
1 
 

Magnetism of fcc/fcc, hcp/hcp twin and fcc/hcp twin-like boundaries in cobalt 

 

Masataka Hakamada1, Fumi Hirashima1, Kota Kajikawa1 and Mamoru Mabuchi1 

 

1 Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto 

University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan 

 

 

 

 

 _______________________________  

Corresponding author: Masataka Hakamada  

Tel.: +81 75 753 5427; fax: +81 75 753 5428. 

E-mail address: hakamada.masataka.3x@kyoto-u.ac.jp 

 

 



2 
 

Abstract 

The magnetic moments of the fcc/fcc, hcp/hcp twin and fcc/hcp twin-like boundaries in cobalt were 

investigated by first-principles calculations based on density functional theory. The magnetic 

moments in fcc/fcc were larger than those of the bulk fcc, while the variations in the magnetic 

moment were complicated in hcp/hcp and fcc/hcp. The magnetovolume effect on the magnetic 

moment at the twin(-like) boundaries was investigated in terms of the local average atomic distance 

and the average deviation from equilibrium; however, the complicated variations in the magnetic 

moment could not be explained from the magnetovolume effect. Next, the narrowing (or broadening) 

of the partial density of states (PDOS) width of 3d orbitals, the number of occupied states for the 

spin-down channel and the PDOS around the Fermi level were investigated. The entire variation in 

the magnetic moment at the twin(-like) boundaries could be understood in terms of these factors. 

Charge transfer occurred in hcp/hcp. In this case, the contributions of 4s and 4p electrons to the 

variation in the magnetic moment were relatively large.  
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1. Introduction 

The magnetic moment of an atom can be interpreted from the viewpoint of the shape and width 

of the density of states (DOS): the magnetic moment is often enhanced by narrowing the DOS width 

of the d bands or by increasing the DOS around the Fermi level. The shape and width of the DOS 

change at planar defects such as grain boundaries (GB) and free surfaces, resulting in an 

enhancement or a reduction in the magnetic moment at planar defects [1–6]. Hampel et al. [1] 

suggested that the bonding at the GB is inhibited among the directional d orbitals owing to changes 

in the coordination number and coordination geometry and that the width of the d band is narrowed; 

as a result, the magnetic moment is enhanced at the GB. To date, an enhancement of the magnetic 

moment at the GB has been observed in iron [1–5] and nickel [3] by first-principles calculations. 

These studies pointed out the importance of the narrowing of the d band width for enhancing the 

magnetic moment at the GB. Recently, the enhanced magnetic moment at the GB has been 

demonstrated experimentally [7], where the magnetic moment at the GB was more than two times 

larger than that of the bulk. Also, it was found that nanocrystalline Fe exhibited a large saturation 

magnetization [8]. On the other hand, a reduction in the magnetic moment due to the presence of GB 

has been observed experimentally (with a vibrating sample magnetometer) [9] and numerically (with 

first-principles simulation) [10]. Thus, the magnetic moment at the GB is still in debate. The 

discrepancy in the magnetic moment variation at the GB may be because the grain boundary 

characteristics such as the coordination number and coordination geometry are too complex to be 
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determined with accuracy. 

Twin boundaries are GB with special symmetry and low disorder. Because the coordination 

number of atoms at twin boundaries is the same as that in the bulk, only the coordination geometry 

affects the magnetic moment of twin boundaries. The effects of twin boundaries on magnetisms have 

been investigated in many studies [11–14]. Sampedro et al. [13] revealed that ferromagnetism of Pd 

nanoparticles is due to their twin boundaries. Also, Alexandre et al. [15] showed that the magnetic 

susceptibility is enhanced at twin boundaries. Recently, it has been reported that nanocrystalline Co 

having a nanoscale lamellar structure with a spacing of 3 nm exhibited larger saturation 

magnetization than bulk hcp Co [16], where the nanolamellar structure consisted of twins. The 

variation in the magnetic moment is limited to a few layers adjacent to the GB [1]. Hence, twins can 

affect the saturation magnetization when the spacing between twin boundaries is of nanometer order. 

Co nanotwins consist of fcc and hcp phases [17] because the stable phase of Co depends on not only 

the temperature but also the size [18]. In the present work, the magnetic moments of fcc/fcc, hcp/hcp 

nanotwin and fcc/hcp nanotwin-like structures in cobalt are investigated by first-principles 

calculations based on density functional theory (DFT) using the CASTEP code [19]. The variations 

in the magnetic moments at the twin(-like) boundaries are analyzed from the viewpoint of the 

magnetovolume effect and the shape and width of the d bands. 

 

2. Simulation methods 
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Four models of the fcc/fcc, hcp/hcp(1), hcp/hcp(2) twin and fcc/hcp twin-like boundaries in 

cobalt were used (Fig. 1). The stacking sequence was ABCBACABCBAC for the fcc/fcc model and 

ABCABABABCABAB for the fcc/hcp model along the [111] direction. The twin planes of the 

hcp/hcp(1),(2) models were (1011)/(1011) and (11 2 4)/(11 2 4), respectively. The fcc/hcp can be 

regarded as an hcp twin, where a unit of CA stacking is the symmetry plane. The fcc/fcc, hcp/hcp(1), 

hcp/hcp(2) and fcc/hcp models have 6, 52, 36, 7 atoms of Co in one supercell, respectively. The 

calculations of magnetic moments were performed using the CASTEP code, where DFT [20,21] was 

used to calculate the electronic properties of the four models. Infinite lattice systems were used with 

periodic boundary conditions. The models were, therefore, ideal for calculations of periodic systems. 

The exchange–correlation interactions were treated using the spin-polarized version of the 

generalized gradient approximation (GGA) within the scheme proposed by Perdew-Burke-Ernzerhof 

(PBE) [22]. The valence electrons described by Vanderbilt-type nonlocal ultrasoft pseudopotentials 

were Co 3d74s2. Ultrasoft pseudopotentials [23] represented in reciprocal space were used for all 

elements in our calculations. All atomic positions were optimized with respect to all structural 

parameters in accordance with Hellman-Feynman forces and stresses using the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [24]. The optimization calculations were 

performed until the convergence criteria were satisfied, that is, 5.0 × 10−6 eV for the energy change 

per atom, 0.01 eV Å−1 for the RMS force, 0.02 GPa for the RMS stress and 5.0 × 10−4 Å for the RMS 

displacement. The cutoff energy was set at 330 eV for all models. The Brillouin zone was sampled 
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with the Monkhorst-Pack k-point grid. A 16×16×3 k-point mesh was used for the fcc/fcc, a 3×10×1 

k-point mesh for the hcp/hcp(1), a 6×4×2 k-point mesh was used for the hcp/hcp(2) and a 16×16×3 

k-point mesh was used for the fcc/hcp. Mulliken populations were employed to obtain the magnetic 

moment per atom. All the calculations of the lattice parameters and magnetic moments were 

performed after optimization calculations for the most stable geometry. The lattice parameters of 

bulk fcc and hcp Co were calculated by optimization calculation; as a result, the lattice parameter 

was 3.513 Å for the bulk fcc Co and 2.520 Å (a-axis) and 4.069 Å (c-axis) for bulk hcp Co. These 

values are almost the same as those in the previous work [25]. The magnetic moment of an atom in 

bulk Co was 1.68 µb for the fcc phase and 1.68 µb for the hcp phase. In addition, the magnetic 

moments of bulk Co were calculated under the condition that the lattice parameter was forced to be 

isotropically expanded or shrunk to investigate the magnetovolume effect. The individual 

contributions of 3d, 4s and 4p electrons to the magnetic moment were obtained from the difference 

between the spin-up and spin-down electrons by integrating the partial DOS within each atomic 

sphere. In the present work, all the calculations were performed at 0 K. Recently, Polesya et al. [26] 

investigated the temperature dependence of the average magnetic moment of free Fe clusters 

consisting of 9–89 atoms and they showed that an average magnetic moment at about 300 K is 

essentially the same as that at 0 K. This suggests that the temperature does not affect the theoretical 

results for the magnetic properties in the range of 0–300 K.  

Also, effects of the twin spacing in the fcc/fcc model (Fig. 1 (a)) were investigated using the 
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modified fcc/fcc model with a 6-atomic-layer cell. As a result, the similar results were obtained for 

both the 6-atomic-layer cell model and the 3-atomic-layer cell model. Thus, effect of the twin 

spacing on the magnetic moment was minor. 

 

3. RESULTS AND DISCUSSION 

3.1 Magnetic moments 

The magnetic moments of the Co atoms for the fcc/fcc, hcp/hcp(1), hcp/hcp(2) and fcc/hcp are 

listed in Table 1. In the fcc/fcc, the magnetic moments were larger than those of the bulk fcc, and 

were independent of the location, at least under the conditions investigated. On the other hand, the 

magnetic moments in the hcp/hcp(1), except for Co1 and Co7, were less than those of the bulk hcp, 

while the magnetic moment of Co1 was equal to that of the bulk hcp and that of Co7 was much 

larger. In the hcp/hcp(2), the magnetic moments of Co2, Co3, Co5, Co6, Co8 and Co9 were equal to 

those of the bulk hcp, but the magnetic moment of Co1 was larger than that of the bulk hcp and the 

magnetic moments of Co4 and Co7 were much lower. As a whole, the magnetic moment tended to be 

reduced at the hcp twin boundaries with a few exceptions, such as the greatly enhanced moment of 

Co7 in the hcp/hcp(1), while it was enhanced at the fcc twin boundaries. These trends were also 

found in the fcc/hcp. 

The magnetic moment is changed by about 15% in the case where the boundary structure is fully 

disordered [10]. In the present work, the magnetic moment was changed by at most only 7%, as 
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shown in Table 1. This is reasonable, considering the intensity of structural disorder of twins. On the 

other hand, the variation in the magnetic moment was not monotonic for the twins. A complicated 

variation in the magnetic moment was obtained for the Σ5(210) GB in iron; however, it was 

attributed to the variation in the coordination number [2,4]. Clearly, the complicated variations in the 

magnetic moment at the twin(-like) boundaries are related to local disorder or reconstruction [15]. 

Table 2 shows the individual contributions of 3d, 4s and 4p electrons to the magnetic moments 

for the fcc/fcc, hcp/hcp(1), hcp/hcp(2), fcc/hcp, bulk fcc and bulk hcp in cobalt. It can be seen that the 

3d electrons dominantly contribute to the magnetic moments. The roles of 4s and 4p electrons will be 

discussed later.  

 

3.2 Effects of atomic distance 

The magnetic moment at planar defects is affected by changes in the coordination number and 

coordination geometry. However, because the coordination number of atoms at twin boundaries is the 

same as that in the bulk, the variations in the magnetic moment in Table 1 are related to the 

coordination geometry. It has been demonstrated by many experiments with SQUID magnetometer 

[27] and x-ray magnetic circular dichroism [28], and first-principles simulations [3,29,30] that 

magnetovolume or magnetostriction affects the magnetic moment. 

Szpunar et al. [10] used the local average atomic distance and the average deviation from 

equilibrium to quantify the geometry of each atom, where the local average atomic distance is 
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defined as the average distance between a given site of an atom and its nearest neighbors, and the 

average deviation from equilibrium is defined as the average deviation from the nearest-neighbor 

distance. The relationship between the magnetic moment and local average atomic distance is shown 

in Fig. 2 (a), while a plot of the magnetic moment vs the average deviation from equilibrium is 

shown in Fig. 2 (b), for atoms in the four twin(-like) boundary models. There seems no correlation 

between the magnetic moment and atomic distance and deviation. Thus, complicated variations in 

the magnetic moment at the twin(-like) boundaries obtained in the present work cannot be explained 

from the magnetovolume effect with the local average atomic distance and the average deviation 

from equilibrium. This is likely to be because the spacing between the twin boundaries is narrow and 

the lattice disorder in the relaxed twin(-like) boundary structures is complicated. 

  

3.3 Relation between PDOS and magnetic moment 

It is known that the rupture of cubic symmetry at the GB prevents the t2g-eg splitting of the d 

bands, yielding the narrowing of the d bands and an enhanced magnetic moment [1]. In twin 

boundaries as well, the breaking of the cubic symmetry while maintaining the same number of 

nearest-neighbor atoms can induce the rearrangement of the d bands. Hence, the relation between the 

partial DOS (PDOS) and the magnetic moment were investigated on some atoms in the fcc/fcc, 

hcp/hcp(1), hcp/hcp(2) and fcc/hcp. The PDOS of 3d orbitals for spin-up and -down electrons are 

shown in Fig. 3 for (a) Co1 and (b) Co2 in the fcc/fcc, where the solid line is the PDOS for the fcc/fcc 
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and the dashed line is the PDOS for the bulk fcc. The difference in PDOS width was negligible both 

between Co1 and the bulk and between Co2 and the bulk. Hence, the enhanced magnetic moment for 

the fcc/fcc cannot be explained by the narrowing of the PDOS. 

The PDOS of 3d orbitals for spin-up and -down electrons are shown in Fig. 4 for (a) Co1, (b) 

Co2 and (c) Co7 in the hcp/hcp(1), where the dashed line is the PDOS for the bulk hcp. A narrowed 

PDOS width was found for Co1, Co2 and Co7. This trend of a narrowed PDOS width was obtained 

for all other atoms in the hcp/hcp(1). As shown in Table 1, an enhanced magnetic moment was found 

only in Co7, while the magnetic moments of Co2–Co5 were less than those of the bulk hcp, which 

do not correspond to a narrowed PDOS width. 

The PDOS of 3d orbitals for spin-up and -down electrons are shown in Fig. 5 for (a) Co1, (b) 

Co2 and (c) Co4 in the hcp/hcp(2). A broadened PDOS width was found in Co4, which corresponds 

to the reduced magnetic moment. On the other hand, there was no difference in the PDOS width 

between Co1 and the bulk hcp. This does not agree with the result that the magnetic moment of Co1 

was less than that of the bulk hcp. In the case of Co2, the PDOS width was broadened; however, 

there was no difference in magnetic moment between Co2 and the bulk hcp. The PDOS of 3d orbitals 

for spin-up and -down electrons is shown in Fig. 6 for Co7 in the fcc/hcp. The magnetic moment of 

Co7 was lower than that of the bulk hcp, but its PDOS width was almost the same as that of the bulk 

hcp. Thus, the variations in the magnetic moment at the fcc/fcc, hcp/hcp and fcc/hcp cannot be 

explained only by the narrowing or broadening of the PDOS width.  
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Recently, it has been reported that the magnetic moment depends on the number of occupied 

states for the spin-down channel [4,31]. As shown in Fig. 4 (a), the number of occupied states for the 

spin down channel of Co1 in the hcp/hcp(1) was more than that of the bulk hcp, although its PDOS 

width was narrowed. Therefore, it appears that the finding that the magnetic moment of Co1 in the 

hcp/hcp(1) is equal to that of the bulk hcp results from the offset of the narrowed PDOS width and an 

increase in the number of occupied states for the spin-down channel. In the hcp/hcp(2), the number 

of occupied states for the spin-down channel of Co1 was lower than that the bulk hcp, which 

corresponds to the enhanced moment of Co1 in the hcp/hcp(2). In the case of Co2 in the hcp/hcp(2), 

a broadened PDOS width was found, while the number of occupied states for the spin-down channel 

of Co1 was less than that of the bulk hcp. Therefore, the offset of these effects is responsible for the 

the magnetic moment of Co2 being equal to that of the bulk hcp. Thus, the number of occupied states 

for the spin-down channel state remarkably affects the magnetism of the boundaries. However, there 

are still some exceptions; for example, the enhanced magnetic moment of Co2 for the fcc/fcc and the 

reduced magnetic moment of Co2 for the hcp/hcp(1). 

In the Stoner theory of itinerant magnetisms, the origin of a ferromagnetic order is explained by 

a rigid shift of the spin-up and spin-down bands under the influence of the exchange interaction. Čak 

et al. [3] noted that the variation in the magnetic moment at the GB can be understood by the Stoner 

theory of itinerant magnetisms. The PDOS of 3d orbitals is shown in Fig. 7 (a) for Co2 in the fcc/fcc 

and in Fig. 7 (b) for the Co2 in the hcp/hcp(1). The inspection of Fig. 7 reveals that the value of the 
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integral of the PDOS from the peak at –1.0 eV to the Fermi level for Co2 in the fcc/fcc was slightly 

larger than that for the bulk fcc. This corresponds to the enhanced magnetic moment for Co2 in the 

fcc/fcc. Also, the value of the integral of the PDOS from the peak at –0.9 eV to the Fermi level for 

Co2 in the hcp/hcp(1) was lower than that for the bulk hcp, which corresponds to the reduced 

magnetic moment for Co2 in the hcp/hcp(1). Thus, the entire variation of the magnetic moment at the 

twin(-like) boundaries can be understood from the narrowing (or broadening) of the PDOS width of 

3d orbitals, the number of occupied states for the spin-down channel and the PDOS around the Fermi 

level. 

Note that the number of d electrons, which is the value of the integral of the PDOS from minus 

infinity to the Fermi level, for Co2 of the hcp/hcp(1) was less than that of the bulk hcp. This indicates 

that charge transfer occurred. Moruzzi and Marcus [30] showed that charge transfer occurs when the 

lattice constant becomes large, resulting in an enhanced magnetic moment. Also, Takano et al. [32] 

showed that charge transfer plays a critical role in the enhancement of magnetic moment due to the 

presence of vacancies. They noted that the charge transfer gives rise to the perturbation of the Fermi 

level and a change in the DOS at the Fermi level. Another important effect of the charge transfer is 

that the numbers of s, p and d electrons occupied in the outermost shell change. As shown in Table 2, 

the 4s and 4p electrons give rise to diamagnetism. The contributions of 4s and 4p in the hcp/hcp(1) 

were larger than those in the fcc/fcc. This indicates the importance of s and p electrons in determining 

magnetic properties in the case of charge transfer. 
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4. Conclusions 

The magnetic moments of the fcc/fcc, hcp/hcp twin and fcc/hcp twin-like boundaries in cobalt 

were investigated by first-principles calculations based on DFT using the CASTEP code. The 

magnetic moments in the fcc/fcc were larger than those of the bulk fcc. On the other hand, in the 

hcp/hcp and fcc/hcp, the variations in the magnetic moment were complicated owing to the 

relaxation or reconstruction at the twin boundaries. 

The complicated variations in the magnetic moment at the twin boundaries could not be 

explained by the local average atomic distance and the average deviation from equilibrium. The 

narrowing (or broadening) of the PDOS width of 3d orbitals, the number of occupied states for the 

spin-down channel and the PDOS around the Fermi level were responsible for the entire variation in 

the magnetic moment at the twin boundaries. 

In an atom in the hcp/hcp, charge transfer occurred. In this case, the numbers of s, p and d 

electrons occupying in the outermost shell were varied, and the contributions of 4s and 4p to the 

magnetic moment were relatively larger than those in the case of no charge transfer. 
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Table and Figure Captions 

 

Table 1 Magnetic moments of the Co atoms for the fcc/fcc, hcp/hcp(1), hcp/hcp(2) and fcc/hcp. The 

location of each atom is shown in Fig. 1.  

Table 2 Individual contributions of 3d, 4s and 4p electrons to the magnetic moments (in µb) for the 

fcc/fcc, hcp/hcp(1), hcp/hcp(2), fcc/hcp, bulk fcc and bulk hcp in cobalt. The magnetic 3d 

electrons dominantly contribute to the magnetic moments. 

 

Fig. 1 Four models of twin(-like) boundaries in cobalt: (a) fcc/fcc, (b) hcp/hcp(1), (c) hcp/hcp(2) 

and (d) fcc/hcp. The stacking sequence is ABCBACABCBAC for the fcc/fcc model, and 

ABCABABABCABAB for the fcc/hcp model along the [111] direction. The twin planes of 

the hcp/hcp (1) and hcp/hcp (2) models are (1011)/(1011) and (11 2 4)/(11 2 4), respectively.  

 

Fig. 2 Plots of (a) the magnetic moment vs the local average atomic distance and (b) the magnetic 

moment vs the average deviation from equilibrium for the twin(-like) models of Co. 

 

Fig. 3 PDOS of 3d orbitals for spin-up and -down electrons for (a) Co1 and (b) Co2 in the fcc/fcc, 

where the solid line is the PDOS for the fcc/fcc and the dashed line is the PDOS for the bulk 

fcc. 
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Fig. 4 PDOS of 3d orbitals for spin-up and -down electrons for (a) Co1, (b) Co2 and (c) Co7 in the 

hcp/hcp(1), where the solid line is the PDOS for the hcp/hcp(1) and the dashed line is the 

PDOS for the bulk hcp. 

 

Fig. 5 PDOS of 3d orbitals for spin-up and -down electrons for (a) Co1, (b) Co2 and (c) Co4 in the 

hcp/hcp(2), where the solid line is the PDOS for the hcp/hcp(2) and the dashed line is the 

PDOS for the bulk hcp. 

 

Fig. 6 PDOS of 3d orbitals for spin-up and -down electrons for Co7 in the fcc/hcp, where the solid 

line is the PDOS for the fcc/hcp and the dashed line is the PDOS for the bulk hcp. 

 

Fig. 7 PDOS of 3d orbitals for (a) Co2 in the fcc/fcc and (b) Co2 in the hcp/hcp(1). The value of 

the integral of the PDOS from the peak at –1.0 eV to the Fermi level for Co2 in the fcc/fcc is 

larger than that for the bulk fcc. Also, the value of the integral of the PDOS from the peak at 

–0.9 eV to the Fermi level for Co2 in the hcp/hcp(1) is lower than that for the bulk hcp. 
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Tables 

Table 1 

Site fcc/fcc  hcp/hcp(1)  hcp/hcp(2)  fcc/hcp 

Co1 1.70  1.68 1.70  1.66 

Co2 1.70  1.64 1.68 1.68 

Co3 1.70  1.64 1.68 1.70  

Co4 1.70  1.64 1.58 1.68  

Co5 
 

1.66 1.68 1.66  

Co6 
 

1.66 1.68 1.64  

Co7 
 

1.78 1.58 1.64 

Co8 
  

1.68 
 

Co9 
  

1.68 
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Table 2 
Site 

 
fcc/fcc hcp/hcp(1) hcp/hcp(2) fcc/hcp fcc Co hcp Co 

Co1 3d 1.824 1.846 1.832 1.803 1.789 1.808 

 
4s –0.032 –0.025 –0.0225 –0.033 –0.032 –0.033 

 
4p –0.125 –0.136 –0.128 –0.128 –0.121 –0.127 

        Co2 3d 1.817 1.797 1.801 1.806 
  

 
4s –0.033 –0.032 –0.029 –0.034 

  
 

4p –0.120  –0.140  –0.122 –0.125 
  

        Co3 3d 1.817  1.795 1.812 1.809 
  

 
4s –0.033  –0.031  –0.021 –0.034 
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