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Abstract 

The viscoelastic deformation of an elastic-viscoelastic composite system is significantly 

different from that of a simple viscoelastic medium. Here, we show that complicated transient 

deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even 

in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a 

viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the 

system is controlled by the intrinsic relaxation time constant of the asthenosphere, the 

apparent decay time constant at each observation point is significantly different from place to 

place and generally much longer than the intrinsic relaxation time constant of the 

asthenosphere. It is also not rare that the sense of displacement rate is reversed during the 

viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions 

from observed deformation data. Such complicated transient behavior can be explained 

mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic 

layered half-space, the viscoelastic solution is expressed as superposition of three decaying 

components with different relaxation time constants that depend on wavelength. 

 

Key words: Viscoelastic relaxation, Maxwell time, megathrust earthquake, postseismic 

deformation 
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1. Introduction 

 

   Since the start of 21st century, megathrust earthquakes in plate subduction zones, such as 

Sumatra, Maule (Chile), and Tohoku (Japan), with the magnitude of around 9 have occurred 

one after another. For postseismic transient deformation following such large earthquakes, we 

cannot neglect the effect of viscoelastic behavior of the Earth (e.g., Nur and Mavko 1974; 

Fukahata et al. 2004; Johnson and Segall 2004; Wang et al. 2012; Watanabe et al. 2014; Noda 

et al. 2017). As is well known, when a strain is suddenly given for a homogeneous Maxwell 

body, the stress of it decays exponentially due to viscoelastic relaxation. Because of that, we 

often see that observed geodetic data after a large earthquake were simply fitted by an 

exponential function (e.g., Paul et al. 2007; de Linage et al. 2009; Reddy et al. 2010; Tanaka 

and Heki 2014). 

   However, the lithosphere is basically elastic for a timescale of earthquake cycles, even 

though the asthenosphere behaves viscoelastically after a large earthquake (e.g., Matsu'ura 

and Iwasaki 1983; Thatcher and Rundle 1984; Watts et al. 2013). In other words, the 

uppermost part of the solid Earth is not a homogeneous Maxwell body, but a composite 

system of the elastic lithosphere and the viscoelastic asthenosphere. For such a composite 

system, the viscoelastic stress relaxation does not follow a simple exponential function, but 

shows much more complicated behavior (e.g., Rundle 1978; Matsu'ura et al. 1981). If we do 

not understand this point well, we may draw a false conclusion from observed deformation 

data. In this study, we show that complicated viscoelastic relaxation can occur even in a very 

simple situation. The complicated viscoelastic behavior results in clear discrepancy between 

the apparent and intrinsic relaxation time constants: the former is obtained from fitting to 

observed data, while the latter is the time constant of the asthenosphere itself. We also give 

mathematical explanation for such characteristics. 

 

 

2. Setting of Numerical Simulation 
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   We compute crustal deformation due to viscoelastic stress relaxation in one of the 

simplest situations: a layered half-space under gravity, consisting of an elastic surface layer 

(lithosphere) and a viscoelastic substratum (asthenosphere). The asthenosphere is assumed to 

be a Maxwell fluid. Recently, we often see results of numerical simulation for a more realistic 

structure and/or rheology model (e.g., Sun et al. 2014; Ichimura et al. 2016; Lambert and 

Barbot 2016), but it is not easy to understand the characteristics of viscoelastic behavior in 

such complicated computations, which often shows unintuitive deformation. This study aims 

to contribute to having better insight into the deformation of an elastic-viscoelastic composite 

system. 

   The values of the structural parameters used in this study are summarized in Table 1. The 

viscosity of the asthenosphere is assumed to be 1.0 × 1019  Pa s. Then, the Maxwell 

relaxation time τ of the asthenosphere, defined as the ratio of viscosity to rigidity in the 

asthenosphere, is about 4.6 years for realistic values of seismic velocities and density (Table. 

1). This is the nominal (intrinsic) value of the relaxation time of the asthenosphere.  

   The plate interface, on which a megathrust earthquake occurs, is represented by a curved 

fault plane that divides the elastic-viscoelastic half-space into two parts, continental and 

oceanic blocks, and that extends infinitely along the strike of an island arc. In other words, 

computations are carried out as a two-dimensional problem, for simplicity. In fact, even a 

megathrust earthquake has a finite fault length along the strike. So, it should be noted that 

horizontal transient displacement at far distance from the plate interface, computed in the 

following section, is not a good approximation of a real system.  

   We take the x-axis from the trench (x = 0) to the direction of the island arc and the z-axis 

downward. In order to represent a megathrust earthquake, we give spatially uniform 

displacement discontinuity (fault slip) of 5 m along the plate interface within the lithosphere 

at t = 0. When the plate convergence rate is 50 mm/yr, this is equivalent to the amount of slip 

deficit for 100 years. Because the displacement response (Green's function) of a layered 

half-space due to a unit step slip has already been obtained analytically (Fukahata and 

Matsu'ura 2005, 2006), we can easily compute coseismic displacement and subsequent 

viscoelastic transient motion caused by the megathrust earthquake (see Appendix). The 
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reference point to measure the horizontal displacement is taken at x = 500 km (nearly stable 

point on the hanging wall) throughout this study. 

 

 

3. Results 

 

3.1 Viscoelastic displacements following a megathrust earthquake   

   In Fig. 1, we show the coseismic and postseismic displacements caused by the megathrust 

earthquake and the subsequent viscoelastic stress relaxation in the asthenosphere. Figure 1 

shows that viscoelastic stress relaxation proceeds for a few hundred years, which is much 

longer than the nominal relaxation time, τ = 4.6 years (Sato and Matsu'ura 1988; Fukahata 

and Matsu'ura 2006). In the computation, the viscosity scales the rate of viscoelastic 

relaxation of this system. This means that when the viscosity of the asthenosphere becomes 

half (5.0 × 1018), then the time needed for viscoelastic relaxation becomes half (e.g., 5 yr 

becomes 2.5 yr). In Fig. 1 we can also see that simple block-like motion is realized after the 

completion of viscoelastic stress relaxation in the asthenosphere (Fukahata and Matsu'ura 

2016); there is almost no motion in the hanging wall, while the footwall approaches from a 

distance to the hanging wall and descends along the plate interface.  

   In Fig. 2, we show the profiles of horizontal (a) and vertical (b) surface displacements due 

to viscoelastic stress relaxation in the asthenosphere. These profiles show the cumulative 

postseismic displacements at different times, and do not include the coseismic displacement. 

The profile at t = 500 yr is nearly identical to that at t = ∞. As can be seen from Fig. 2, the 

cumulative horizontal displacement almost cancels out the coseismic displacement (broken 

line) on the hanging wall side. Here, the sign of coseismic displacement is reversed for 

comparison. In contrast, on the footwall side, the sum of the coseismic displacement and the 

cumulative postseismic displacement almost amounts to the plate convergence. This is 

consistent with the simple block-like motion observed in the bottom diagram of Fig. 1. The 

postseismic vertical displacement also proceeds so as to cancel the coseismic displacement, 

but the cumulative subsidence around the trench and uplift in the island arc (around x = 120 
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km) at t = 500 yr clearly exceed the coseismic displacement (broken line). These residual 

displacements accumulate for a long time that includes many earthquake cycles, and 

contribute to form characteristic topography and gravity anomalies of island arc-trench 

systems (Matsu'ura and Sato 1989; Hashimoto et al. 2004; Fukahata and Matsu'ura 2016).  

   Figure 2 also shows that postseismic displacements caused by viscoelastic stress 

relaxation in the asthenosphere do not proceed monotonously in time. For example, the 

direction of horizontal displacement changes from the ocean-ward (negative horizontal 

displacement) to the inland-ward (positive horizontal displacement) at a distance from the 

trench, and the uplift peak moves inland-ward with time. In order to see such complicated 

transient behavior in detail, we investigate displacement-rate profiles due to viscoelastic stress 

relaxation in the next section. 

 

3.2 Spatial and temporal changes of displacement rate 

   Figure 3 shows horizontal (a) and vertical (b) surface displacement-rate profiles after the 

megathrust earthquake up to t = 50 yr. The deformation is solely caused by the viscoelastic 

stress relaxation in the asthenosphere. Therefore, after a long time, the displacement rate 

profile converges to zero. As shown in Fig. 3(a), the inland region (x > 100 km) moves to the 

trench at first, but the direction of motion is reversed later. The region that moves inland-ward 

gradually expands with time. We may feel strange for such change in the direction of motion, 

but it is necessary to realize the block-like motion after the completion of viscoelastic 

relaxation. 

   As for the vertical displacement (Fig. 3b), similar reversal of motion occurs in the inland 

region (x > 150 km), where subsidence motion changes to uplift. We can also notice that the 

subsidence with its peak around x = 60 km is steadily decelerated, while the uplift with its 

peak around x = 120 km is slightly accelerated at first and rapidly decelerated later. We can 

observe an even more complicated phenomenon near the trench (inset of Fig. 3b), where 

subsidence occurs at first (t = 1 yr), but it is followed by uplift (t = 10 - 25 yr) and changes to 

subsidence again (t = 50 yr).  

   In Fig. 4, we show the time histories of the horizontal (a) and vertical (b) surface 
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displacement rates at x = 60 km (red), 120 km (blue), and 180 km (green). To make a 

comparison easily, the signs of some displacement-rate curves are reversed. These curves 

basically show the decay of displacement rates with time, but the decay rates are significantly 

different among these curves. In addition to this, some curves cross the zero line, not simply 

converging to zero. It should be noted that all the displacement rates become zero eventually. 

   In order to characterize the change of displacement rates, we manually fitted an 

exponential function, 𝑎𝑎exp(−𝑡𝑡 𝑏𝑏𝑏𝑏⁄ ) + 𝑐𝑐 , to each time-history curve, by adjusting the 

parameters a, b and c, where τ represents the intrinsic relaxation time of the asthenosphere. 

The offset term c is added to avoid poor fitting. The fitting (black line) to each time-history 

curve is excellent in this time range except the early stage (t < 10 yr) vertical displacement 

rate at x = 120 km and the later stage (t > 25 yr) one at x = 60 km. On the other hand, the 

parameter b that controls the decay time constant, shown by the number in a colored rectangle 

for each fitting, is significantly different. If the behavior of the system was simply controlled 

by the Maxwell relaxation time of the asthenosphere, then the parameter b would be equal to 

1. But actually b is larger than 1 in every case. For some time-history curves, b is around 1.5, 

while it can be as large as 10. No correlation is also recognized between the values of b for 

the horizontal and vertical displacement rates at the same location. It should be noted that the 

apparent good fitting of the exponential function to the displacement-rate profiles in Fig. 4 is 

valid only for a limited time range, because the displacement rate at each point converges to 

zero at very large t. 

 

 

4. Discussion 

 

   Figures 3 and 4 show very complicated behavior of postseismic displacements due to 

viscoelastic relaxation. It is difficult to estimate the relaxation time constant τ of the 

asthenosphere from time series of displacement data, without computing the response of the 

elastic-viscoelastic composite system. This is because the viscoelastic solution of an 

elastic-viscoelastic layered half-space is expressed as the superposition of a finite number of 
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decaying components with different relaxation time constants, as described in Appendix 

(Matsu'ura et al. 1981; Fukahata and Matsu'ura 2006). In the case of this study, where an 

elastic surface layer is underlain by a viscoelastic substratum, the number of decaying 

components is three. More complicatedly, as shown in Fig. 5, the relaxation time constant of 

each decaying component depends on wavenumber (the integration variable, see Appendix). 

Larger wavenumber corresponds to smaller scale deformation and smaller wavenumber 

corresponds to larger scale deformation. Figure 5 shows that two of the three relaxation time 

constants (solid curves) significantly change with wavenumber, although each relaxation time 

constant converges to a certain value at a large wavenumber. All relaxation time constants are 

longer than the nominal relaxation time constant τ (4.6 years), shown by the dotted line, in the 

whole range of wavenumber.  

   The reason why this elastic-viscoelastic composite system has three decaying components 

with different time constants is evident mathematically (Matsu'ura et al. 1981; Fukahata and 

Matsu'ura 2006), but not easy to explain physically. According to the mathematical derivation, 

one decaying component comes from the viscoelastic layer itself, and the other two come 

from the continuity condition of displacement and stress components on the layer interface 

between the elastic layer and the viscoelastic substratum. In this study, we solved only the 

so-called P-SV problem, because only pure dip slip is given as the source. In a case with strike 

slip components, we also have to solve the so-called SH problem. For the SH problem, the 

number of the decaying component is only one; this one component comes from the 

continuity condition. The dependence of this component on wavenumber is also shown by the 

broken curve in Fig. 5.  

   In the computation of the displacement field, we take the summation of the mode 

solutions (Eqs. A1-A3 in Appendix). In Fig. 6, we show the weight of each mode 

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) (see Appendix) by a color scale. The cases of i = 1 and 2 correspond to the 

components of horizontal and vertical displacements, respectively. Surprisingly, the weight of 

each mode, which is a function of wavenumber, changes several orders of magnitude. So, the 

portion of larger weight (indicated by warm colors) has more significant effect on viscoelastic 

deformation, though we should take the effect of integral interval into account (note that the 
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abscissa is drawn in a logarithmic scale). The diagrams of (i, k) = (1, 0) and (1, 2) in Fig. 6 

show that horizontal displacement of very long wavelengths (small wavenumbers) has 

extremely long effective relaxation time constants (more than several hundred years). The 

diagram of (i, k) = (2, 0) shows that vertical displacement also has very long effective 

relaxation time constants (about 100 years) for the wavelength of about 50 - 100 km. These 

are important properties of viscoelastic stress relaxation in this kind of problems. 

   In our formulation (Matsu'ura et al. 1981; Fukahata and Matsu'ura 2006), we can obtain 

the exact values of relaxation time constants as functions of wavenumber. This is an 

advantage of the analytical method in comparison to numerical methods like a finite element 

method. Even in analytical methods, Rundle (1978), who first obtained general solution for 

layered elastic-viscoelastic problems, applied some approximation in the inverse Laplace 

transform to avoid numerical instability due to the use of the up-going propagator matrix 

(Fukahata and Matsu'ura 2005). Wang et al. (2006), whose FORTRAN programs (PSGRN 

and PSCMP) are widely distributed, also numerically calculate the inverse Fourier transform 

with some approximation. So, from these studies we were unable to obtain the exact values of 

relaxation time constants. 

   As expressed in Eq. (A2), the relaxation time constants (Fig. 5) are determined only by 

the structural parameters (Table. 1) and do not depend on the locations of source and 

observation points, although the weight of each mode (Fig. 6) depends on them. The scale of 

the horizontal axis (wavenumber) of Fig. 5 is approximately inversely proportional to the 

thickness of the elastic layer. For a thinner elastic layer, the horizontal scale of Fig. 5 is 

enlarged and the convergence of relaxation time constants to a certain value occurs at a larger 

wavenumber. This means that viscoelastic behavior can be more complicated for a thinner 

elastic layer. On the other hand, the dependence of viscoelastic behavior on wavenumber 

becomes less important for a thicker elastic layer. This would be consistent with that the 

viscoelastic response approaches to an elastic response as the thickness of the elastic surface 

layer increases.  

   As shown in Fig. 4, the exponential function with an offset term has great flexibility. 

Therefore, time series of displacement data can be well fitted by an exponential function quite 
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often. Because observed data are contaminated by various sources including seasonal 

variation, the fitting to actual observed data is easier than the fitting to synthetic data. 

However, as shown in this study, the relaxation time constant obtained by such fitting is 

generally quite different from the intrinsic relaxation time constant of the asthenosphere.  

   An offset term is usually needed in the fitting (Fig. 4), but the offset term must become 

zero after the completion of viscoelastic relaxation. This means that the fitting by an 

exponential function with an offset term is applicable only to a data set in a limited time range, 

even if the time range could be quite long. In other words, when observed displacement-rate 

data systematically deviates from an exponential fitting at a time after a megathrust 

earthquake, this does not always mean that something different happens. Such change in 

deformation trend can solely occur due to viscoelastic relaxation in the asthenosphere. In 

geodetic data analyses, transient displacement rate is often separated from time series by 

subtracting a linear trend (e.g., Tanaka and Heki 2014; Ochi and Kato 2013). However, we 

should note that not only the transient displacement rate that decays exponentially but also the 

displacement rate that proceeds in an almost constant rate for a few or several tens of years 

(e.g., the blue and green lines of Fig. 4a and the green line of Fig. 4b) can be a part of the total 

response of an elastic-viscoelastic composite system to a megathrust earthquake. 

   Recently, Tobita (2016) has shown that observed GNSS time series data after the 2011 

Tohoku-oki earthquake can be well fitted by a combination of exponential and logarithmic 

functions. According to his analysis, the relaxation time constants of these functions are 

common for different stations in eastern Japan. The fitting is good both for horizontal and 

vertical displacement components. However, this result apparently contradicts with our 

theoretical result; the time history of displacement (Figs. 3 and 4) shows spatially quite 

complicated pattern. For a more realistic structure, the behavior would be more complicated. 

We consider that this contradiction is mainly ascribed to the dominant cause of crustal 

deformation after the 2011 Tohoku-oki earthquake. That is to say, not the viscoelastic stress 

relaxation in the asthenosphere but the afterslip at the downward extension of the main 

rupture would be the dominant cause in the early stage of postseismic period, particularly for 

displacements on land (Yamagiwa et al. 2015; Noda et al. 2017). Because crustal deformation 
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due to afterslip can be essentially regarded as elastic, its temporal decay is independent of 

locations, as far as the spatial distribution of afterslip does not change in time, and directly 

reflects the decay of afterslip itself. After the early stage, however, viscoelastic stress 

relaxation in the asthenosphere should become the dominant cause of crustal deformation 

(Noda et al. 2017). 

 

 

Appendix 

 

   In this study, we consider deformation caused by a megathrust earthquake within an 

elastic surface layer overlying a viscoelastic substratum under gravity (Fig. 1). We solve the 

coupled equations of the definition of strain, the constitutive equation, and the equation of 

motion. For a pure elastic problem, these equations can be summed up to Navier's equation. 

The boundary conditions to be satisfied are stress free at the surface of the elastic-viscoelastic 

half-space, the continuity of displacement and stress components on the layer interface, a 

certain amount of tangential displacement discontinuity on the megathrust fault, and the 

finiteness of displacement and stress components in the depths of the elastic half-space. These 

conditions result in no stress and strain at a far distance from the fault, but spatially uniform 

displacement there is allowed as a solution. 

   By solving Navier's equation for the given boundary conditions, we can analytically 

obtain the solution of elastic problems (Fukahata and Matsu'ura 2005). In order to obtain the 

viscoelastic solution analytically, the correspondence principle of linear viscoelasticity (Lee 

1959; Radok 1957) is commonly used. We first derive the associated elastic solution of the 

viscoelastic problem, where the viscoelastic layer is replaced by a perfectly elastic layer with 

the same elastic constants. According to the correspondence principle, the Laplace transform 

of the viscoelastic solution is directly obtained from the associated elastic solution by 

replacing the source time function with its Laplace transform and the elastic constants of the 

viscoelastic layer with the corresponding s-dependent moduli. By applying the inverse 

Laplace transform to the viscoelastic solution in the Laplace domain, we obtain the 
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viscoelastic solution in the time domain (Matsu'ura et al., 1981; Fukahata and Matsu'ura 

2006). 

   We take the x and z axes to be horizontal and vertical, respectively. The viscoelastic 

solution in the time domain due to a dislocation source of a pure dip slip at a time t = 0 and a 

point  in the elastic lithosphere (d < 35 km) is expressed by a semi-infinite 

integral with respect to wavenumber ξ (Fukahata and Matsu'ura 2006): 
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            (A1) 

with 
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𝑚𝑚=1     (i =1, 2; k = 0, 1, 2)    

            (A2) 
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           (A3) 

 

where  and  represent horizontal and vertical displacements, respectively. 𝑌𝑌𝑖𝑖𝑖𝑖∞ 

corresponds to the response after the completion of viscoelastic relaxation. θ is a dip angle of 

the source and ∆u is the amount of dislocation (displacement discontinuity along a fault). As 

shown in Eq. (A2), 𝑏𝑏𝑚𝑚(𝜉𝜉)  modifies the intrinsic relaxation time constant τ of the 

asthenosphere. The explicit values of 𝑏𝑏𝑚𝑚(𝜉𝜉)𝜏𝜏 with dependence on ξ are shown in Fig. 5. The 

subscript m of b in Eq. (A2) specifies a decaying component. For the case of this study, the 

number M of decaying components is 3. The coefficient 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) in Eq. (A2) controls 
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the weight of each mode specified by a modified relaxation time constant on each 

wavenumber. It should be noted that 𝑏𝑏𝑚𝑚(𝜉𝜉)  does not depend on x, z and d, while 

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) depends on z and d as well as on i and k. 𝑌𝑌𝑖𝑖𝑖𝑖∞(𝑧𝑧, 𝜉𝜉;𝑑𝑑) and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉; 𝑑𝑑) have 

very complicated forms, but they can be analytically calculated. The values of 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) 

for the surface displacement (z = 0) with the source depth d = 10 km are shown by the color 

scale in Fig. 6 for each pair of i and k. Note that the weight of each mode changes several 

orders of magnitude. On the other hand, the dependence of 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) on d is not 

significant. The cases of i = 1 and 2 correspond to the horizontal and vertical displacements, 

respectively (Eq. A1); k originally corresponds to the order of the Bessel function, but it 

reduces to trigonometric functions in the two-dimensional problem (Fukahata and Matsu'ura 

2005). 

   By taking the summation of the response for each dislocation source, we can obtain the 

displacement field due to a megathrust earthquake. 
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Table 

 

Table 1.  Two-layered structure model. Vp, Vs, ρ, η, and τ  represent the P- and S-wave 

velocities, density, viscosity, and Maxwell relaxation time, respectively. 

No. Vp (km/s) Vs (km/s) ρ (kg/m3) η (Pa s) τ  (yr) Thickness (km) 

1 7.0 4.0 3.0 × 103 ∞ ∞ 35 

2 8.0 4.5 3.4 × 103 1.0 × 1019 4.6 ∞ 
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Figure Captions 

 

Figure 1:  Coseismic displacement (t = 0) and its viscoelastic relaxation (t > 0) associated 

with a megathrust earthquake. The earthquake ruptures the whole plate interface within the 

lithosphere at t = 0. The plate interface is represented by the solid curve, which extends 

infinitely along the strike of an island arc, i.e., computations are carried out as a 

two-dimensional problem. The displacement discontinuity (fault slip) of the earthquake is 5 m 

uniformly along the plate interface. The sum of the coseismic and postseismic displacements 

is shown. The reference point to measure the horizontal displacement is taken at x = 500 km 

(x-axis is taken from the trench (x = 0) to the left hand side). Note that viscoelastic stress 

relaxation proceeds much longer than the nominal relaxation time τ (4.6 years). 

 

Figure 2:  Temporal evolution of cumulative horizontal (a) and vertical (b) surface 

displacements due to viscoelastic stress relaxation in the asthenosphere. Cumulative 

postseismic displacements at t = 5 years (green), 20 years (light blue), 50 years (dark blue), 

150 years (purple), and 500 years (black) are shown. These profiles do not include the 

coseismic displacement. The positive direction of horizontal displacement is taken from the 

trench to the island arc. The broken lines are the profiles of coseismic displacement, but the 

sign of them is reversed for comparison. The profile at t = 500 year is nearly identical to that 

at t = ∞. 

 

Figure 3:  Profiles of horizontal (a) and vertical (b) surface displacement rates at different 

times. The velocity profiles at t = 1 year (red), 5 years (blue), 10 years (green), 25 years 

(purple), and 50 years (light blue) after the megathrust earthquake are shown. In each diagram, 

the broken line represents the profile of coseismic displacement (the scale is on the right-hand 

side), but the sign of it is reversed for comparison. The inset of (b) is the enlargement of the 

displacement-rate profiles near the trench.  

 

Figure 4:  Time histories of horizontal (a) and vertical (b) surface displacement rates at x = 
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60 km (red), 120 km (blue), and 180 km (green). The signs of the horizontal displacement 

rates at x = 120 km and 180 km and the vertical displacement rates at x = 60 km and 180 km 

are reversed for comparison. The black curve shows a manual fitting to each time-history 

curve by an exponential function with an offset term, 𝑎𝑎exp(−𝑡𝑡 𝑏𝑏𝑏𝑏⁄ ) + 𝑐𝑐. The number in a 

colored rectangle shows the value of parameter b for each fitting. 

 

Figure 5:  Dependence of the effective relaxation time constants 𝑏𝑏𝑚𝑚(𝜉𝜉)𝜏𝜏  of decaying 

components on wavenumber. In the present case, the system has three time constants (m = 1, 

2, 3) for viscoelastic relaxation, each of which depends on wavenumber. The values of 

relaxation time constants are determined by the structural parameters given in Table 1, and 

does not depend on the locations of the source and observation points as well as on the 

deformation mode i and k (see Appendix). It should be noted that the relaxation time constant 

curves do not intersect with each other. The dotted line represents the nominal (intrinsic) 

Maxwell relaxation time (i.e., bm = 1) of the asthenosphere, defined by the ratio of viscosity to 

rigidity in the asthenosphere. The relaxation time constant of the SH problem (for a strike slip 

component) for the same structure model is also shown by a broken curve; the solid curves 

correspond to the relaxation time constants of the P-SV problem (for a dip slip component). 

 

Figure 6:  Weight of each mode 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧, 𝜉𝜉;𝑑𝑑) (see Eq. A2 in Appendix). The weight is 

indicated by the color scale at the lower right. The values of  for the surface 

displacement (z = 0) with the source depth d = 10 km are shown as a function of wavenumber 

ξ for each pair of i and k. In each diagram, the profile of the weight that corresponds to each 

relaxation time constant (m = 1, 2, 3) is shown. The functional forms of the relaxation time 

constants in each diagram are exactly the same as those in Fig. 5. The cases of i = 1 and 2 

correspond to the components of horizontal and vertical displacements, respectively (see Eq. 

1); k originally corresponds to the order of the Bessel function, but it reduces to trigonometric 

functions in the two-dimensional problem (Fukahata and Matsu'ura 2005) (Eqs. A1 and A3). 

Note that the weight of each mode changes several orders of magnitude, which results in the 

characteristic behavior of viscoelastic relaxation. 


