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Abstract

We prove the non-integrability of the spacial n-center problem. In
order to prove it, we focus on the singularity of the differential equations
extended to the complex space and then apply the Morales-Ramis theory
to it. We also show the non-integrability of the spacial restricted n + 1-
body problem.

1 Introduction

Let H : D → R be a smooth function where D is an open set in R2k. The
Hamiltonian system is represented by the ordinary differential equations

dqj
dt

=
∂H

∂pj
(q,p),

dpj
dt

= −∂H

∂qj
(q,p) (j = 1, . . . , k) (1)

where (q,p) = (q1, . . . , qk, p1, . . . , pk) ∈ D. The function H is called the Hamil-
tonian and the natural number k is called the degrees of freedom.

A function F : D → R is called the first integral of (1) if F is conserved
along each solution of (1). The Poisson bracket of two functions F,G : D → R
is the function defined by

{F,G} =

k∑
k=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
.

A function F : D → R is a first integral of (1) if and only if {F,H} is identically
zero. Hamiltonian system (1) is called integrable if there are k first integrals
F1(= H), F2, . . . , Fk such that dF1, . . . , dFk are linearly independent in an open
dense set of D and that {Fi, Fj} is identically zero for any i, j = 1, . . . , k.

The behavior of the orbits of integrable systems can be understood as quasi-
periodic orbits on k-dimensional tori (see [1, Chapter 10]) while the dynamics of
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the non-integrable Hamiltonian systems are thought to be chaotic. Therefore it
is an important subject to determine whether a given Hamiltonian is integrable
or non-integrable.

This subject have been studied for centuries. Several approaches have been
attempted for proving the integrability of some Hamiltonians. Noether theorem
states that if a Hamiltonian has some symmetry, it has some first integrals.
For example, from the fact that the central force systems have the rotating
symmetry, the angular momentum is a first integral. As another method, if the
Hamilton-Jacobi equation can be solved, the Hamiltonian can be represented
as a function which depends only on the momentum variables. For example,
the Hamilton-Jacobi equation of the two-center problem is separable, and hence
can be solved. Therefore the two-center problem is integrable. As an example
that the Hamilton-Jacobi equation is not separable, but that the Hamiltonian
is integrable, Toda lattice is well known.

On the other hand, some methods for showing the non-integrability have
been developed. Bruns [2] proved that in the 3-body problem there is no addi-
tional first integral which is represented by an algebraic function. After that,
Poincaré [10] proved that for the perturbed Hamiltonian systems, there is no
analytic first integral which also depends analytically on a parameter. Then by
applying it to the restricted 3-body problem, he proved the non-existence of an
analytic first integral depending analytically on a mass parameter.

Another theory in this field was originated by Kovalevskaya [6]. By focusing
on singularities, she discovered new integrable parameters for the rigid body
model. As a development of her approach, Ziglin [12, 13] established the theory
of the monodromy group for proving the non-integrability. By applying the
Ziglin analysis, Yoshida [11] provided criteria for the non-integrability of the
homogeneous Hamiltonian systems. Morales-Ruiz and Ramis [8, 9] established
a stronger theory by applying the differential Galois theory (Picard-Vessiot the-
ory). Maciejewski and Przybylska [7] proved the non-integrability of the three-
body problem for any fixed masses by using the Morales-Ramis theory. In order
to prove it, they focused on the homothetic solutions and analyzed the varia-
tional equations along it.

In this paper, we show the non-integrability of the spatial n-center problem.
Fix n positive contants mk and n distinct points ck ∈ Rd, and let

U(q) = −
n∑

k=1

mk

|q − ck|
= −

n∑
k=1

mk√
(q − ck) · (q − ck)

.

The n-center problem is given by the Hamiltonian system with Hamiltonian

H(q,p) =
1

2
|p|2 + U(q).

As we wrote above, the planar two-center problem is integrable(see for example
[1]). The spacial two-center problem is also integrable. Bolotin [3] proved the
non-integrability of the planar n-center problem for n ≥ 3 by using geometric
methods. The purpose of this paper is to study the non-integrability of the
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spacial n-center problem. Our appoach is based on the differential Galois theory,
and is quite different from Bolotin’s one.

This paper is organized as follows. In the next section, we focus on the sin-
gularities and extend the differential equation to complex differential equations,
and then show our main theorem. In Section 3, we provide one example. In
Section 4 we show the non-integrability of the restricted n+ 1-body problem.

2 Singularity analysis

The property of the singularities ck is like one of the Kepler problem, and the
singularities are isolated. Hence it is difficult to show the non-integrability by
focusing on one of the singularities. But if we extend the domain R3 to C3, the
sets of the singularities

Sk = {(x, y, z) ∈ C3 | (x− ak)
2 + (y − bk)

2 + (z − ck)
2 = 0} (i = 1, . . . , k)

are 2-dimensional complex varieties and some of Sk can intersect.
Let e = (ex, ey, ez) ∈ S1 ∩ S2 ∩ · · · ∩ Sl and e /∈ Sk(k = l + 1, . . . , n). The

kinetic part 1
2 (p

2
x+p2y+p2z) of the Hamiltonian can be regarded as a holomorphic

function on C3. Since the potential function

U = −
n∑

k=1

mk√
(x− ak)2 + (y − bk)2 + (z − ck)2

includes square root, U is not meromorphic. We can not apply the Morales-
Ramis theory directly. But Combot [4] established the extension so as to apply
for such Hamiltonian systems.

The scaled Hamiltonian is defined by

H0(q,p) = lim
λ→+0

λ2H(λ4q + e, λ−1p).

It can be represented by

H0(q,p) =
1

2
|p|2 −

l∑
k=1

mk√
2q · (e− ck)

.

Here the inner product stands for the real one: x·y = x1y1+x2y2+x3y3(x1, . . . , y3 ∈
C). Note that this is different from the Hermitian inner product.

Proposition. If H is rationally integrable, then H0 is rationally integrable1.

Proof. Assume that there is a rational function F : C6 → C such that {F,H} =
0. If λ = 0 is a singularity of F (λ4q + e, λ−1p), this is a pole, since F is

1” rationally integrable” means that the Hamiltonian with k degrees of freedom is integrable
such that the first integrals F1, . . . , Fn can be taken as rational functions on Cn.
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rational. Hence the Laurent extension of F (λ4q + e, λ−1p) with respect to λ
can be written as follows:

F (λ4q + e, λ−1p) =

∞∑
k=K

λkFk−K(q,p).

If ∇F0 and ∇H0 are linearly dependent, we consider F − λK+2H instead of F .
Since ∇F and ∇H are linearly independent, we can assume that ∇F0 and ∇H0

are linearly independent by repeating it. Since

{F,H} = λk−2{F0,H0}+O(λk−1) (λ → +0),

we get
{F0,H0} = 0.

Therefore H0 has independent from H0 and rational first integral F0.

The canonical differential equations of H0 are

d2q

dt2
=

l∑
k=1

mk

(2q · (e− ck))3/2
(e− ck). (2)

We study them as complex differential equations. Suppose that d = (dx, dy, dz)
satisfies

Cd =

l∑
k=1

mk

(2(e− ck) · d)3/2
(e− ck)

and that g(t) satisfies
d2g

dt2
= Cg−3/2.

Then q = g(t)(dx, dy, dz) satisfies (2).
The variational equations along this solution are

d2X

dt2
= g−5/2AX

where

A =

 Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 =

l∑
k=1

3mk

(2(e− ck) · d)5/2
t(e− ck)(e− ck).

Since
(

dg
dt

)2
+ 2Cg−1/2 is conserved, we fix the value at h:

1

2

(
dg

dt

)2

+ 2Cg−1/2 = h.
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By letting w = 2C
hg(t)1/2

, the variational equations become

w(1− w)
d2X

dw2
+

(
3− 7

2
w

)
dX

dw
= C−1AX.

Assume that A is diagonalizable. Let ρ1, ρ2, ρ3 be the eigenvalues of A.
By diagonalizing the matrix A, each component of the differential equations is
represented by

w(1− w)
d2ξ

dw2
+

(
3− 7

2
w

)
dξ

dw
− C−1ρkξ = 0. (3)

This is identical to the Gaussian hypergeometric equation

w(1− w)
d2ξ

dw2
+ (γ − (α+ β + 1)w)

dξ

dw
− αβξ = 0 (4)

where γ = 3, α + β = 5
2 and αβ = ρk

C . Here we introduce Kimura’s result on
the solvability of the Gaussian hypergeometric equation.

Proposition (Kimura [5]). The hypergeometric equation (4) is solvable if and
only if λ = 1 − γ, µ = γ − α − β, ν = β − α satisfies one of the following three
property:

• at least one of λ± µ± ν is odd integer,

• (±λ,±µ,±ν) are in Schwarz table (in an arbitrary order) modulo Z:(
1

2
,
1

3
,
1

3

)
,

(
2

3
,
1

3
,
1

3

)
,

(
1

2
,
1

3
,
1

4

)
,

(
2

3
,
1

4
,
1

4

)
,

(
1

2
,
1

3
,
1

5

)
,(

2

5
,
1

3
,
1

3

)
,

(
2

3
,
1

5
,
1

5

)
,

(
1

2
,
2

5
,
1

5

)
,

(
3

5
,
1

3
,
1

5

)
,

(
2

5
,
2

5
,
2

5

)
,(

2

3
,
1

3
,
1

5

)
,

(
4

5
,
1

5
,
1

5

)
,

(
1

2
,
2

5
,
1

3

)
,

(
3

5
,
2

5
,
1

3

)
• at least two of λ, µ, ν belong to 1

2 + Z.

In our case, λ, µ and ν are

λ := 1− γ = −2,

µ := γ − α− β =
1

2
,

ν := β − α = ±
√
(α+ β)2 − 4αβ = ±

√
25

4
− 4ρk

C
.

By checking the list in this proposition, it turns out that (3) is integrable if and
only if

νk =

√
25

4
− 4ρk

C
(5)
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belongs to 1
2+Z for k = 1, 2, 3. The Morales-Ramis theory [8, 9] states that if the

Hamiltonian system is integrable, the variational equations along any particular
solution are integrable. Their theorem can be applied to meromorphic Hamil-
tonians. Combot[4] extended their theorem for algebraic potential systems like
the n-body problem, and hence the theorem works for our Hamiltonian H0.
Consequently we have proven the following:

Theorem 1. If the n-center problem is rationally integrable, νk defined by (5)
belongs to 1

2 + Z for each k = 1, 2, 3.

3 Example

We give an example here. Assume that mk = 1(k = 1, . . . , l) and (ak, bk)(k =
1, . . . , l) forms regular l-gon:

ak = cos
2πk

l
, bk = sin

2πk

l
(k = 1, . . . , l).

Let (ex, ey, ez) and (dx, dy, dz) be

(ex, ey, ez) = (0, 0,±i), (dx, dy, dz) =

(
0, 0,− i

2

(
−2l

c

)2/5
)
.

Next we compute A11, . . . , A33. Assume that l ≥ 3. We obtain

A11 =
3

(2idz)5/2

l∑
k=1

a2k =
3

(2idz)5/2

l∑
k=1

cos2
2πk

l
=

3

(2idz)5/2

l∑
k=1

cos 4πk
l + 1

2

=
3l

2(2idz)5/2

A12 =
3

(2idz)5/2

l∑
k=1

cos
2πk

l
sin

2πk

l
=

3

(2idz)5/2

l∑
k=1

1

2
sin

4πk

l
= 0

since

l∑
k=1

cos
4πk

l
+ i sin

4πk

l
=

l∑
k=1

exp
4πik

l
=

exp 4πi
l (1− exp 4πil

l )

1− exp 4πi
l

= 0.

Similarly, we get

A13 = A21 = A31 = A32 = 0, A22 =
3l

2(2idz)5/2
, A33 = − 3l

(2idz)5/2
.

Therefore we have
A11

C
=

A22

C
= −3

4
,

A33

C
=

3

2
.
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Since (Aij) is diagonal matrix and the eigenvalues of A are ρk = Akk. Hence
we have

ν1 = ν2 =

√
25

4
− 4ρ1

C
=

√
37

2
, ν3 =

√
25

4
− 6 =

1

2

Consequently the n-center problem in this setting is not integrable.

Remark. In the case of l = 2, we get

A11 =
6

(2idz)5/2
, A22 = 0, A33 = − 6

(2idz)5/2
.

Therefore we have

A11

C
= −3

2
,

A22

C
= 0,

A33

C
=

3

2
.

Hence we get

ν1 =
7

2
, ν2 =

5

2
, ν3 =

1

2
.

These are all j+ 1
2 type number. This is reasonable because the 2-center problem

is integrable.

4 The restricted n+ 1-body problem

Consider the motion of particles under the gravitational attraction. Assume
that n particles with masses mk(k = 1, . . . , n) move along circles on a plane
with a same period around the origin

(ak cos t− bk sin t, bk cos t+ ak sin t, 0),

and consider the spatial motion of a massless particle. The massless particle is
attracted by the other n particles. Studying the motion of the massless particle
is called the (spacial circular) restricted n + 1-body problem. The restricted
n+ 1-body problem is governed by the Hamiltonian system with Hamiltonian

H(x, y, z, px, py, pz) =
1

2
(p2x + p2y + p2z) + pxy − pyx

−
n∑

k=1

mk√
(x− ak)2 + (y − bk)2 + z2

.

Here (x, y, z) are the rotating coordinates with respect to z-axis. In this coor-
dinates, n particles are fixed.

The scaled Hamiltonian is defined by

H0(q,p) = lim
λ→+0

λ2H(λ4q + e, λ−1p),
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which is

H0(q,p) =
1

2
|p|2 −

n∑
k=1

mk√
2q · (e− ck)

.

Similarly if H is integrable, so is H0. We can also apply our proof to the
restricted n+ 1-body problem.

Theorem 2. If the restricted n + 1-body problem is rationally integrable, νk
defined by (5) belongs to 1

2 + Z.
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