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Abstract: Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic 

model dimers were studied with various deoxygenated dimers under the pyrolysis conditions 

of N2 / 400oC / 1min.  Although phenolic dimer with hydroxyl groups at Cα- and 

Cγ-positions was much more reactive than the corresponding non-phenolic type, 

deoxygenation at the Cγ-position substantially reduced the reactivity up to the level of the 

non-phenolic type.  These results are discussed with the cleavage mechanism via quinone 

methide intermediate formation, which is activated through intramolecular hydrogen bonds 

between Cα- and Cγ- hydroxyl groups.  
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Introduction 

 

Betha-ether linkage is an important structure in pyrolytic depolymerization of lignin, 

because this structure, the most abundant structure in lignin macromolecule, is reported to be 

cleaved effectively under pyrolysis conditions.1-3  Model compound study indicated that 

phenolic β-ether structure is more reactive than the non-phenolic type. 2, 3  Although the 

content of the phenolic structure is small in natural lignin,4 chain depolymerization is 

expected via successive formation of the new phenolic structure through cleaving the 

phenolic end structure.  Thus, the activation mechanism in the phenolic β-ether structure is 

especially important to understand and control the depolymerization behavior in lignin 

pyrolysis.  

Several mechanisms including ionic (heterolytic) and homolytic mechanisms are 

proposed for the pyrolytic cleavage of the β-ether linkage.  As for the ionic mechanism, 

retro-ene and oxirane mechanisms are proposed.   Klein and Virk5 proposed a 6-centered 

retro-ene mechanism through kinetic analysis of the formation behavior of styrene and 

phenol from phenethyl phenyl ether, which has no substituent groups at the aromatic ring and 

side-chain.  Kislitsyn et al.6 proposed an oxirane mechanism, in which β-ether is 

heterolytically cleaved by the attack of Cα- or Cγ-hydroxyl group to the β−carbon.  Brežný 

et al.2 reported the several pyrolysis products from guaiacylglycerol-β-guaiacyl ether and 

explained their formation by oxirane mechanism.  As for homolytic mechanism, homolytic 

Cβ-O session via benzyl radical is proposed for the pyrolytic cleavage of phenethyl phenyl 

ether.7,8  Evans et al.9 also proposed a modified homolytic mechanism assisted by 

Cα-hydroxyl group.  However, these mechanisms are still controversial because of the lack 

of their supporting proofs. 

In solvent or under steam conditions, homolytic Cβ-O cleavage via quinone methide 

intermediate is proposed by several groups.  Sano’s group10-12 reported the several 
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condensation products as a proof of the quinone methide intermediate involved in the β-ether 

cleavage in pulping reaction in water-organic solvent mixture.  Tanahashi et al.13 also 

proposed a similar homolytic mechanism under stream explosion conditions.  Kawamoto et 

al.14 reported that the homolytic mechanism via quinone methide intermediate is also 

important under pyrolysis conditions without solvent and steam environment, from the 

relationship between reactivity and Hammett σp or ∆BDE (bond dissociation energy) in 

pyrolysis of  α- and α,β-diether types of model dimers with variously p-substituted 

Cα-phenyloxy groups.  They also explained that higher reactivity of the phenolic form is 

attributed to the easier formation of the quinone methide intermediate than the non-phenolic 

one. 

In this paper, role of Cα- and Cγ-hydroxyl groups on the pyrolytic β-ether cleavage of 

phenolic model dimer studied with various deoxygenated dimers at 400oC are presented. 

 

Materials and method 

 

Pyrolysis products were separated by preparative thin layer chromatography (TLC) on 

silica gel plate (Kieselgel 60 F254, Merk).  High performance liquid chromatography 

(HPLC) was carried out with Shimadzu LC-10A under the following chromatographic 

conditions (column: STR ODS-II, flow rate: 0.7 ml/min, eluent: MeOH/H2O=30/70→100/0 

(0→ 40min), 100/0(10min), detector: UV254nm, temperature: 40oC).  Proton magnetic 

resonance (1H-NMR) spectra were recorded in CDCl3 with Varian AC-300 (300MHz) 

spectrometer with tetramethylsilane (TMS) as an internal standard. 

 

Materials 

 

Model compounds used in this study are shown in Fig. 1.  Results of the 
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1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol 

(guaicylglycerol-β-guaicyl ether, 1) and 

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol 

(veratrylglycerol-β-guaiacyl ether, 5) are already described in the previous paper.3  So, 

deoxygenated model dimers 2-4 were prepared. α-Deoxy dimer, 

3-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanol (2) was prepared by the 

modified procedure described by Freudenberg and Müller 15 and identified by 1H-NMR 

analysis of the acetate compared with the spectrum already reported.16  γ-Deoxy dimer, 

1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanol (3) was prepared by the 

method described by Dimmel and Shepard.17  α, γ-Dideoxy dimer, 

1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane (dihydroeugenol-β-guaiacyl 

ether, 4) was prepared according to the procedure described by McKague et al.18 from 

β-bromodihydroeugenol and guaiacol and identified with the 1H-NMR spectrum of the 

acetate compared with the spectrum already reported.19 

 

Pyrolysis and product analysis 

 

Pyrolysis of lignin model compound was conducted with the experimental setup as 

previously reported,3 which contains a round flask (volume: 20 ml) with a glass tube (120mm 

long and 14mm in diameter) for trapping the volatile products and a nitrogen bag attached 

through a tree-way tap.  Model dimer (10 mg) was placed at the bottom of the flask by 

evaporating the solution in MeOH (2.0 ml), and the air in the system was replaced with 

nitrogen.  Pyrolysis was conducted by inserting the flask in a salt bath (KNO3 / NaNO3 = 

1/1, w/w) preheated at 400oC for 1 min.  After pyrolysis, the flask was immediately cooled 

with air flow for 30 min and cold water, and then the reaction system was opened to release 

the gaseous products.  The reaction mixture was extracted with THF (5.0 ml) twice and the 
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combined solution was evaporated in vacuo to give THF-soluble fraction.   Products and 

the model dimer recovered in the THF-soluble fraction were quantified by HPLC with 

p-dibromoboenzene as an internal standard.  Coniferyl alcohol, isoeugenol and guaiacol 

were also confirmed by the 1H-NMR spectra of the isolated compounds compared with those 

of the authentic compounds. 

 

Results and discussion 

 

Figure 2 summarizes the HPLC chromatograms of the pyrolysis mixtures obtained from 

deoxygenated model dimers 2-4 under the pyrolysis conditions (N2 / 400oC / 1 min).  All 

model dimers gave similar types of the products including 1-phenylpropnenes and guaiacol.  

Guaiacol is a product which indicates the β-ether cleavage. 

Table 1 summarizes the product yields from dimers 2-4 with reacted model dimer (%) 

calculated from the model dimer recovery.  The results of dimer 1 with hydroxyl groups at 

the Cα- and Cγ-positions and its non-phenolic type 5 are also included, both of which are 

already reported in the previous paper.3  Except for the vinyl ether formation, product types 

are similar between deoxygenated dimers 2-4 and dimers 1 and 5.  However, the yields are 

quite different depending on the structure.  Although phenolic dimer 1 is very reactive as 

indicated by the reacted model dimer (50.3%) and the product yields [guaiacol (50.1%) and 

1-phenylpropene (coniferyl alcohol) (30.4%)], the reactivities of the deoxygenated dimers 

2-4 are comparatively very low [reacted model dimers (4.3-7.9%), guaiacol (3.5-4.1%) and 

1-phenylpropene (1.1-1.7%)].  Interestingly, these reactivities are rather similar to that of 

the non-phenolic dimer 5 [reacted model dimers (8.4%), guaiacol (3.1%) and 

1-phenylpropene (4-O-methyl coniferyl alcohol) (0.5%)].  

These results are very interesting in terms of the cleavage mechanism.  As shown in 

Fig. 3, two types of the reactions take place in the pyrolysis of β-ether types of model dimer, 
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which include the Cβ-O cleavage (a) and Cγ-elimination to form vinyl ether (b).3  

1-Phenylpropenes are the products from pathway a.  Phenolic vinyl ether structure was very 

reactive under the present pyrolysis conditions to form the β-ether cleaved products.3  So, 

there is a little information about the reaction pathway b from the present results.  However, 

low yields of the 1-phenylpropnen derivatives as well as guaiacol from deoxygenated dimers 

2-4 indicate that β-ether cleavage via pathway a substantially suppressed in the deoxygenated 

structures to the level of the non-phenolic dimer 5. 

As already described, homolytic Cβ-O cleavage is substantially activated in the quinone 

methide intermediate (Fig. 4),14 probably due to lowering the bond dissociation energy of the 

Cβ-O bond in quinone methide form.  Lower bond dissociation energy in quinone methide 

form is calculated by Russian scientist.20  Therefore, formation of the quinone methide 

intermediate is critical for the higher β-ether cleavage reactivity of the phenolic model dimer 

1.  Cα-Hydroxyl group and p-hydroxylated aromatic ring are the important components in 

quinone methide formation from lignin related compound in solvent.  However, low 

reactivity of the Cγ-deoxygenated dimer 3, which also has these components, indicates that 

quinone methide is not formed effectively during pyrolysis of dimer 3.  This leads to a very 

interesting conclusion that the Cγ-hydroxyl group plays an important role in quinone methide 

formation under pyrolysis conditions.    

Unlike the reaction in solvent, pyrolysis conditions do not include the solvent 

stabilizing effects of polar or ionic species.  Low reactivity of dimer 3 may related to this 

characteristic nature of pyrolysis.  Different pyrolytic mechanisms are also indicated 

between dimers 1 and 3 by our proceeding studies.21  Although further study is necessary to 

confirm the hypothesis, high reactivity of dimer 1 for quinone methide formation is 

explainable with the stable cyclic transition state (Fig. 4) with hydrogen bonds between Cα- 

and Cγ-hydroxyl groups.  Cyclic transition state mechanism is proposed for pyrolysis of 

β-hydroxy ketones,22, 23 β-hydroxy olefins24 and β,γ-unsaturated acids.25, 26  For example, 
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thermal retrograde aldol condensation of some β-hydroxy ketone is reported to proceed much 

faster in the structure which can form a cyclic transition state than other similar β-hydroxy 

ketones.22  The β-ether linkage in Cγ-deoxygenated dimer 3, which can not form these 

hydrogen bonds, is considered to proceed in direct homolytic Cβ-O cleavage as like model 

dimers 2, 4 and 5. 
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Table 1. Yields of some degradation products from dimers 1-5 under the pyrolysis conditions 

(N2 / 400oC / 1min). 
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