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Abstract 

This paper reports the effect of pre-strain on the work-hardening behavior of rolled 

AZ31 magnesium alloy sheets during in-plane cyclic loading. The work-hardening 

behavior of the alloy remained almost unchanged when tensile strain was applied before 

cyclic loading. However, the work-hardening behavior was significantly affected when 

a compressive strain was applied. First, the resulting stress-strain curve was not 

sigmoidal upon tension in some cases, depending on the magnitudes of the applied 

compressive pre-strain owing to the inversion of the loading direction from tension to 

compression before the second increase in the work-hardening rate. In other words, a 

sigmoidal stress-strain curve certainly arose upon tension when compressive pre-strain 

was applied and the loading direction was not inverted from tension to compression.  It 

was found that the strain at the beginning of the second increase had a high correlation 

with the volume fraction of twins. Second, the change in the rate of work-hardening at 

the beginning of tension became sharp as compressive pre-strain increased, probably 

owing to the effect of activation of detwinning on the stress-strain curve, which became 

increasingly significant as the compressive pre-strain increased the volume fraction of 

twins. 
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1. Introduction 

    Mg alloys have attracted a great deal of attention because of an increasing demand 

for lightweight materials to reduce CO2 emission from transport equipment. In general, 

Mg alloys used for components are made by die casting and thixoforming. Because 

press forming of sheet metal is an efficient process to manufacture thin-walled structural 

components, press forming of Mg alloy sheets has received much attention, and many 

studies on the press formability of Mg alloy sheets have been carried out [1-11]. 

However, the number of structural components manufactured by press forming of Mg 

alloy sheets is still small. One of the reasons is that the deformation behavior of Mg 

alloy sheets is significantly different from those of conventional metal sheets used for 

structural components. For instance, rolled Mg alloy sheets show asymmetric 

deformation between tension and compression, exhibit nonlinear deformation during 

unloading, and display strong anisotropic work-hardening behavior through successive 

changes in the shapes of their yield loci. Such characteristic deformations in Mg alloy 



sheets are the result of magnesium’s hexagonal close-packed (HCP) structure, which 

exhibits significant crystal anisotropy and allows easy activation of direction-dependent 

{10-12} deformation twinning . Therefore, many studies have been carried out to 

understand the work-hardening behavior as well as the formability of Mg alloys 

[12-23]. 

   During press forming, a metal sheet is often subjected to cyclic loading such as 

cyclic bending–unbending processes. Consequently, the deformation behavior under 

cyclic loading conditions have been extensively studied in various metals used for 

structural components, including aluminum alloys and steels [24-27], and in Mg alloys  

[21, 28-36]. These past studies on Mg alloys focused particularly on their fatigue 

properties, studied using a very large number of cycles and a relatively small strain 

amplitude. A literature survey of the past studies on fatigue properties can be found in 

[21].  

   During press forming, a metal sheet is subjected to several cycles during which 

large plastic strains arise accordingly, showing that cyclic-loading conditions necessary 

for the study of press forming would be different from those used for study of fatigue 

properties. In our previous study [21], the work-hardening behavior of a rolled Mg alloy 

sheet was investigated under in-plane cyclic tension-compression conditions with 



relatively high strain amplitudes and small cycle numbers. The effects of twinning and 

detwinning on the work-hardening behavior were also investigated. In summary, we 

found that the work-hardening behavior was asymmetrical between tension and 

compression as follows: the rate of work-hardening in the later stages of compression 

increased as the number of cycles increased, whereas rate in the later stages of tension 

decreased. It was also found that the work-hardening behavior could be explained in 

terms of twinning and detwinning. The work-hardening behavior was also affected by 

the strain amplitude of cyclic loading.  

In our previous study [21], we also showed that the work-hardening behavior 

remained unchanged when a tensile pre-strain was applied before a cyclic loading test 

was carried out, while they were significantly affected when a compressive pre-strain 

was applied. In particular, the sigmoidal shape in the stress-strain curve that generally 

occurs upon tension following compression did not arise when a pre-strain of -4% was 

applied before the cyclic loading test with a strain amplitude of 6%. These results 

indicated that the work-hardening behavior might be subjected to significant changes by 

the loading history of the sample. However, the experiments were carried out only with 

the conditions of a strain amplitude of 6% and pre-strains of 4% and -4% in the 

previous study. Therefore, changes in the work-hardening behavior as a function of the 



pre-strain are not yet understood. Particularly, changes in the stress-strain curve during 

inversion of loading from compression to tension in one cycle depending on the 

pre-strain and the strain amplitude are not clear, which hinders an accurate prediction of 

the work-hardening behavior. 

In the present paper, the effect of pre-strain on the work-hardening behavior 

under in-plane cyclic tension-compression was investigated. We focused our attention 

on the effect of pre-strain on the work-hardening behavior upon tension following 

compression. Cyclic loading tests were carried out with strain amplitudes of 2%, 4%, 

and 6% after pre-strains of 4%, 0%, -2%, -4%, -5%, and -6% were applied. 

Metallographic observations using an optical microscope were also used to examine the 

correlation between the twinning activity and the work-hardening behavior. 

 

2. Experimental procedures 

2.1. Material 

In the present study, commercial rolled AZ31B Mg alloy sheets (Mg–3% Al, 1% 

Zn, Osaka Fuji Corporation) of two thicknesses were used, 0.8 and 1 mm. The sheet 

with a thickness of 0.8 mm was the same as that used in our previous study [21]. The 

material with a thickness of 1.0 mm was used in additional experiments where very 



large compressive pre-strains were applied, which will be explained in detail in section 

4. Sheets with thicknesses of 0.8 and 1.0 mm are referred to as A and B, respectively. 

The mechanical properties of the sheets obtained from uniaxial tension tests are shown 

in Table 1. A sample preparation procedure of specimen was the same as in our 

previous study [21]. The geometry of the specimen used is shown in Fig. 1. The 

specimens were machined parallel to the rolling direction, and were annealed at 350 ºC 

for 1.5 h before conducting the experiments. 

 

2.2. Experimental procedure of in-plane cyclic loading test 

The experimental procedure for the in-plane cyclic loading test was the same as 

that used in our previous study [21], and has been explained briefly as follows. 

Comb-shaped dies were used to suppress buckling during compression [37]. A 

photograph of the experimental setup is shown in Fig. 2. The compressive forces in the 

thickness direction were applied through the elastic forces of four coil springs. The 

magnitude of the compressive force was 5 kN, which was much smaller than the 0.2% 

proof stresses of the sheets. Mineral hydraulic oil with a nominal kinetic viscosity of 32 

cSt at 40 ºC was used as a lubricant. 

The experiment was carried out at an initial strain rate of 46.67 10−×  s-1 at room 



temperature. A strain gauge was used to measure strains in the loading direction during 

the test. The cyclic loading test was carried out with strain amplitudes of 2%, 4% and 

6% after pre-strains of 4%, 0%, -2%, -4%, -5% and -6% were applied. The definitions 

of the strain amplitude εS and the pre-strain εP are described in Fig. 3 where a 

stress-strain curve with a strain amplitude of 6% and a pre-strain of -2% is shown. 

Because of the capacity limitation of the experimental setup, the maximum pre-strain 

that could be given under a strain amplitude of 6% was -5%. It should also be noted that 

the cyclic loading tests with pre-strains of 4% and 0% were started with tension, while 

those with pre-strains of -2%, -4% and -6% started with compression. The case with a 

pre-strain of 0% is henceforth termed as the original case.  

To examine the activity of twinning during cyclic loading, microstructures were 

observed using an optical microscope. A sample was chemically etched by a mixture of 

1.05 g picric acid, 16.45 mL ethanol, 2.5 mL acetic acid, and 2.5 mL distillated water. 

The area fraction of twins measured by image analysis was used to evaluate the activity 

of twinning. The area fraction of twins, twinR , is given by the equation: 

100,twin
twin

SR
S

= ×                                                       (1) 

where twinS  is the area of the twins that were present in the observed microstructures, 

and S is the entire area of the observed microstructures. For further details on the 



experimental procedure, the reader is requested to refer to literature [21]. 

 

3. Experimental results 

In our previous study [21], the results of the cyclic loading with a strain amplitude 

of 6% were mainly used to examine the work-hardening behavior. Therefore, the effect 

of the pre-strain on the work-hardening behavior during the cyclic loading with a strain 

amplitude of 6% was examined first. Fig. 4 shows the stress-strain curves of material A 

(0.8 mm thick) obtained with a strain amplitude of 6% and pre-strains of 4%, 0%, -2%, 

-4%, and -5%. Figs. 4 (a), (b), and (d) are reprinted from the literature [21] with 

permission. Fig. 5 shows the result of material B obtained with a strain amplitude of 6% 

and a pre-strain of -4% for comparison. Fig. 6 shows the relationship between the 

number of cycles and the stresses at the end of tension and compression obtained from 

Figs. 4 and 5. 

First, the results of the two Mg alloy sheets were compared (Figs. 4 (d) and 5). 

Clearly, the two Mg alloy sheets showed very similar stress-strain curves. Furthermore, 

the variations of the stress at the end of tension and compression were almost identical 

(Fig. 6), indicating that the two sheets exhibited almost identical deformation behavior, 

although they had different thicknesses. In the remainder of this section, the results of 



material A are used to explain the work-hardening behavior. 

As explained in the literature [21], the tendencies observed in the original result 

(pre-strain of 0%, Fig. 4 (b)) can be summarized as follows. A sigmoidal shape, which 

consists of the first increase in the rate of work-hardening, the plateau region, and the 

second increase in the rate of work-hardening, was found during tension. The rate of 

work-hardening in the later stage of compression gradually increased as the number of 

cycles increased, whereas that in the late stage of tension decreased as the number of 

cycles increased. Thus, the stress-strain curve was asymmetrical between the tension 

and the compression. In the present paper, the first and second increases in the rate of 

work-hardening during tension are termed the first and second stages of work-hardening, 

respectively.  

Next, the effect of pre-strain on the results with a strain amplitude of 6% was 

examined. When the tensile pre-strain was applied (Fig. 4 (a)), the tendencies observed 

in the stress-strain curve remained unchanged from the original result (Fig. 4 (b)) as 

explained in our previous study. On the other hand, tendencies were different when 

compressive pre-strains were applied (Figs. 4 (c), (d), and (e)). In the late stage of 

compression, the increase in the rate of work-hardening with the number of cycles 

became large as the compressive pre-strain increased. As a result, the rate of increase in 



stress as well as the magnitudes of stress at the end of compression became large as the 

compressive pre-strain increased (Fig. 6 (a)).  

A change in the tendency in the late stage of tension was more significant. When 

pre-strains of -4% and -5% were applied, the second stage of work-hardening did not 

occur; thus, the decrease in the rate of work-hardening with the number of cycles that 

was observed in the original result (Fig. 4 (b)) did not arise. On the other hand, when a 

pre-strain of -2% was applied, the tendency was almost the same as that of the original 

result. As a result of the differences in the tendency depending on the pre-strain, the 

stress at the end of tension gradually increased with the number of cycles when 

pre-strains of -4% and -5% were applied, whereas this decreased when a pre-strain of 

-2% was applied (Fig. 6 (b)). 

Next, the effect of strain amplitude on the work-hardening behavior was 

investigated. The stress-strain curves with strain amplitudes of 2% and 4% are shown in 

Figs. 7 and 8, respectively. Figs. 9 and 10 show the relationships between the number of 

cycles and the stresses at the end of tension and compression obtained from Figs. 7 and 

8, respectively. The changes with the number of cycles in the rate of work-hardening in 

the late stages of tension and compression became small as the strain amplitude became 

small; thus, the changes in stress at the end of tension and compression also became 



gradual (Figs. 9 and 10). That the occurrence of the second stage of work-hardening was 

different from that with a strain amplitude of 6% was noted for further discussion. In the 

results with strain amplitudes of 2% and 4%, the second stage of work-hardening arose 

when pre-strains of 0% and 4% were applied and did not arise when pre-strains of -2%, 

-4%, -5%, and -6% were applied. As a result, the stress at the end of tension gradually 

increased with the number of cycles when pre-strains of -2%, -4%, -5%, and -6% were 

applied, whereas this decreased when pre-strains of 0% and 4% were applied (Figs. 9 

and 10). 

 

4 Discussion 

4.1 Second stage of work-hardening during tension 

The effect of pre-strain on the stress-strain curve during tension is discussed in the 

following. To investigate the stress-strain curve quantitatively, the curvature at the end 

of first stage of work-hardening, Tρ , the amount of strain from the beginning of 

tension to the beginning of the second stage of work-hardening, Tε , and the gradient 

during the second stage of work-hardening, Tg , are defined. The schematics of these 

parameters are shown in Fig. 3. Tg  was defined by linearly approximating the second 

stage of work-hardening using the least square method to an accuracy of 99.5%. Tε  

was defined to be the strain from the beginning of tension to the beginning of the linear 



approximation of second stage of work-hardening. Tρ  was defined as follows. The 

variation of curvature was first calculated from the stress-strain curve using a 

three-point curvature approximation. Tρ  was defined to be an average of the curvature 

over the corresponding region (a region where the curvature is relatively uniform). 

In this section, the occurrence of second stage of work-hardening is examined in 

detail. As described in the previous section, the second stage of work-hardening did not 

arise in some cases depending on the magnitudes of compressive pre-strain and strain 

amplitude. This might have been because the loading direction was inverted from 

tension to compression before the second stage of work-hardening arose. If this 

presumption is correct, the second stage of work-hardening certainly should have 

occurred when the loading direction was not inverted to compression.  

To examine this, a reverse loading test in which certain compressive strains were 

applied followed by tension to fracture was carried out. In the following, the magnitude 

of strain at the end of compression is termed εmin (Fig. 3). The results are shown in Fig. 

11. Because compressive strains larger than -10% were applied in the reverse loading 

test, material B (1.0 mm thick) was used to suppress buckling. It is assumed that the 

tendency observed in Fig. 11 can also be attained in material A because the deformation 

behavior of material B was in close agreement with that of material A (Figs. 4 and 5) as 



explained in the previous section.  

Clearly, the second stage of work-hardening arose regardless of εmin. The points a, 

b, and c shown in Fig. 11 indicate the strains at which the loading direction was inverted 

to compression in the cyclic loading tests with a strain amplitude of 4% and pre-strains 

of -2%, -4%, and -6%, respectively. The point d in Fig. 11 corresponds to the result with 

a strain amplitude of 6% and a pre-strain of -2%. The second stage of work-hardening 

had not yet arisen at points a, b, and c, whereas it had already begun at point d. These 

tendencies are consistent with the results observed in Figs. 8 (c), 8 (d), 8 (f) and 4 (c). 

These results show that, as we expected, the loading direction was inverted to 

compression before the second stage of work-hardening began in the cyclic loading tests 

in which the second stage of work-hardening did not arise.  

The above results indicate that the occurrence of second stage of work-hardening 

during the cyclic loading test was determined by the relationship between the loading 

conditions, such as the strain amplitude εS and the pre-strain εP, and the magnitude of 

Tε  (Fig. 3). As shown in Fig. 11, the second stage of work-hardening began after the 

nominal strain became positive when εmin was small, indicating that the magnitude of 

Tε  was almost as large as the absolute of εmin. On the other hand, when εmin was large, 

the second stage of work-hardening began before the nominal strain became positive, 



showing that the magnitude of Tε  appeared to be smaller than the absolute of εmin. To 

examine this tendency in detail, the relationship between minε  and Tε  , as shown in 

Fig. 12 and was obtained from Fig. 11, was used. Tε  increased almost linearly until 

minε  increased to -8%, but thereafter, the slope became smaller at higher strains. 

Clearly, the tendency was different between the small and large strains. 

It is generally understood that the deformation until the second stage of 

work-hardening began is primarily governed by the activation of detwinning, which was 

determined by the number of twins activated by the end of compression [12, 22, 31]. 

Therefore, it was presumed that Tε  had a correlation with the number of twins that 

were activated by the end of compression. Fig. 13 shows the relationship between minε  

and the area fraction of twins, and Fig. 14 shows the relationship between the area 

fraction of twins and Tε . As we expected, the tendency observed in Fig. 13 is similar to 

that observed in Fig. 12, and furthermore, Tε  clearly had a strong correlation with the 

area fraction of twins. From this result, it is expected that Tε  may be modeled as a 

function of the area fraction of twins.  

We further found that such a correlation is seen not only in Tε  but also in other 

properties of the work-hardening behavior during tension. Fig. 15 shows the 

relationship between the area fraction of twins and the gradient during the second stage 



of work-hardening Tg  (Fig. 3). Tg  also had a strong correlation with the area fraction 

of twins. It is generally understood that the activities of slip systems are dominant 

during the second stage of work-hardening, i.e., the effects of twinning and detwinning 

on the second stage of work-hardening are small [12, 22, 31]. However, Fig. 15 clearly 

shows that the activities of twinning and/or detwinning affected the deformation during 

the second stage of work-hardening. The mechanism of this twinning and detwinning 

effect will be investigated in our future work. 

 

4.2 First stage of work-hardening during tension 

The change in the rate of work-hardening at the end of first stage of work-hardening 

is discussed in this section. Tρ  (Fig. 3) was calculated for the first cycle of the 

stress-strain curves in Figs. 4, 7, and 8, and the correlation between minε  and Tρ  is 

shown in Fig. 16. Tρ  was small when minε  was small and became large as minε  

increased, indicating that the change in the rate of work-hardening at the end of the first 

stage of work-hardening increased as the compressive pre-strain and/or the strain 

amplitude became large in the cyclic loading. A similar tendency was also observed in 

the reverse loading tests (Fig. 11). 

The mechanism of this deformation behavior can be explained in terms of the 



change in crystallographic orientations as follows. It is established that a stress-strain 

curve shows a sudden change in gradient at the yield point when a rolled Mg alloy sheet 

is subjected to in-plane compression. This may be because the twinning activation 

begins simultaneously in a large number of grains owing to the strong basal texture [18]. 

A similar explanation may be applicable to the end of first stage of work-hardening 

during tension. As explained in the previous section, the deformation until the second 

stage of work-hardening began was primarily governed by the activity of detwinning. 

When the compressive pre-strain as small, the effect of the activation of detwinning on 

the stress-strain curve may have been small because the area fraction of twins was still 

small (Fig. 13); thus, the stress-strain curve at the end of first stage of work-hardening 

was gradual. On the other hand, the area fraction of twins became large as the 

compressive pre-strain increased (Fig. 13). Hence, the effect of the activation of 

detwinning on the stress-strain curve would also become large, leading to the sharp 

change at the end of first stage of work-hardening. 

If this presumption is correct, a similar tendency may be observed under 

compression, i.e. the curvature at the yield point under compression also becomes small 

as the intensity of basal texture becomes weak. To examine this presumption, the 

curvature at the yield point under compression ( Cρ  in Fig. 3) was calculated for the 



second cycle of the stress-strain curves in Figs. 4, 7, and 8. Cρ  was calculated in the 

same manner as that of Tρ . Fig. 17 shows the relationship between the strain at the 

beginning of compression and Cρ . As we expected, Cρ  tended to become small as the 

strain at the beginning of compression became large. This may be because the intensity 

of texture became weak as the compressive strain increased, verifying the presumption. 

At the same time, the change in Cρ  was more pronounced as the strain amplitude Sε  

became large. This result indicates that other factors, such as a loading history or the 

amount of plastic strain, would also affect the curvature. A detailed investigation on 

other factors will be the subject of our future work.  

 

5. Conclusions 

In the present paper, the effect of pre-strain on the work-hardening behavior of 

AZ31 magnesium alloy sheets under conditions of in-plane cyclic tension–compression 

was investigated experimentally. Metallographic observations too were used to examine 

the relationship between twinning and the work-hardening behavior. The results 

obtained in the present study are as follows. 

 

1. The work-hardening behavior upon cyclic loading changed significantly when 



compressive pre-strain was applied. The changes in work-hardening behavior were 

more pronounced as the compressive pre-strain increased. On the other hand, the 

work-hardening behavior was almost independent of tensile pre-strain. 

 

2. The occurrence of a sigmoidal stress-strain curve during tension was dependent on 

only compressive pre-strain and strain amplitude of cyclic loading. For instance, the 

second increase in the work-hardening rate upon cyclic loading occurred when the 

compressive pre-strain was small, but the second increase did not occur when the 

compressive pre-strain was large. The second increase in the work-hardening rate 

occurred certainly when the loading direction did not invert to compression. This 

explains why a sigmoidal curve did not occur in the few cases where the loading 

direction was inverted to compression before the second increase in the work-hardening 

rate began. The strain at the beginning of the second increase had a strong correlation 

with the area fraction of twins; thus, the occurrence of the sigmoidal curve may be 

determined by the activity of twinning. 

 

3. The change in the rate of work-hardening at the end of the first increase of 

work-hardening increased as the compressive pre-strain increased. The mechanism of 



this behavior was explained in terms of the change in crystallographic orientations as 

follows. The deformation until the second increase of work-hardening began was 

primarily governed by the activity of detwinning. The area fraction of twins was still 

small when the compressive pre-strain was small. As a result, the effect of the 

detwinning activation on the stress-strain curve may also have been small; thus, the 

gradient of the stress-strain curve did not change rapidly at the end of the first increase 

of work-hardening. On the other hand, the area fraction of twins became large as the 

compressive pre-strain increased. Hence, the effect of detwinning activation on the 

stress-strain curve would also become large, leading to a sharp change in the rate of 

work-hardening at the end of first increase of work-hardening. 
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Figure and table captions 

Table 1. Mechanical properties of sheet materials obtained by a uniaxial tension 

test.a 

Fig. 1. Geometry of a specimen used in the cyclic loading test 

Fig. 2. Photograph of the experimental setup for the cyclic loading test. 

Fig. 3. Symbol definitions. Stress-strain curve of material A with a strain amplitude 

of 6% and a pre-strain of -2% is shown. 

Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude 

of 6% and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was 

used. (The results of (a), (b), and (d) are reproduced from the literature with permission 

[21].) 

Fig. 5. Stress-strain curve obtained by cyclic loading test with a strain amplitude of 

6% and a pre-strain of -4%. Material B was used. 

Fig. 6. Changes in stress at the end of tension and compression for the results with a 

strain amplitude of 6%: (a) stress at the end of compression and (b) stress at the end of 

tension. 

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude 

of 2% and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. 



Material A was used. 

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude 

of 4% and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. 

Material A was used. 

Fig. 9. Changes in stress at the end of tension and compression for the results with a 

strain amplitude of 2%: (a) stress at the end of compression and (b) stress at the end of 

tension. 

Fig. 10. Changes in stress at the end of tension and compression for the results with 

a strain amplitude of 4%: (a) stress at the end of compression and (b) stress at the end of 

tension. 

Fig. 11. Stress-strain curves obtained by reverse loading tests with various εmin 

values. 

Fig. 12. Relationship between εmin and εT. 

Fig. 13. Relationship between εmin and area fraction of twins. 

Fig. 14 Relationship between area fraction of twins and εT. 

Fig. 15. Relationship between area fraction of twins and gT. 

Fig. 16. Relationship between εmin and ρT. 

Fig. 17. Relationship between strain at the beginning of compression and ρC. 



Table 1. Mechanical properties of sheet materials obtained by a uniaxial tension test.a

Material thickness/mm E/GPa σ0.2/MPa σT/MPa r10% r15% F/MPa n

A 0.8 40 168 264 2.25 2.79 478 0.225

B 1.0 42 158 255 2.38 3.05 478 0.252

a The true-stress-strain curve is approximated with . nFσ ε=



Fig. 1. Geometry of a specimen used in the cyclic loading test.
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Fig. 2. Photograph of the experimental setup for the cyclic loading test.
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Fig. 3. Symbol definitions. Stress-strain curve of material A with a strain amplitude of 6% and a 
pre-strain of -2% is shown.



Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 6% 
and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was used. 
(The results of (a), (b), and (d) are reproduced from the literature with permission [21].)

(a)



(b)

Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 6% 
and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was used. 
(The results of (a), (b), and (d) are reproduced from the literature with permission [21].)



(c)

Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 6% 
and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was used. 
(The results of (a), (b), and (d) are reproduced from the literature with permission [21].)



(d)

Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 6% 
and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was used. 
(The results of (a), (b), and (d) are reproduced from the literature with permission [21].)



(e)

Fig. 4. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 6% 
and pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, and (e) -5%. Material A was used. 
(The results of (a), (b), and (d) are reproduced from the literature with permission [21].)



Fig. 5. Stress-strain curve obtained by cyclic loading test with a strain 
amplitude of 6% and a pre-strain of -4%. Material B was used.



Fig. 6. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 6%: (a) stress at the end of compression and (b) stress at the end of tension.

(a)



(b)

Fig. 6. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 6%: (a) stress at the end of compression and (b) stress at the end of tension.



(a)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(b)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(c)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(d)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(e)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(f)

Fig. 7. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 2% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(a)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(b)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(c)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(d)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(e)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(f)

Fig. 8. Stress-strain curves obtained by cyclic loading tests with a strain amplitude of 4% and 
pre-strains of (a) 4%, (b) 0%, (c) -2%, (d) -4%, (e) -5%, and (f) -6%. Material A was used.



(a)

Fig. 9. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 2%: (a) stress at the end of compression and (b) stress at the end of tension.



(b)

Fig. 9. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 2%: (a) stress at the end of compression and (b) stress at the end of tension.



(a)

Fig. 10. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 4%: (a) stress at the end of compression and (b) stress at the end of tension.



(b)

Fig. 10. Changes in stress at the end of tension and compression for the results with a strain 
amplitude of 4%: (a) stress at the end of compression and (b) stress at the end of tension.



Fig. 11. Stress-strain curves obtained by reverse loading tests with various εmin values.
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Fig. 12. Relationship between εmin and εT.
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Fig. 13. Relationship between εmin and area fraction of twins.



Fig. 14 Relationship between area fraction of twins and εT.



Fig. 15. Relationship between area fraction of twins and gT.



Fig. 16. Relationship between εmin and ρT.



Fig. 17. Relationship between strain at the beginning of compression and ρC.
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