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Abstract 

The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled 

monolayers (SAMs) has been measured at 298 K using a four-probe method. We found 

that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 

22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also 

observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups 

affect the electrons of the binding sulfur and adjacent surface gold atoms. The present 

results suggest that adsorption of thiol molecules can influence the behavior of the 

conducting electrons in NPG and that modification of NPG with SAMs may be useful for 

environmental sensing. 
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1. Introduction 

Adsorption of various molecules on the surface of a substrate can be detected by 

monitoring the electrical properties of the substrate material [1–7]. The substrate 

materials of these “chemiresistors” [2] should possess both nanostructures with high 

surface area and electrical conductivity. For example, adsorption of oxygen on carbon 

nanotubes [3,4] and protein on silicon nanowires [5,6] can be successfully detected. In 

particular, Kisner et al. [7] reported that the adsorption of self-assembled monolayers 

(SAMs) can be detected better on gold nanowires than on bulk gold, suggesting that the 

electrical resistance is strongly influenced by free electron scattering at the surface when 

the size of the metallic materials is smaller than the typical length of the mean free path 

of electrons [8,9]. 

Nanoporous gold (NPG) has open porous structures with pores and ligaments in 

the nanometer size range and can be fabricated by dealloying or selective dissolution of 

less noble element from binary alloys in an electrolyte [10,11]. Monolithic nanoporous 

metals with high specific surface areas exhibit adsorption-driven macroscopic actuation 

in aqueous and gaseous environments [12–15]. The sensitivity of NPG to the atmosphere 

suggests that the electrical properties of NPG are also altered by adsorption. In addition, 

the conditions used for dealloying and post-treatment determine the pore and ligament 
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sizes of NPG; under conditions that suppresses the self-organization of gold atoms, the 

pore and ligament sizes are as small as the mean free path of electrons. Consequently, the 

electrical properties of NPG are expected to be sensitive to the adsorption of chemical 

species. 

Considering these factors, we compare the change in electrical properties of NPG 

resulting from the adsorption of thiol SAMs with different tail groups. The effects of the 

atmosphere (air and water) and the thiol concentration in the ethanolic solution are also 

examined. 

2. Materials and Methods 

NPG films were fabricated by dealloying of Au0.25Ag0.75/pure-Au stacked film 

sputtered on an insulating glass substrate. The schematic illustration of the fabrication 

procedure is shown in Fig. 1a. NPG films were produced by dealloying of the prepared 

film sample in 70 mass% HNO3 for 24 h at 253 K under free corrosion conditions (without 

anodic electrochemical potential). The low dealloying temperature of 253 K was adopted 

for finer pores and ligaments of the resulting NPG [16]. First, a 70-nm-thick gold 

adhesion layer was sputtered on the glass and then a 140-nm-thick Au0.25Ag0.75 layer was 

sputtered on the gold adhesion layer by radio-frequency magnetron sputtering. The 
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underlying gold adhesion layer is necessary to prevent fragmentation of NPG layer. A 

metallic mask (Fig. 1b) was used for the fabrication of a circuit of sputtered film that is 

suitable for electrical resistivity measurements using a four-probe method. The dealloyed 

samples were thoroughly washed with distilled water to remove residual acid. For 

comparison, a 140-nm-thick flat gold (FG) film without a nanoporous structure was also 

prepared by sputtering on a glass substrate. The thickness of the sputtered films was 

confirmed using a probe-type step profiler (Dektak150 by ULVAC Corp.). 

 
Fig. 1. (a) Schematic illustration of the fabrication of nanoporous gold thin film for 
measurement of electrical resistivity. (b) Metallic mask for sputtering. 

Propanethiol (HS(CH2)2CH3, PT, purity >95%), mercaptopropionic acid 

(HS(CH2)2COOH, MPA, purity >97%) and cysteamine (HS(CH2)2NH2, CA, purity 

>97%) were purchased from a commercial supplier (Wako Pure Chemical Industries Ltd., 

Japan). 0.1 and 10 mmol/L solutions of the thiols were prepared in absolute ethanol 
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(purchased from Nacalai Tesque, Inc., Japan). The NPG and FG samples were modified 

with SAMs by immersing the fabricated gold samples in the ethanolic solutions of the 

thiols for 24 h. Afterwards, the samples were removed from the solutions and washed 

with absolute ethanol and distilled water. 

The electrical resistivity of the NPG and FG samples was measured at 298±0.5 

K by a direct current four-probe method in air and in ion-exchanged and distilled water. 

The electrical resistivity of the NPG layers was calculated assuming that the two layers 

have a parallel connection for electron conductivity [17]. The change in the electrical 

resistivity (Δρ/ρ0) of NPG resulting from SAMs modification was then calculated using 

the following equation: 

Δ𝜌𝜌
𝜌𝜌0

=
𝜌𝜌SAM − 𝜌𝜌0

𝜌𝜌0
, 

where ρ0 is the electrical resistivity of NPG or FG without modification by SAMs 

measured in air and ρSAM is the electrical resistivity of SAMs-modified NPG or FG 

measured in air or in ion-exchanged and distilled water. The thermal equilibrium was 

confirmed by monitoring the electric potential during the measurements. To check 

reproducibility, three or four identical samples were fabricated and their electrical 

resistivity was measured. 

The microstructure of the samples was observed by scanning electron 
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microscopy (SEM). To estimate the surface element composition of the samples modified 

with SAMs, X-ray photoelectron spectroscopy (XPS) was performed with a standard Mg 

Kα source (200 W) at a takeoff angle of 45°. The samples were fabricated by the 

sputtering process described above (without a metal mask), dealloying and modification 

with SAMs (10 mmol/L) on 11×11 mm2 cover glass. 

3. Results and discussion 

The microstructure of the fabricated NPG is shown in Fig. 2. A nanoporous 

structure with an average ligament diameter of 24 nm (calculated from the SEM images 

of 100 ligaments) was observed. The electrical resistivity of the NPG at room temperature 

was measured to be 426 nΩ m, which is in agreement with other experimental data [18–

21]. 
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Fig. 2. Scanning electron microscopy image of nanoporous gold. 

The changes in the electrical resistivity (Δρ/ρ0) of NPG and FG as a result of 

modification with SAMs are shown in Figs. 3–5. Overall, the Δρ/ρ0 of NPG was clearly 

positive and much higher than that of FG, irrespective of the types of SAMs used. Under 

both air and water atmospheres, a higher SAMs concentration in the ethanolic solution 

resulted in a larger Δρ/ρ0 of NPG, whereas the concentration dependence of the Δρ/ρ0 of 

FG was not clear. These results suggest that the electrical resistivity of NPG is very 

sensitive to the surface adsorption of the thiol SAMs. Moreover, Δρ/ρ0 of NPG in water 

was higher than in air for all three SAMs, whereby the largest Δρ/ρ0 (22.2%) of NPG 

modified by CA was followed by the Δρ/ρ0 of MPA and then PT. The atmosphere 

dependence (air or water) of Δρ/ρ0 of SAMs-modified NPG implies that the electrical 



9 

properties of NPG depend not only on the surface adsorption of SAMs but also on the 

charged state of the functional tail groups in the molecular structures of the SAMs. 

 
Fig. 3. Change in the electrical resistivity of flat gold and nanoporous gold modified by 
self-assembled monolayers of propanethiol. 

 
Fig. 4. Change in the electrical resistivity of flat gold and nanoporous gold modified by 
self-assembled monolayers of mercaptopropionic acid. 
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Fig. 5. Change in the electrical resistivity of flat gold and nanoporous gold modified by 
self-assembled monolayers of cysteamine. 

To confirm the adsorption of SAMs on the sample surface and to estimate the 

surface coverage of the NPG with thiol molecules, XPS was performed on NPG samples 

modified with 10 mmol/L ethanolic solution of SAMs. The relative atomic compositions 

of sulfur to surface-existent gold, silver and sulfur atoms are plotted along the horizontal 

axis against Δρ/ρ0 in Fig. 6 (See Supplementary data for XPS profiles and calculation of 

atomic composition). The atomic composition of sulfur is a little higher than the surface 

coverage of the three thiols on Au (111) investigated mainly by scanning tunneling 

microscopy [22–24], although the difference is not significantly large. The highest 

coverage density by SAMs was obtained in the case of CA, followed by MPA and then 

PT. This tendency agrees with the order of Δ𝜌𝜌/𝜌𝜌0 of NPG modified with 10 mmol/L 
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ethanolic solution of SAMs, as clearly shown in Fig. 6. That is, the electrical resistivity 

of NPG is roughly proportional to the amount of adsorbed thiol molecules. 

 
Fig. 6. Relationship between the relative atomic composition of sulfur and change in the 
electrical resistivity of nanoporous gold modified with 10 mmol/L propanethiol (PT), 
mercaptopropionic acid (MPA) and cysteamine (CA) in an ethanolic solution. 

Kisner et al. [7] reported that the electrical resistance of an ultrathin gold 

nanowire (Au-NW, 2 nm in diameter) increases after modification with SAMs under both 

air and water atmospheres. The present results of the electrical resistivity of SAMs-

modified NPG are in qualitative agreement with those in the study by Kisner et al. 
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modification was lower than that in Au-NW because the specific surface area (surface-

to-volume ratio) of NPG is lower than that of the Au-NW. The present NPG has ligaments 

with diameter of 24 nm, which is 12 times larger than the diameter of the Au-NW (2 nm), 

resulting in a smaller specific surface area in NPG. By assuming that the ligaments in the 

NPG and nanowires in the study by Kisner et al. are columnar, the specific surface area 

of NPG is 1/12 that of Au-NW. Table 1 compares the increase in the relative electrical 

resistivity of the present NPG (Δρ/ρ0) with the relative electrical resistance (ΔR/R)Au-NW 

of Au-NW. The ratio of (ΔR/R)Au-NW to Δρ/ρ0 is roughly close to the specific surface area 

ratio (12) of Au-NW to NPG. This comparison also supports the finding that the Δρ/ρ0 

detected in the present NPG is attributed to the surface adsorption of thiol SAMs. 

The behavior of the conductive electron in a metal depends a lot on the electrons 

at the Fermi surface and the electrical conductivity is proportional to the density of states 

at the Fermi energy level [25]. It has also been reported that the thiol binding effect 

contributes to an increase in the electrical resistance of gold with reduced dimension by 

the change in the density of states at the Fermi energy level [26]. Hence, the adsorption 

of SAMs on the NPG increases the electrical resistivity. 

The change in electrical properties owing to charge trapping by water adsorption 

at the surface has been observed [27,28] and the effect of the acid–base chemistry of the 
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functional groups of the SAMs on the interfacial electrical characteristics of gold 

electrodes has been reported [29,30]. These findings suggest that thiol binding causes a 

significant positive change in electrical resistivity of NPG. 

The Δρ/ρ0 in NPG were always higher in water than in air. The influence of the 

atmosphere (air or water) was almost always larger in the MPA- and CA-modified NPG 

than in the PT-modified NPG. The tail of PT is nonpolar, whereas that of MPA and CA is 

polar because of the carboxyl (–COOH) and amino (–NH2) groups, respectively. 

Therefore, the polar tails of MPA and CA may interact with atmospheric water molecules, 

which has intrinsic polarity; and the electronic states of the head sulfur atoms and adjacent 

gold atoms may be influenced, resulting in the greater influence from the atmosphere, 

although the precise determination of protonation/deprotonation state, which may be 

conducted by analysis of current-voltage hysteresis [7], is not discussed here because of 

large data scattering (Figs. 3–6). In other words, the results shown here are at early stage 

of investigation; detailed atomistic phenomena such as protonation/deprotonation state 

and monolayer/multilayer aspects at SAM on NPG will be clarified by further 

experiments and/or simulation. Thinner underlying bulk gold layer, or even absence of 

underlying layer is also desirable for better evaluation of the change in the electrical 

resistivity of NPG and application of NPG for sensing use, although the attempt has not 
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succeeded at the present stage. The maximum/minimum concentration of thiol molecules 

that affects the change in electrical resistivity of NPG should be examined for practical 

application. 

4. Conclusions 

We have shown that the electrical resistivity of NPG film depends on the 

absorption of SAMs, whereas that of FG with similar thickness does not. The electrical 

resistivity of NPG was sensitive to the concentration and tail group of the thiol molecules. 

XPS elemental analyses of NPG and comparison of the present results with the electrical 

resistance change of Au-NW [7] imply that the adsorption of the thiol molecule on the 

ligaments in NPG increases the electrical resistivity. Furthermore, the change in electrical 

resistivity of NPG was greater in water than in air, which suggests that the atmosphere 

affects the electronic state of the head sulfur atom and adjacent gold atoms through the 

interaction between water and the tail of the thiol molecules. These results suggest that 

the adsorption of thiol molecules can influence the electric characteristics of NPG and 

that SAMs modification on NPG may be useful for environmental sensing. 
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Tables 

Table 1. Change in the electrical resistivity of nanoporous gold (NPG) (Δρ/ρ0) and 

electrical resistance of ultrathin gold nanowire (Au-NW) [7] ((ΔR/R)Au-NW)) modified by 

SAMs with an ethanolic solution of 0.1 and 10 mmol/L organothiol species. 

10 mmol/L Propanethiol Mercaptopropionic acid Cysteamine 
 Air Water Air Water Air Water 
(ΔR/R)Au-NW [7] (%) 209.7  277.7  163.0  327.1  177.5  315.9  
Δρ/ρ0 (Present) (%) 3.5  6.0  7.8  12.0  16.9  22.2  
Ratio 
(Au-NW/NPG) 

60  47  21  27  11  14  

 
0.1 mmol/L Propanethiol Mercaptopropionic acid Cysteamine 
 Air Water Air Water Air Water 
(ΔR/R)Au-NW [7] (%) 44.4  115.3  42.0  22.9  22.4  68.2  
Δρ/ρ0 (Present) (%) 2.7  4.7  2.8  4.3  5.0  8.4  
Ratio 
(Au-NW/NPG) 

17  24  15  5  5  8  
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Figure captions 

Fig. 1. (a) Schematic illustration of the fabrication of nanoporous gold thin film for 

measurement of electrical resistivity. (b) Metallic mask for sputtering. 

Fig. 2. Scanning electron microscopy image of nanoporous gold. 

Fig. 3. Change in the electrical resistivity of flat gold and nanoporous gold modified by 

self-assembled monolayers of propanethiol. 

Fig. 4. Change in the electrical resistivity of flat gold and nanoporous gold modified by 

self-assembled monolayers of mercaptopropionic acid. 

Fig. 5. Change in the electrical resistivity of flat gold and nanoporous gold modified by 

self-assembled monolayers of cysteamine. 

Fig. 6. Relationship between the relative atomic composition of sulfur and change in the 

electrical resistivity of nanoporous gold modified with 10 mmol/L propanethiol (PT), 

mercaptopropionic acid (MPA) and cysteamine (CA) in an ethanolic solution. 
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X-ray photoelectron spectroscopy (XPS) of thiol-modified nanoporous gold 

Figure S1 shows XPS profiles of nanoporous gold modified by 10 mmol/L ethanolic solution of 

propanethiol (PT), mercaptopropionic acid (MPA) and cysteamine (CA). The elemental surface 

compositions were calculated by the peak area from Au 4f, Ag 3d and S 2p, where background was 

corrected by Shirley method. (The contribution of peak C 1s is eliminated because of possible 

contamination of carbonaceous species during operation.) 

  

Fig. S1. XPS profiles of nanoporous gold modified by 10 mmol/L ethanolic solution of propanethiol 

(PT), mercaptopropionic acid (MPA) and cysteamine (CA). 
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