moved independently in a succession of strokes. The legs brush the wings, abdomen, and dorsum, or are extended under the abdomen and touch each other in a series of reciprocal sliding movements. Flies were placed on ice for 3–5 minutes to induce light anesthesia. They were then placed under a stereoscope. Ten flies were then decapitated using a single cut at the neck made by micro-scissors. The decapitated flies then awoke over the next 2–3 minutes. They were placed in an upright position and allowed to recover. In order to stimulate the flies, the wings, forelegs, or hindlegs were gently touched using a sharpened toothpick previously soaked in a test solution. The test solution consisted of a series conidial suspensions A. niger ASN5131, F. oxysporum 544H.
and *B. bassiana* F1286 (A series). They were counted using a Thoma hemocytometer and adjusted to a concentration of 1.0×10^7 conidia/ml. These solutions were diluted 10^1, 10^2, 10^3, and 10^4 folds to examine the concentration-dependence of the reaction. The bioassays were performed at room temperature on standing flies placed on a piece of paper. The room temperature kept at about 20°C. Grooming behavior after touching by the toothpick was observed and quantified by a scale. A score of 0 indicates no behavioral induction, a score of 1 indicates 1-2 grooming behaviors (or less than 10 seconds), a score of 2 indicates 3-6 grooming behaviors (or less than 20 seconds), and a score of 3 indicates a strong grooming induction (more than 20 seconds). Twenty female and 20 male flies were tested for each fungus.

2.6 Olfactory signals and fungal removal

First, grooming performance was tested in *orco1* flies, since they failed to remove fungal conidia from their body surface. To confirm this, we treated flies with chalk powder and examined whether they could clean the dust. Visual comparisons were made with Canton-S flies 6 hours after treatment.

We then determined whether fungal odor enhances or induces the hygiene behavior in both Canton-S flies and *orco1* flies. Since *B. bassiana* is the representative entomopathogenic fungus to *D. melanogaster* and its conidia attachment and removal efficiency are the largest in three tested fungi as well, we have used *B. bassiana* for this test. The GC profile of the fungal odor is also available only on *B. bassiana* from previous study (Yanagawa et al., 2011). Three to five intact *Drosophila* were placed in a 20-ml vial and exposed to control air for at least 10 minutes. Stimulus air containing *B. bassiana* odor was then provided for 3 minutes. Spontaneous grooming was observed for 3 minutes prior to the onset of the stimulus. The time intervals that a sample fly devoted to grooming behavior were added to obtain a numeral conversion for grooming.

Airflow was controlled using a three-way cock. Two sides of the cock were connected to a bottle (30 ml) that contained an odor source. One side of the cock was connected to air from 1 ml of 1.0×10^7/ml *B. bassiana* conidial suspension, and the other side was connected to 1 ml of 0.025% Tween 20 solution as a control. Stimulus and control air both flowed into the three-way cock and the air offered to the flies was regulated by the cock. Fresh air was pumped into the system using a diaphragm pump (AP-115 Iwaki air pump; Iwaki Co., Ltd., Japan) and cleaned through serially connected bottles containing silica gel, molecular sieves 3A and 5A, and active carbon. The cleaned airflow was divided into two channels using a Y-shaped connector. Each air channel was connected to a bottle (30
ml) that contained one of the odors being tested. This bottle was then connected to one side of the three-way cock. The flow in each channel was regulated to 400 ml/minute using an inline flowmeter. Twenty flies were examined per experiment. These experiments were carried out in the laboratory, and test arena was maintained at 20°C and about 69% RH under room light conditions.

2.7 Fungal avoidance

Since avoidance is another major hygiene behavior aimed at preventing infection, we determined whether chemical signals induce any reactions in different behavioral paradigms involving the same fungi. To assess avoidance due to chemical signals, the visitation test, as described by Marella et al. (2006), was used, with modifications (Supplementary Fig. S1). Canton-S flies were starved for 22 hours using a wet filter paper disc and were transferred to cylindrical containers (height, 7 cm; diameter, 3 cm, polystyrene). The tube bottom was separated into two parts and each part was filled with 1 ml of 1% agarose containing 100 mM sucrose. The surface of one side was treated with 20 μl of the tested solutions (1.0 × 10⁷ conidia/ml of A. niger, F. oxysporum, and B. bassiana), and the other side was treated with 20 μl of a 0.025% aqueous solution of Tween 20. The solutions were spread onto the filter paper using a spreader. In the control set, both sides were treated with a 0.025% aqueous solution of Tween 20. For the negative control set, one side was treated with 20 μl of 10⁻¹ M quinine, and the other side was treated with 20 μl of 0.025% aqueous solution of Tween 20. Approximately 40 flies were placed in a bottle and allowed to explore the agarose for 30 minutes. The visitation rate was estimated by providing flies access to agar on the bottom of a test tube. One-half of the agar was treated with a chemical and the other was not. By sampling the number of flies in each area at regular intervals (every 30 seconds over 30 minutes), we can compute a mean preference index (PI = (n1-n2)/(n1+n2)) and monitor the number of flies visiting both substrates (n1+n2). The number of flies on each side was recorded every 30 seconds using digital photographs, which were then manually counted. Data were obtained from 10 replicates for each substance.

2.8 Statistical analysis

We used multiple logistic regression analysis to examine conidia removal from the insect surface and concentration-dependent increases in grooming behavior in decapitated flies with respect to sex, chemicals, and fly strains. Dunnett’s tests were used to compare RI values used to determine conidia removal efficiency from the initial attachment, and PI values used to compare preferences in the visiting test. To
determine the odor-induced increase in grooming, Kruskal-Wallis tests were used to compare the time that flies dedicate to each behavior. JMP 10.0 software (SAS) was used for all analyses.

3 Results

3.1 Fly susceptibility

Mortality at one week rearing was as follows. B. bassiana: 67%, A. niger: 25%, F. oxysporum: 0%, and controls: 0%. The LD$_{50}$ values of the fungi in D. melanogaster were B. bassiana F1286: $\geq 4.16 \times 10^6$ CFU/ml, A. niger ASN5131: $>1.63 \times 10^7$ CFU/ml, and F. oxysporum 544H: $>1.295 \times 10^7$ CFU/ml. Drosophila were more susceptible to B. bassiana than A. niger and F. oxysporum. The LD$_{50}$ values are provided in Supplementary Table S1.

3.2 Attachment and removal of fungal conidia on the Drosophila cuticle

The binding of the FITC-labeled conidia to the defined sites on the surfaces of the flies was quantified using an epifluorescence microscope. Attachment and persistence of FITC-labeled conidia on the fly cuticle are illustrated in Fig. 1 according to fungal strain, time, and sites of attachment. There was a significant reduction in the number of attached conidia on the insect surface (B. bassiana on Canton·S flies: $p < 0.01$, F = 60.32; A. niger on Canton·S flies: $p < 0.01$, F = 18.10; and F. oxysporum on Canton·S flies: $p < 0.01$, F = 44.22; logistic regression). There was no sex difference in conidium removal efficiency ($p > 0.1$ in all strains on the entire body surface). The number of attached conidia at the initial stage clearly reflected fungal virulence. B. bassiana conidia has higher attachment than the other strains (Figs. 1 and 2). Both Canton·S flies and poxn 70 flies removed the conidia to a similar extent (B. bassiana on poxn flies: $p < 0.01$, F = 61.74) (Fig. 3). In contrast, orco1 flies failed to remove the conidia (B. bassiana on orco1 flies: $p > 0.01$, F = 61.74) (Fig. 3). Sex differences were observed only in Canton·S flies at the wing site (Supplementary Fig. S2). More conidia stayed on the wings in female flies. This indicates that female flies rely more on both gustatory and olfactory signals to remove fungi from the wings when compared to the male flies (Student T test: $p < 0.05$ at all time intervals) (Supplementary Fig. S2). This difference was not observed in poxn 70 or orco1 flies (Student T test: $p > 0.1$ at all time intervals).

3.3 Taste signals in the induction of grooming

We scored grooming responses following contact with the tip of a small wood stick dipped into a solution of water mixed with different solutions. The stimulus was brought...
The movements except from;

ther was no

...suspensions induced grooming in the flies (B. bassiana F1286: foreleg, concentration, χ² = 0.399, p = 0.983; sex, χ² = 0.540, p = 0.970: hind leg, concentration, χ² = 4.658, p = 0.324; sex, χ² = 7.404, p = 0.134; wing, concentration, χ² = 7.886, p = 0.096; sex, χ² = 3.529, p = 0.474; A. niger ASN5131: foreleg, concentration, χ² = 1.936, p = 0.748; sex, χ² = 0.235, p = 0.994; hind leg, concentration, χ² = 1.819, p = 0.769; sex, χ² = 2.109, p = 0.716; wing, concentration, χ² = 0.627, p = 0.959; sex, χ² = 2.144, p = 0.709; F. oxysporum 544H: foreleg, concentration, χ² = 6.566, p = 0.161; sex, χ² = 7.687, p = 0.104; hind leg, concentration, χ² = 2.335, p = 0.674; sex, χ² = 2.464, p = 0.651; wing, concentration, χ² = 4.045, p = 0.400; sex χ² = 6.876, p = 0.143; logistic regression).

3.4 Olfactory signals in fungal removal

Flies successfully cleaned the chalk dust from their bodies. There was no visible difference in the cleaning of the dust between Canton-S flies and orco1 flies. This indicates that olfaction does not influence dust removal.

Grooming induced by fungal odor was examined using the odor exposure test. Behaviors of Drosophila during the air exposure experiments are illustrated in Fig. 4. In addition to grooming, two new conditions were observed: 1) 'stay' which means no moving (standing still) and 2) 'activity', which encompasses all other movements except from grooming. Mostly, flies walked or ran in 'activity' status. Since there was significant difference in grooming behavior between females and males (grooming, χ² = 10.641, p = 0.001; stay, χ² = 5.367, p = 0.023; activity, χ² = 5.367, p = 0.023: Kruskal-Wallis test), behaviors were analyzed by females and males independently. We observed more running behavior in female Canton-S flies (χ² = 8.526, p = 0.004, Kruskal-Wallis test), however, no other significant behavior effect was observed during exposure to the harmful fungus air (Canton-S flies_female: grooming, χ² = 0.047, p = 0.829; stay, χ² = 0.6812, p = 0.409; activity, χ² = 1.294, p = 0.255; Canton-S flies_male: grooming, χ² = 0.019, p = 0.892; stay, χ² = 1.657, p = 0.198; activity, χ² = 8.526, p = 0.004: orco1 flies_female: grooming, χ² = 0.001, p = 0.978; stay, χ² = 0.106, p = 0.745; activity, χ² = 1.058, p = 0.304; orco1 flies_male: grooming, χ² = 0.105, p = 0.745; stay, χ² = 0.009, p = 0.925; activity, χ² = 0.000, p = 1.000: Kruskal-Wallis test).

3.5 Fungal avoidance

No sex differences were found in the PI indexes (p = 0.45, analysis of variance, Fig. 5). The PI measured during the control treatment was 0.04 ± 0.04. The flies visited both
sides of the non-treated agar equally and exhibited a strong aversion to quinine in the negative control test (PI = -0.71 ± 0.06, p < 0.001, Dunnett’s test). The flies did not typical preference or avoidance behaviors in response to any of the fungal suspensions (B. bassiana: PI = 0.10 ± 0.07, p = 0.14; A. niger: PI = -0.11 ± 0.04, p = 0.92; and F. oxysporum: PI = -0.06 ± 0.04, p = 1 in Canton-S flies; B. bassiana: PI = 0.01 ± 0.06, p = 1 in poxn flies; Dunnett’s test).

4 Discussion

Grooming behavior seems to have diverse roles. Indeed, many factors involved in this behavior are still unknown. In this study, we examined the roles of gustatory and olfactory signals on fungus removal. First, we successfully demonstrated that flies remove fungal conidia from their body surfaces via grooming behavior. Comparisons between wildtype Canton-S flies and the chemical mutants poxn 70 and orco1 indicated that gustatory signals do not have a significant role in fungal removal via grooming behavior in D. melanogaster, although olfactory signals are involved in this behavior. It seems that flies rely on mechanical stimulation for the induction of grooming and on olfaction for more detailed removal.

D. melanogaster remove microbes, such as ectoparasites, from their surfaces via grooming behavior (Fig. 1). The flies removed conidia from all fungal strains. Differences in the initial attachment numbers for each strain, which reflect the virulence levels of the different fungi, support our previous findings that attachment ability is important in estimating fungal virulence (Yanagawa et al., 2008). FITC-labelled fungal conidia enabled us to visualize fungal ectoparasites and monitor their behavior on the host surface. The design of the bioassay was another key for the quantitative observation of conidial removal. Spraying has usually been used to apply fungi onto flying insects. However, this method requires large amounts of conidial solution, which are difficult to produce at the laboratory level (Ingris et al., 2012). Moreover, the Drosophila rearing conditions used (vial with a medium-covered bottom) (Greenspan, 2004) prevented us from using other methods, such as immersion or droplet application, which are usually used for beetles. These methods created humidity levels that are too high for flies to survive. Indirect applications, such as embrocation using a soft brush, which is usually used for worms, are also problematic, as they may lead to damage to the wings of the flies. We avoided all of the above problems by using a flat arena (Supplementary Fig. S3). After the flies were immersed in the conidial suspension, they were able to dry themselves on the filter paper and came into contact with wet food after they were fully dried.
Grooming seems to be triggered by mechanoreceptors (Page and Matheson, 2004) or taste sensilla (Newland, 1998) in most other insects. However, many recent studies have reported that odors from bacteria and yeast modulate fly behavior. These odors are detected by *D. melanogaster* using specialized olfactory receptor proteins (Becher et al., 2012; Stensmyr et al., 2012; Kapsetaki et al., 2014; Dweck et al., 2015; Falchi et al., 2015). Comparisons of conidia removal in Canton-S flies and orco1 flies indicate that olfactory signals play a significant role in the removal of *B. bassiana* conidia from the *Drosophila* body surface. The fact that orco1 mutants were able to clear up chalk powder indicates that there may be a unique role for olfactory cues in fungus removal. Experiments using poxn flies indicate that taste signals are not important in removing fungal conidia from the body surfaces of *D. melanogaster*, as poxn70 flies display almost the same conidia removal efficiency as Canton-S flies. Moreover, there was no grooming induction by fungus-related taste stimuli. We have demonstrated that gustatory stimuli from bacteria are involved in grooming reflexes (Yanagawa et al., 2014). The results of the grooming induction test in this study therefore indicate that *Drosophila* use microbial signals from *E. coli* and fungi differently in the induction of grooming behavior. This is because gustatory signals from suspensions of *E. coli* induce grooming while the same is not true of suspensions of fungi. Phillis et al. (1993) have reported detailed grooming induced by mechanical stimuli in *D. melanogaster*. Conidia were attached everywhere on the surface of the flies, and some *B. bassiana* conidia were attached directly to sensory hairs. This observation supports the role of mechanoreceptors in fungal grooming. In addition, considering the success of the orco flies in removing chalk powder, it seems that removal of foreign objects via grooming mainly relies on mechanical stimulation. Conidial attachment most likely leads to mechanical stimulation, which then induces the removal of all foreign organisms on the insect’s surface. In Canton-S flies, however, the more highly virulent strain, *B. bassiana*, was more carefully removed, as the conidia reduction was significant at all-time intervals. The higher level of initial attachment was persistent (Fig. 1). Although the numbers of conidia decrease substantially over time, a marked reduction was observed in the numbers of FITC-labeled conidia associated with virulence. Notably, significant differences were observed in conidium removal from the wings between the two sexes in Canton-S flies, but not in poxn70 or orco1 flies. This supports the idea that both taste and olfactory signals are used for fungal cleaning in intact flies, especially in female flies.

Flies usually do not move in the direction of harmful microbial odors (Stensmyr et al., 2012). Although we do not yet know whether flies possess specialized olfactory receptor
proteins to the volatile compounds of *B. bassiana*, in our previous study, we detected 1-octen-3-ol in odors from *B. bassiana* (Yanagawa et al., 2011). This compound is a well-known aversive odorant to flies (Silbering et al., 2011). This may explain the higher levels of running/walking activity in female Canton-S flies after exposure to the musty odor. It is reported that termites generally avoid odors from entomopathogenic fungi, but move toward these odors to remove it when they sense the presence of pathogens nearby (Yanagawa et al., 2015). The odor from the pathogenic mite fungus *Neozygites floridana* is known to be an attractive signal for males upon their mating and facilitates the transmission of the fungus to healthy individuals (Trandem et al., 2015). This suggests that fungal signals have differing significance to host insects when they are mixed with other odors based on the insect’s condition/situation. It is possible that fungi have also developed the ability of using insect perception during their evolution and produce or potentially modify their odors. Fungal odors are known to attract *Drosophila* larvae when the fungal colony is still young (Rohlf, 2005). Since they have more interactions with general contaminating fungi, the insects may rely on fungal odors to find food. Nevertheless, the manner by which insects perceive microbes is still ambiguous. Insect behavioral reactions to microbial signals may be regulated by the delicate balance between neural regulatory pathways that perceive odors as beneficial signals denoting a food source, oviposition site, or mating individual, and those perceiving odors as harmful signals denoting microbial infection.

Insects often groom themselves spontaneously. This grooming behavior is increased following the introduction of environmental changes, such as those caused by changes in odor, taste, air, light, or physical contact (Zhukovskaya et al., 2013). The factors involved in this behavior are varied. It was interesting that *D. melanogaster* were found to possess different neural cascades used to trigger grooming by different types of microbe. More research on how insects use signals from microbes will lead to a broader understanding of ecological interactions in nature.

Acknowledgement

This work was supported by the Future Development Funding Program of Kyoto University Research Coordination Alliance and the mission research program of
Research Institute for Sustainable Humanosphere in Kyoto University (grant number: 2016-5-1-5).

References

Falchi G, Marche MG, Mura ME, Ruiu L (2015) Hydrophobins from aerial conidia of *Beauveria bassiana* interfere with *Ceratitis capitata* oviposition behavior, Biological Control 81, 37-43.

Figure legends

Fig. 1. Attachment and persistence of FITC-labeled conidia on the cuticle of the fruit fly D. melanogaster wildtype strain Canton-S.

Verticals bars represent standard errors. The results of the Tukey-Kramer honest significant difference test are indicated by letters (p < 0.05).

Fig. 2. Initial attachment of FITC-labeled conidia from B. bassiana, A. niger, and F. oxysporum on the wings of Canton-S flies
Scale bars indicate 300 μm.

Fig. 3. Attachment and persistence of FITC-labeled conidia on the cuticle of the fruit fly *D. melanogaster*

Black square shapes indicate Canton-S flies treated with *B. bassiana*, white triangles indicate *poxn 70* flies treated with *B. bassiana*, and white circle indicate *orco1* flies treated with *B. bassiana*. Removal efficiency is assessed using the removal index (****: p < 0.01, **: p < 0.05, *: p < 0.1, Dunnett’s test). Verticals bars represent standard errors.

Fig. 4. Grooming behavior of *D. melanogaster* strain Canton-S and *orco1* induced by olfactory chemicals from the fungus *B. bassiana*. Behavior increase/decrease following fungal odor exposure. The grooming behavior was estimated using the time devoted to grooming during a 3-minute observation period. *n* = 40 (20 female and 20 male flies). (****: p < 0.01, **: p < 0.05, *: p < 0.1, Kruskal-Wallis test).

Fig. 5. Fungal avoidance by the fruit fly *D. melanogaster* wild type strain Canton-S.

Visiting preference/aversive responses were examined using the preference index (PI) (****: p < 0.01, **: p < 0.05, *: p < 0.1, Dunnett’s test). If PI is low (left), that indicates avoidance and if high (right), that indicates attraction. Horizontal bars represent standard errors.

Supplementary Fig. S1. Visitation test model arena.

About 40 flies were introduced to the polystyrene container from the hole at top. The taste preference index (PI) was calculated as (number flies on test substance side – number flies on water side)/(total number of flies). Data were obtained from 10 replicates for each substance.

Supplementary Fig. S2. Attachment and persistence of FITC-labeled conidia from *B. bassiana* on wings of Canton-S, *poxn70*, and *orco1* flies

The conidia removal efficiency was described by the removal index. Verticals bars represent standard errors. The results of Dunnett’s tests are indicated by asterisks (**: p < 0.05, **: p < 0.01). *n* = 20 from each sex.

Supplementary Fig. S3. Design for the rearing of conidia-treated flies used in the bioassays
(a) Assay kits before use. (b) Assays using conidia-treated flies.
Fig. 1. Attachment and persistence of FITC-labeled conidia on the cuticle of the fruit fly *D. melanogaster* wildtype strain Canton-S. Vertical bars represent standard errors. The results of the Tukey-Kramer honest significant difference test are indicated by letters (*p* < 0.05)
Fig. 2. Initial attachment of FITC-labeled conidia from *B. bassiana*, *A. niger*, and *F. oxysporum* on the wings of Canton-S flies
Scale bars indicate 300 μm.
Fig. 3. Attachment and persistence of FITC-labeled conidia on the cuticle of the fruit fly *D. melanogaster*

Black square shapes indicate Canton-S flies treated with *B. bassiana*, white triangles indicate *poxn 70* flies treated with *B. bassiana*, and white circle indicate *orco1* flies treated with *B. bassiana*. Removal efficiency is assessed using the removal index (***: p < 0.01, **: p < 0.05, *: p < 0.1, Dunnett’s test). Verticals bars represent standard errors.
Fig. 4. Grooming behavior of *D. melanogaster* strain Canton-S and orco1 induced by olfactory chemicals from the fungus *B. bassiana*. Behavior increase/decrease following fungal odor exposure. The grooming behavior was estimated using the time devoted to grooming during a 3-minute observation period. n = 40 (20 female and 20 male flies). (***: p < 0.01, **: p < 0.05, *: p < 0.1, Kruskal-Wallis test).
Fig. 5. Fungal avoidance by the fruit fly *D. melanogaster* wild type strain Canton-S. Visiting preference/aversive responses were examined using the preference index (PI) (***: p < 0.01, **: p < 0.05, *: p < 0.1, Dunnett’s test). If PI is low (left), that indicates avoidance and if high (right), that indicates attraction. Horizontal bars represent standard errors.
Supplemental table 1 LD50 of *D. melanogaster* to each fungal strain after 1 week rearing

<table>
<thead>
<tr>
<th>Fungal Strain</th>
<th>Laboratory Maintain</th>
<th>LD50 (CFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Bassiana sensu stricto
Origin: Bombyx mori (Japan)</td>
<td>Laboratory maintain strain F1286
Last retrieve with Drosophila melanogaster in 2016</td>
<td></td>
</tr>
<tr>
<td>Female + Male</td>
<td>≥ 4.163 x 10⁶</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>= 6.250 x 10⁶</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>≥ 2.901 x 10⁶</td>
<td></td>
</tr>
<tr>
<td>A. niger
Origin: NBRC#105649 (U.S.A)</td>
<td>Laboratory maintain strain 5131
Since 1990</td>
<td></td>
</tr>
<tr>
<td>Female + Male</td>
<td>> 1.633 x 10⁷</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>> 1.633 x 10⁷</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>> 1.633 x 10⁷</td>
<td></td>
</tr>
<tr>
<td>F. oxysporum
Origin: Palmier datier (France)</td>
<td>Laboratory maintained strain 544H
Since 1988</td>
<td></td>
</tr>
<tr>
<td>Female + Male</td>
<td>> 1.295 x 10⁷</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>> 1.295 x 10⁷</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>> 1.295 x 10⁷</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Fig. S1. Visitation test model arena.
About 40 flies were introduce to the polystyrene container from the hole at top. The taste preference index (PI) was calculated as (number flies on test substance side – number flies on water side)/(total number of flies). Data were obtained from 10 replicates for each substance.
Supplementary Fig. S2. Attachment and persistence of FITC-labeled conidia from *B. bassiana* on wings of Canton-S, *poxn70*, and *orco1* flies.

The conidia removal efficiency was described by the removal index. Verticals bars represent standard errors. The results of Dunnett’s tests are indicated by asterisks (*: p < 0.05, **: p < 0.01). N = 20 from each sex.
Fig. S3. Supplementary Fig. S3. Design for the rearing of conidia-treated flies used in the bioassays
Assay kits before use. (b) Assays using conidia-treated flies.