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Abstract Choreographies are periodic orbits in which all bodies move on
the same trajectory with equal time delay. The best known three-body chore-
ography is figure-eight orbit. Here we introduce a search method specialised
for choreographies and present three new orbits with vanishing angular mo-
mentum that are the first clear examples of choreographies that cannot be
described as k-th powers of the figure-eight solution, according to the topolog-
ical classification of orbits. We have also found seventeen new “powers of the
eight” choreographies. According to our numerical computation, one of
two distinct k = 7 choreographies is linearly stable.
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1 Search of periodic solutions

The first stable three-body choreographic orbit without angular momentum
was found by Moore in 1993 [1]. A formal variational existence proof for such
a solution was given by Chenciner and Montgomery [2]. A large number (345)
of three-body choreographies with non-zero angular momentum were found by
Simó [3], but they are all highly unstable [4], and of undetermined topological
type. In Refs. [3,5,6], Simó and co-authors showed several orbits including
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Fig. 1 The decimal logarithm of the reciprocal of the cyclic permutation proximity function
− log10 dP̂ (X0, T0) in the search window. On x-axis are the values of the initial velocity
ẋ1(0) ∈ (0.1, 0.7), and on the y-axis are the values of the initial velocity ẏ1(0) ∈ (0.3, 0.8).
The bright dots represent close to zero values of dP̂ (X0, T0).

one choreography that they called “satellites of the eight”. Ref. [6] is quite
clear about their stability: “All the choreographies found, except the eight,
are unstable”. Unfortunately, in the meantime the initial conditions of these
solutions have been lost.

Galán et al. [7] have numerically studied the stability and bifurcations of
the figure-eight orbits with almost equal masses. Kapela and Simó [8] have
provided a computer assisted proof of the existence (and of linear stability),
of the figure-eight orbit, and later they [9] also gave a computer assisted proof
of the Kolomogorov-Arnold-Moser (KAM) stability. Thus it follows from the
Poincaré-Birkhoff theorem, that there are infinitely many periodic solutions
near the figure-eight. Therefore, we expect that at least some of these solutions
would also be “simple” choreographies, i.e., satellites of the eight. There was
no evidence, however, prior to present work, that there are choreographies
with vanishing angular momentum that are not satellites of the figure-eight.
Here we present, for the first time, three examples of such orbits.

We identify curves that can be modified continuously one into another in
the shape space without collisions. We call their equivalence classes “homotopy
classes”. We can classify periodic orbits according to their homotopy classes.
For example, a power-k figure-eight solution has the same homotopy class as
a curve that repeats the figure-eight solution k times within one period. We
shall call a “slalom” any solution with the same homotopy class as the power
k figure-eight solution.
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In a recent paper [11] one of us (M. Š.) presented the results of a search
in the vicinity of the figure-eight orbit. He found eleven solutions that can
be described as some “power of the figure-eight solution” in the sense of the
topological classification method. Such solutions were called “slaloms” because
of their appearance on the shape sphere. One of these solutions, with the
seventh power of the figure-eight, is a choreography; some numerical evidence
of its stability was shown, but not a definitive proof. Here we present the results
of a calculation of the stability coefficients that prove the linear stability of
this orbit.

In this paper we specifically searched for choreographies with vanishing
angular momentum by modifying the scanning method used in Refs. [10–12].
Insted of minimising return proximity function we used cyclic permutation
proximity function defined as:

dP̂ (X0, T0) = min
t≤T0

∣∣∣P̂X(t) − X0

∣∣∣ , (1)

where X(t) = (r1(t), r2(t), r3(t),p1(t),p2(t),p3(t)) is a 12-vector in the phase
space (all three bodies’ Cartesian coordinates and velocities), and X0 = X(0)
is 12-vector describing the initial condition, and P̂ is a cyclic permutation of
the body indeces in the phase space vector. Whereas the return proximity func-
tion is zero for any periodic solution, cyclic permutation proximity function is
zero only when solution is choreography.

We found a number of new choreographies, three of which are not satel-
lites of the figure-eight, but of new hitherto unknown topological types. The
remaining 17 choreographies are of the (familiar) “satellite-of-eight” type. We
also show that one of two distinct k = 7 choreographies is linearly stable, only
the second stable choreography, after the figure-eight.

We only consider orbits with zero angular momentum here, be-
cause: 1) the original figure-eight solution also has zero angular mo-
mentum; and 2) we searched in the same two-dimensional sub-space
of the full phase space of initial conditions in which other satellites
of the figure-eight orbit were found previously, see Refs. [10–12].
That subspace corresponds to orbits with zero angular momenta.
Of course, one can also search for orbits with non-vanishing angular
momenta, but that would introduce a third parameter (dimension
of the search sub-space), which would make the search less efficient.
It is more efficient to first find periodic orbits with zero angular
momentum and then to continue them to non-vanishing values. We
have used the shape-sphere variables, Refs. [10,12], in order to re-
duce the system to three degrees of freedom and thus simplify the
computation of the (linear) stability coefficients.

We focussed our numerical search on a square search window with unit
sides in the initial velocities plane. The equations of motion were integrated
up to time T0 = 1

3T = 66 for each initial condition out of 1000 × 1000 possi-
bilities (points on the grid) within the search window. The cyclic permutation
proximity function dP̂ (X0, T0) was calculated and the negative logarithm of
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Fig. 2 New choreographies in real space devided in rows by slalom power k asociated with
topology (i.e. abABk is homotopy class of the orbit). The axes are the original axes in
physical space.
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Table 1 The initial conditions (velocities) and the “best pair value” ( We have computed
them by using three kinds of argorithm, chosen the closest two values, and
called the mean of the two value ”best pair value”.) of the period of three-body
choreographies. ẋ1(0), ẏ1(0) are the first particle’s initial velocities in the x- and y-directions,
respectively, T is the period, k is slalom power (i.e. (abAB)k is the homotopy class of the
orbit, except for orbits # 22-24, which are not slaloms; for their homotopy classes, see
Table 2). The first row, which corresponds to the figure-eight choreography, is shown for
comparison.

No. ẋ1(0) ẏ1(0) T k

1 0.347116899108889 0.532724945068359 6.32591 1
2 0.322184765624991 0.647989160156249 51.3958 5
3 0.257841699218752 0.687880761718747 55.6431 5
4 0.568991007042164 0.449428951346711 51.9645 5
5 0.500617577931285 0.493599179268241 63.0165 7
6 0.209661500479354 0.52570238916291 33.8615 7
7 0.255430947113037 0.516385839653015 35.0431 7
8 0.410354983519788 0.551985420227794 57.5453 7
9 0.477098825943472 0.527902384400369 133.053 14
10 0.130360568892222 0.526450460061792 76.2293 17
11 0.272790828323364 0.532396825027466 119.293 22
12 0.190923947143555 0.52171879918566 121.551 26
13 0.221436750501395 0.508906476187706 121.343 26
14 0.340328994750794 0.578358639621538 194.947 26
15 0.200740359497072 0.532146307373045 126.929 26
16 0.273620831298869 0.513234869384665 132.665 26
17 0.217541669535648 0.514854808068074 165.455 35
18 0.202907533335709 0.521482286801917 165.797 35
19 0.234080800616742 0.53387583102584 179.459 35
20 0.289649049395323 0.518680000030657 186.853 35
21 0.178043164539338 0.524061330985931 190.371 41
22 0.698073236083981 0.328500769042967 100.846 *
23 0.108978254696727 0.547796320721508 89.3028 *
24 0.226986094451136 0.616036339068786 152.556 *

the function is shown in Fig. 1. For each local minimum of the cyclic return
proximity function lower then 10−2 (corresponding to the bright dots in Fig.
1) on this grid we used a simple gradient descent algorithm to find the po-
sition of the minimum (root) more accurately. All of the minima with cyclic
permutation proximity function below 10−6 are listed in Table 1.

The initial condition for the figure-eight choreography is labeled by 1 in
Table 1. The initial configuration for all these orbits is the Euler one
(collinear, equidistant), see Refs. [10–12]. All other displayed orbits in
Table 1 are slaloms, i.e., figure-eight orbit satellites to some (integer) power
k, except for the last three orbits (labeled 22-24), which correspond to new
types of choreographies with different, more complicated topologies than the
satellite of the eight (see Table 2).

There are three singular points on the shape sphere. The symbols a and
b stand for the homotopy class of curves winding around one and another
point once, respectively. A and B stand for the curve of a and b in opposite
direction, respectively. The class of curves winding the other singularity can
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Fig. 3 Three non-slalomic orbits in real space (denoted by 22, 23, and 24 in Table 1, for
their homotopy classes, see Table 2).

Table 2 Free-group elements for three non-slalomic choreographic orbits # 22-24

No. Free-group element

22 aBBAbaBaBAbaaBAbbaBAbAbaBAAb
23 aBAbaBBabABabABabABaBAbaBAbaBAbabABabA

BabABabaBAbaBAbaBAbABabABabABabAAbaBAb
24 aBAbaBAbbABabABabABabAbaBAbaBAbaBAbaBA

BabABabABabABAbaBAbaBAbaBAbaBabABabABa
bABaaBAbaBAb

be represented by ab. The set of words has the group structure and is called
free-group. The free-group elements describing the topologies of these three
non-slalomic choreographies are listed in Table 2. The real-space trajectories
of these three choreographies can be seen in figure 3.

In order to illustrate the complexity and the symmetry of these solutions,
we have plotted the trajectory of the simplest one (22) on the shape sphere,
Fig. 4. Note the symmetry of this orbit under rotations through 2π/3 about
the z-axis, which is the tell-tale sign of a choreography, and the small triangle-
shaped “empty space” near the North and South Poles in the right-hand-side
panel of Fig. 4. The other two choreographies (# = 23, 24) are (much) more
complicated than this one, so that their plots on the shape sphere would not
be very illuminating, though they share the above rotation symmetry and the
triangular “exclusion zone” near the Poles.

2 Stability

We transformed the original differential equations in Cartesian coordinates
to ones in the shape space [10,12]. The corresponding phase space is six-
dimensional. The equations still form a Hamiltonian system, and hence con-
serve the energy. We calculated the variational equation along each of the
obtained choreographic solutions. The monodromy matrix is symplectic. The
eigenvalues consist of three pairs (λi, λ

−1
i )(i = 1, 2, 3). Because of energy con-

servation, one of the eigenvalues is unity, (λ1 := 1), and then the conjugate
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Table 3 Periods T of three-body orbits rescaled to a common energy E = −1/2, together
with the rescaling factor λ = −2E. T#1 is the period of figure-eight orbit and k is the slalom

power (i.e. (abAB)k is homotopy class of the orbit). Remark that No. 7 and 8 are the same
solution, but have different energy before rescaling.

No. λ T T/T#1 k

1 2.57428 26.1281 1 1
2 1.85784 130.149 4.98118 5
3 1.76203 130.146 4.98106 5
4 1.84558 130.288 4.98652 5
5 2.03445 182.863 6.99870 7
6 3.07807 182.863 6.99870 7
7 3.00860 182.873 6.99910 7
8 2.16153 182.873 6.99910 7
9 1.96217 365.705 13.9966 14
10 3.23514 443.569 16.9767 17
11 2.85283 574.815 21.9999 22
12 3.14815 678.954 25.9856 26
13 3.15188 678.998 25.9873 26
14 2.29806 679.140 25.9927 26
15 3.05914 679.144 25.9929 26
16 2.97033 679.145 25.9929 26
17 3.12560 914.284 34.9923 35
18 3.12131 914.285 34.9924 35
19 2.96110 914.415 34.9974 35
20 2.88245 914.415 34.9974 35
21 3.16196 1070.370 40.9664 41

eigenvalue λ−1
1 is also unity. Consequently, there are two pairs of non-trivial

(non-unity) eigenvalues. Only the solution with initial condition labels #7 and
#8 in Tables 1 and 3 (which correspond to the same solution) is linearly stable.
The characteristic polynomial is

λ4 + a1λ
3 + a2λ

2 + a1λ + 1 = 0,

with
a1 = −0.8095, a2 = 1.698.

Its four roots are the eigenvalues λi of the monodromy matrix:

λ±
2 = −0.1388 ± 0.9903i, λ±

3 = 0.5435 ± 0.8394i.

have moduli equal to unity, within their margins of error: |λ±
2 | = 0.99998 and

|λ±
3 | = 0.999992, which means that the system is linearly stable.
As proposed in Ref. [13], the period T of a slalom three-body orbit that

is the k-th satellite of the figure-8 choreography and is rescaled to a common
energy, say to E = −1/2, ought to stand in the ratio to the figure-8 period
T#1 as the integer k = 1, 2, 3, . . . that characterizes the topology of the orbit
on the shape sphere: k = T/T#1. This proposition is checked in Table 3 for
the new orbits # 2 - 21 reported here. It should be clear that the slalom orbits
follow the proposed law.
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Fig. 4 Shape sphere projection of the simplest non-slalomic choreography (denoted by 22
in Table 1). The curves are in the shape sphere in three dimensional (xyz-)space. This was
used by Chenciner-Montgomery’s proof. The figures show the projection to xy-plane.

Conclusion

As the result of our new method for direct searching for choreographic solutions
to the three-body problem, we have presented 20 new distinct choreographies.
Three solutions are the first zero-angular-momentum choreographies found
that are not satellites of the eight. The remaining 17 solutions can be described
as slaloms with powers k = 5, 7, 14, 17, 22, 26, 35, 41; they satisfy the integer-
law for periods at common energy, as suggested in Ref. [13]. One of two slalom
choreographies with k = 7 (with i.c. labeled as 7 and 8 in Table 1), is linearly
stable, only the second stable choreography, after (the famous) Moore’s “figure-
eight” solution.
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N Bodies: A Preliminary Study, pp. 287-308 in Geometry, Mechanics, and Dynamics,
Springer (2002),
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Birkhäuser, Basel, (2001).
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