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PAPER

Hotspot Modeling of Hand-Machine Interaction Experiences from
a Head-Mounted RGB-D Camera

Longfei CHEN†a), Nonmember, Yuichi NAKAMURA††b), Kazuaki KONDO††c), Members,
and Walterio MAYOL-CUEVAS†††d), Nonmember

SUMMARY This paper presents an approach to analyze and model
tasks of machines being operated. The executions of the tasks were cap-
tured through egocentric vision. Each task was decomposed into a se-
quence of physical hand-machine interactions, which are described with
touch-based hotspots and interaction patterns. Modeling the tasks was
achieved by integrating the experiences of multiple experts and using a
hidden Markov model (HMM). Here, we present the results of more than
70 recorded egocentric experiences of the operation of a sewing machine.
Our methods show good potential for the detection of hand-machine inter-
actions and modeling of machine operation tasks.
key words: egocentric vision, machine operation experiences, hotspots,
RGB-D, task modeling

1. Introduction

In recent years, wearable consumer equipment has rapidly
developed, becoming smaller and more powerful while en-
abling us to easily record various types of data in our daily
lives as lifelogs. In addition to being personal memory aids,
lifelogs have a variety of applications, such as sharing expe-
riences within a group, providing knowledge for skill train-
ing, and analyzing the behaviors of patients. Wearable cam-
eras have greatly enhanced the efficiency of recording expe-
riences through human-centric vision, which is also known
as egocentric vision or first-person vision/view (FPV). With-
out interrupting a person’s daily activities, a small camera
can continuously capture how the wearer sees and interacts
with objects and other people.

One of the main challenges of analyzing records of
egocentric experiences is summarization (i.e., how to dis-
tinguish and extract important portions from large amounts
of data) [1]. In this study, we focused on machine operations
and aimed at summarizations of experiences captured by
egocentric vision. Machines such as printers, microwaves,
and automobiles appear in our daily lives. Designing a user
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interface that does not require specific knowledge on the
user’s part is ideal, but in a variety of our daily situations, we
still need to learn how to operate machines. If we could eas-
ily acquire knowledge from the experiences of other people,
especially experts, the efforts and potential failures in the
operating of unfamiliar machines would be greatly reduced.

We focused on the automatic extraction of essential
hand-machine interactions and the summarizations of oper-
ational tasks in terms of the extractions, instead of the entire
contents of lengthy videos. The summarizations contribute
to (i) guidance by presenting knowledge and skills obtained
from the experiences of mature operators, (ii) predictions of
behavior using the obtained task models, and (iii) designs of
artifacts based on how users operate a machine or perform
tasks.

In this paper, we present a novel method for locating
the areas where essential interactions occur and model the
sequences of the interactions for machine operation tasks.
We first mention related studies in Sect. 2 and then intro-
duce the problems and ideas in Sect. 3. Then, the extraction
of low-level features from recorded experiences is described
in Sect. 4. The methods for detecting hotspots and classifica-
tions of interactions are introduced in Sect. 5. Probabilistic
model acquisition based on hidden Markov model (HMM)
is described in Sect. 6. Finally, we demonstrate the potential
of our proposed method with more than 70 experiences for
three different operational tasks and discuss potential future
applications in Sect. 7.

2. Related Research

In order to analyze and summarize the massive contents of
FPV videos, recognizing activities (i.e., identifying what the
wearer is doing) is essential. Many state-of-the-art studies
have explored human activities via egocentric vision, most
of which focus on activities of daily living (ADLs) [2]–[5],
such as making coffee in the office or baking bread in the
kitchen. In these common daily activities, people tend to
interact with a variety of objects and with a restricted inter-
action complexity in different scenes. The objects appearing
in the scene are regarded as one of the most important clues
to inferring the activity that is being carried out [4], [6], [7].
The study in [6] illustrates a video-summarizing method that
focuses on the most important objects and people that the
camera wearer interacts with. The study in [3] learns a hi-
erarchical model of an activity by the joint properties of ob-
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jects, hands, and actions. The method in [4] classifies the
detected objects into “active” and “passive” according to
whether the user manipulates them or not and then suggests
the related ADLs. For example, if “a TV,” “a sofa,” and “a
remote” appear in a frame, this situation can be inferred to
be “watching TV” [5]. In most of these studies, the types of
existing objects must be known beforehand [8]. However, in
circumstances of machine operation, the user mainly inter-
acts with machine surfaces by manipulating important small
areas, such as a button, a switch, a lever, etc. These areas
could be not only small but not clearly isolated or not dis-
tinguishable from others in appearance, e.g., some parts on
a machine’s surface are textureless. Thus, the functions of
what is being manipulated may not be as obvious as the iso-
lated objects, we need a more powerful method to detect
such small areas. Rogez et al. [9] suggested that hand poses,
hand-object contact points, and contact force vectors would
greatly contribute to understanding hand-object interaction
(HOI) activities.

A multitude of studies on touch detection have reported
taking advantage of depth devices, such as the use of stereo
cameras [10] or the combination of fixed depth and ther-
mal cameras [11]. Wilson [12] utilized a single fixed depth
camera to sense touch on a tabletop, the similar environ-
ment has been implemented in [13]. However, these back-
ground modeling approaches do not work sufficiently well
in our daily environments because of the rapid background
changes caused by head motions. OmniTouch [14] extends
touch sensing to wearable devices, whereas touch detection
is limited to areas around the fingertips and is sensitive to
the angle of approach.

Besides touch, the visual attention of the wearer can di-
rect important portions of egocentric vision experiences [5].
There have been a considerable number of studies estimat-
ing the wearer’s attention in egocentric vision, for exam-
ple, approaches using an eye tracker [15]–[17], approaches
combining egocentric vision with ego-motion and saliency
maps [5], [18], or data-driven methods [19]–[21] that model
the correlations among the head, eyeballs, hands, and gaze.
These attention-based methods proved useful in discovering
or inferring the user’s intentions. Other studies have ob-
tained good results using motion features for the segmenta-
tion or classification of tasks [22]–[24]. However, in our ex-
perimental environment, the scene/background of operating
machines changes more slowly as compared to situations of
ADLs or walking around, especially when the wearer is con-
centrating on manipulating objects. While the user’s hands
are continuously moving and touching small areas on a ma-
chine’s surface, accurate detection of the target of attention
is difficult by only using the direction of attention or the lo-
cations of the hands. Considering our environment, where
areas on a machine’s surface may not be salient, we chose
the regression-model-based approach that was proposed in
[19] to estimate the wearer’s attention.

For modeling activities with the above features, Sun-
daram et al. [7] proposed a method to observe manipulations
via a wearable camera and to classify activities with a three-

level DBNs. Clarkson et al. [25] employed a simple ergodic
HMM [26] trained with manually labeled events and used it
for classifying new activities. Despite the promising results
of these approaches, the main challenge in modeling FPV
tasks has been elaborated by Betancourt et al. [1]: “the scal-
ability to multiple users and multiple strategies to solve a
similar task.” In this study, an HMM was adopted for de-
scribing temporal operational steps. By taking advantage of
the integration of the experiences of multiple experts, we ex-
pected to model all the essential operational steps while al-
lowing for variations among different experiences (e.g., the
order of steps can be changeable; steps can be substituted;
personal minor mistakes can be removed).

3. Capturing Machine Operation Experiences through
Egocentric Vision

3.1 Environments and Challenges

Of a wide variety of daily life situations in which we operate
machines, we focused on situations of manipulating tabletop
devices, such as printer, rice cooker, IH heater, DIY tools,
or other devices with manipulation panels. Among them,
we chose a sewing machine as a representative example, as
sewing tasks demonstrate enough difficulty as well as a cer-
tain degree of freedom. Tasks such as stitching or embroi-
dering fabrics, are composed of multiple steps that requiring
certain knowledge and skills. The users may interact with
different portions of a sewing machine and handle different
objects, e.g., push buttons, seize a lever, rotate a knob, and
guide the cloth. These interactions commonly appear for a
wide variety of machines; therefore, the case of a sewing
machine makes a good representative of everyday-machine
operations.

We aimed to acquire models of such tasks from ego-
centric vision records. For this purpose, machine operations
were recorded through portable head-mounted devices, such
as the RGB-D camera, as illustrated in Fig. 1.

Fig. 1 The experiences of experts are recorded using a head-mounted
RGB-D camera. Interactions are detected with hotspot locations and hand
shapes. Multiple records by experts are integrated into a task model based
on HMM. We regard the touch, attention, and hand features as the most
important low-level features in detecting hotspots and interaction patterns.
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The difficulties in analyzing and summarizing the
records are as follows. First, hand-machine interactions of-
ten occurs at small portions such as buttons and switches,
which are not well isolated from the other portions. This
condition is not acceptable for most of the studies men-
tioned in Sect. 2. The meaning of each interaction (i.e., type,
purpose, or usage) is not given by the user because mak-
ing annotations for each interaction is tiresome and time-
consuming. We need automatic classifications of such inter-
actions. Another difficulty concerns the integration of sam-
ples through unsupervised learning. Although we employed
experts who did not make serious mistakes for operating ma-
chines, there are still personal differences, minor mistakes,
and noises. Hence, we need a mechanism for handling such
variations.

3.2 Key Idea

We regard the critical areas of machines and hand-machine
interactions as the most important tracks in experiences. In
a similar spirit of discovering task-relevant objects, we hy-
pothesize that such important areas, (e.g., a button, a lever, a
switch, or a handle) can offer essential clues in understand-
ing the activities (i.e., which area is manipulated and when)
as well as how the task has been processed. We define these
crucial areas as “hotspots,” which are comparatively “hot-
ter” than other areas. We use physical touches as primary
clues for detecting hotspots. More specifically, we can use
hand features in approaching or touching hotspots to dis-
criminate hotspots and to categorize interactions.

The detected sequences of interactions are often in-
sufficient to compose a complete machine operation pro-
cess. During actual manipulations, essential interactions
may be occluded, irregular and unnecessary touches may
occur, and the sequences may differ among experts. For ex-
ample, the speed button and the pattern-choosing button can
be usually manipulated in an arbitrary order according to the
user’s preference. Given the above problem, we use proba-
bilistic model learning with the adjustments of interactions.
First, we supplement potential interactions that were possi-
bly missed because of occlusions and remove unnecessary
interactions, such as supportive touches, that only serve to
assist other essential interactions. If most experts have their
hands occluded in the same order and at the same location
during an operation, the occluded interaction is regarded as
an essential part of the operation. Similarly, unessential or
accidental touches are excluded if they do not frequently oc-
cur in the same order. Next, we use probabilistic learning
to create a model of the interactions obtained from the se-
quences. By this process, we expect to obtain task models
with most of the essential interactions but few unnecessary
interactions.

Based on the above idea, our approach assumes the fol-
lowing premises:
(a) Any essential step of a manipulation is caused by phys-
ical interactions between a hand and a machine. Nonme-
chanical interactions, such as voice interactions, or interac-

tions with small moving objects that can be occluded easily
by a hand, are left to future studies.
(b) A physical hand-machine interaction can be categorized
according to the hand shapes made during the interaction.
(c) A sequence of interactions usually has dominant pat-
terns, that is, a typical sequence of essential interactions.
However, different approaches to accomplish the same goal
are allowed; that is, the experts may act with a certain degree
of freedom.

Our approach is organized as shown in Fig. 1. We first
extract low-level features, the touch/attention locations and
hand features. Then we create the global map for locat-
ing the features, which are used to detect hotspots and pat-
terns of interaction, for the purpose of describing the es-
sential physical-temporal interactions. Finally, a probabilis-
tic model is obtained by learning from the hand-machine
temporal sequences of interactions executed by multiple ex-
perts.

4. Hand and Touch Detection

4.1 Hand Area Detection

Depth, color, and size information are utilized to segment
the hand areas. A chromatic histogram in the HSV space
of the skin color of each user is formed beforehand from
several frames at the beginning of the records. Hand size
constraints are also considered; that is, a hand region should
be observed in the common operating distance, which usu-
ally ranges from approximately 20 to 100 cm from the head-
mounted camera†.

For actual detection, areas with distance larger than
the above common operation distance are eliminated as the
background. The foreground F is identified as:

F (u, v) =
{ 1, if 20 < d (u, v) < 100

0, else
, (1)

where u and v represent the location of a pixel on the image
plane and d is the depth map.

From the remaining foreground area, we find all skin-
color regions using a common YCrCb skin-color model as in
[27]. Each region that has been found is regarded as a hand
region if it has a color distribution similar to the user’s skin
color while its size is within the possible hand size range:

B (hi, hm) < λ and S i > mn/k, (2)

where B is the Bhattacharyya distance [28] between the hue
histogram of the region i and the hue histogram of the user
built beforehand. S i is the area of the region and m and n
represent the size of the image. We set the distance threshold
λ to 0.2 and the area ratio k to 100 in our experiments.

†The range is determined by the possible distance from the
camera to an operating hand. The minimum distance is the smallest
distance between the camera and the surface of the machine being
operated, whereas the maximum distance is the distance from the
camera to the hand when the user fully stretches his/her arm.
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Fig. 2 Palm detection by a morphologic property. (a) Find the midpoint
of each row of a hand mask and fit with a line. (b) From the top to the
bottom of this line, create circles and calculate the area ratio of hand in
each circle. The circle with the maximum ratio is found. (c) The hand
region inside or above the circle is regarded as the palm region.

The palm area is segmented out of the hand area ac-
cording to the morphological property. As shown in Fig. 2,
the arm area can be roughly regarded as a cylinder, whereas
the palm (or fist) is more circular. The midpoint at each ver-
tical position of the hand mask (i.e., a skeletal line of the
hand region) is determined. A straight line is fit to the skele-
tal line. Then, at each pixel on this line, we overlay a circle
with the point as its center and the width of the hand mask
along the scan line as its diameter. The area ratio of the hand
in each circle is calculated and the circle with the maximum
area ratio is obtained as follows:

j = arg min
j

(
h j/c j

)
, (3)

where h j is the area of the hand region in the circle for the
jth scan line and c j is the area of this circle. Finally, all the
hand areas in and above the circle (including the fingers) are
regarded as the palm region. The left and right palms are
simply identified by their spatial locations. The estimated
3D location (x,y,z) of the palm is represented by its centroid,
and its area is calculated by the number of pixels.

Due to the geometric property of egocentric vision
taken from the user’s head, the finger and thumb regions
usually appear farther from the camera than does the wrist
region. We detect the finger region by finding the area with
a larger depth inside the palm region. Suppose that the depth
of a palm region ranges from dmin to dmax; the depth in the
finger region df is found by

dmax − α · (dmax − dmin) < df < dmax, (4)

where α is a small constant. Figure 3 illustrates the actual
results of attempts to detect the fingers.

4.2 Hand Features

In common machine operation situations, such as sliding a
lever or rotating a dial, only one or two fingers are moving
while the other fingers stay relatively still. We use such fast-
moving finger areas as representative of the hand motion.
In the case of the whole palm moving consistently or the
fingers being occluded, the average velocity of the visible
area is considered to be the hand motion. The hand motion

Fig. 3 Finger detection results (a) in a supportive interaction and (b) in
an occluded interaction. The detected finger regions are shown in the red
boxes. The blue boxes show the neighborhood regions of the fingers, which
can be used to detect the existence of near-finger objects in occlusion de-
tection.

V is represented by the motion in the image plane (Δx,Δy)
and motion in depth (Δz). For motion (Δx,Δy) in the image
plane, the background motion is subtracted to remove the
ego-motion effects as follows:

V = max
(
Vp − Vb

)
, (5)

where Vp is the velocity of the area within the palm and
Vb is the average velocity of the background, which is cal-
culated as the average velocity of the nonhand area on the
foreground F in Eq. (1). The motion in depth (Δz) is sim-
ply represented by the movement of the palm centroid in the
depth direction.

We use the point-based hand shape description that was
proposed by Shimada et al. [29]. The palm region is ro-
tated according to its principal axis of the moment, and the
palm contour is equally sampled from −30◦ to 210◦ (coun-
terclockwise from the lower right to the lower left). These
sampled points are featured in 241 dimensions with their
distances to the palm centroid normalizing with the palm
area.

4.3 Touch Detection

4.3.1 Basic Touch Detection

For touch detection, we simply use the depth difference be-
tween the hand area and the neighboring area, as illustrated
in Fig. 4. Due to the fact that touches may happen at differ-
ent locations of the palm, we consider small local windows
along the palm contour. While the window slides along the
contour, the average depth of the palm area is represented
as dp and the average depth outside the palm area dn is cal-
culated. If their difference is smaller than Δ, we regard that
as a touch. Every detected touch area is indexed by its cen-
troid (Tx,Ty) and radius (Tr). Since there are depth measure-
ment errors, which often amount to several millimeters for
the Intel RealSense SR300 camera [30], we set the distance
threshold Δ to ±7 mm in our experiments.

4.3.2 Eliminating Meaningless Touches

Some of the touches may be unnecessary for modeling ma-
nipulations. Supportive touches, in which a hand is placed
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Fig. 4 Palm-oriented touch detection. Touches are detected by compar-
ing the depth values around the palm contour.

somewhere with a minor role to support the other hand, are
the most significant type and usually appear in actual oper-
ations when both hands are used. For example, one hand is
resting on the machine’s surface while the other is perform-
ing an actual manipulation, such as pushing a button. Both
hands may be placed on a cloth while the cloth is automat-
ically moving, as shown on Fig. 3 (a). Supportive touches
can be distinguished by considering the hand motions and
shapes; that is, the hands are stable. This condition can be
represented as

|V | ≤ C and p = p2, (6)

where C is the velocity threshold of the palm motion, which
is set to a small constant, and p is the interaction pat-
tern label of the hand during an interaction as described in
Sect. 5.4.

Casual touch is another type of an unimportant touch
in which the user unconsciously makes contact with the ma-
chine’s surface without the intention to manipulate it. The
frequency of casual touch is low for experts because they
usually avoid unnecessary motions. The positions of casual
touches are divergent because they often occur accidentally.
Consequently, we expect that most casual touches can be
filtered out via the learning of a probabilistic model.

4.3.3 Occluded Touch Estimation

Important interactions sometimes occur behind objects, and
so they are not visible to the camera; for example, we may
push a button on the underside or handle a lever on the back-
side of a machine, as shown on Fig. 3 (b). In order to cope
with this problem, we assume that frequent occurrences of
hand occlusions at the same position are caused by touches
to an occluded portion of a machine. Such occlusions are
detected and considered as potential touches. In such a case,
we assume that an occluding object exists near the finger re-
gion at a shorter distance from the camera, which satisfies

dw < do < d f , (7)

where dw, do, and d f are the average depth values of the
wrist, the object, and the finger area, respectively. Second,
the occluded hand should be actively moving, which satis-
fies

V > C and p � p2, (8)

where C and p2 are the same as in Eq. (6).
Third, the area of the palm decreases at the beginning

of the occlusion but increases after it. The area can be de-
scribed as follows:

Ao < Ao−1 and Ao < Ao+1, (9)

where Ao is the average palm area when the occlusion oc-
curs, whereas Ao−1 and Ao+1 are the palm areas before and
after the occlusion period, respectively. The palm areas are
represented by the average palm area of several frames be-
fore and after the occlusion period. However, if the period of
a detected occlusion interaction overlaps with the period of
an already-detected hotspot (explained in the next section),
the occluded interaction is not counted as a new interaction.
We assume that, at that moment, the visible interaction at
the hotspot represents the operation better than the occluded
interaction does.

5. Hotspots and Interactions

Hotspots are detected by integrating touches or attention lo-
cations using the global map, and then an interaction type is
determined for each hotspot.

5.1 Global Map

We use a global map to integrate the detected touches or
attention targets from different egocentric frames. For this
purpose, we simply stitch several egocentric frames that
have been recorded as the user looks over the machine be-
fore starting manipulation. Then, we adopt the SURF fea-
ture and RANSAC in order to find the corresponding points
among the frames and calculate the Homography transfor-
mation matrix to stitch them together. Although there will
be a small distortion if an image that includes a 3D surface
is stitched, the distortion would not be a serious obstruction
for unifying the locations of the features.

5.2 Attention

For comparison with visual touch detection, we attached an
IMU to a headset to capture the wearer’s head motion, and
then we adopted a supervised learning approach, as men-
tioned in [19], to detect the wearer’s attention existence from
the angular velocity of the head, while the attention location
estimator was trained by kernel regression with IMU data.

5.3 Hotspots Detection

We implemented the following two methods for hotspot de-
tection and compared their performance. In the follow-
ing cases, although we explain the methods by mentioning



324
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

Table 1 List of hotspots and interaction patterns.

No. Patterns (pi) Hotspots (h j)
1 push pattern button
2 rest (relax) speed button
3 slide needle button
4 rotate start/stop button
5 hold cloth plate
6 draw (cloth) lever (*occluded)
7 thread button

touches, attention locations can be used as an alternative.
Frequency-Based Approach. We simply detect hotspots

by finding areas with high frequencies of touches on the
global map, which is divided into blocks of size r, and then
we calculate the accumulated frequency of touches on each
block b j ( j =1,2. . . mn/r2, where m and n are the height and
the width of the global map, respectively). Blocks with fre-
quencies over a threshold can be regarded as hotspots. How-
ever, some areas such as the cloth plate are touched many
times during the whole process, whereas some portions like
the needle button are touched fewer times with quick con-
tact. The latter areas may be ignored by the frequency-based
approach regardless of their importance.

Temporal Clustering (TC) Approach. Touches on the
same portion which appear frequently within a short period
of time can be considered good clues to specifying hotspots.
We assume a small temporal sliding window ω with a step
σ, and then we perform the clustering of all touch points
within this small temporal window. If a certain area has been
touched more than κ times in ω, the touches are regarded as
valid. If a valid touch appears at a location, the location
is added as a new hotspot. With this approach, we were
able not only to accept essential spots with low global fre-
quencies but also to filter out fake touches caused by depth
estimation errors that last only one or two frames. The de-
tected hotspots are represented by Θ(x, y, r, ts, te), where x
and y designate their locations on the global map and r is
the area, while ts and te are the starting and ending times,
respectively. The TC approach is illustrated in algorithm 1.

5.4 Interaction Classification

For each detected hotspot, we classified the interaction us-
ing the hand shape at the hotspot and assigned the inter-
action type as a property of the hotspot. Table 1 shows
the hotspots and interaction patterns included in our exper-
iments of sewing machine operations. For the classification
of the hand shapes, we used a Random Forest (RF) classi-
fier [31]. We trained the RF classifier with 25,373 hand im-
ages manually labeled into six interaction categories: push,
rest (relax), rotate, slide, hold (lever), and draw (cloth).

6. Task Modeling

An observation of a machine operation experience E j can
be decomposed into a sequence of temporal interactions Ik,
each of which is a combination of a hotspot and an interac-
tion pattern:

Algorithm 1 Temporal Clustering (TC) approach
Input: temporal window size ω, frequency threshold κ, sliding step σ.
Output: hotspots Θn and hotspots number n.

Initialization: n = 0, reference frame R0 = zeros(size of global map).
for i = 1 to end with step σ do

a) Gather all touch spots Pi in the window ωi, create a touch binary
index map Mi with all the touch spots.
b) For each connected-area C j in Mi, cluster Pi to C j, as Pi j; if the
number of Pi j < κ, erase corresponding area C j.
c) After checking all C j, get new touch index map M

′
i .

if any area C
′
j in M

′
i has newly appeared to reference map Ri−1 then

n + +; Θn = C
′
j; tns = i; Ri = M

′
i ,

else
if Θn−1 disappeared compare to Ri−1 then

tn−1
e = i,Ri = M

′
i ,

end if
else

update Ri = (Ri + M
′
i )/2 .

end if
end for

E j = {I1, I2, I3 . . . In, Ie}; Ik =< pi, hj >, (10)

where n is the total number of interactions of the experience
and Ie is the “end symbol” that is added to normalize the
length of all samples for a task, which can be represented
as T = {E1, E2, E3 . . . Em}, where m is the total number of
experiences. As mentioned in Sect. 3, actual tasks usually
have a certain degree of freedom that allows order changes
and alternative ways for doing the same thing while noises,
such as accidental touches or detection errors, may be in-
volved.

This study attempted to obtain a plausible model to
explain all experiences, including their possible deriva-
tions. Hence, we applied the HMM to the above prob-
lem. Considering the temporal properties of an opera-
tional task, we chose a “left-to-right” (LR) HMM, which
allows only the hidden states to remain as self-transition and
forward-transition probabilities. With this structure, the or-
der changes of interactions and allowable substitutions of
certain interactions can be modeled by groups of hidden
states.

For one task, multiple experiences are used to train an
HMM with the Baum-Welch [26] algorithm. A task model
needs to be carefully chosen to balance its goodness of fit
with its complexity. We input the interaction sequences ex-
tracted from all of the experiences of a task to an HMM,
training with a wide range of state numbers ns from 1 to
2nl, where nl is the length of the observation samples of the
task after normalization. In order to evaluate each trained
model, we calculate the sum of output log-likelihood ψ for
all samples, through the Forward Algorithm:

ψns =

k∑

j=1

ln (P(E j|ns)), (11)

where k is the total number of samples in a task.
To prevent overfitting, we do not choose the state num-

ber ns that gives the maximum output probability ψ for all
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samples, but rather the first number ns, whose output prob-
ability is greater than the ratio ρ to the maximum output
probability ψ as

ns = min{ns : ψns ≥ ρ · max{ψns }}, (12)

where ns ⊂ {1 . . . 2nl} and ρ is a small constant parame-
ter between 0 and 1. We empirically set ρ to 0.95 in our
experiments for all tasks because the data for modeling still
contain noises that are caused by accidental touches, hotspot
misdetections, and pattern classification errors. If we choose
a larger state number, the trained model will overfit to these
noises and some states would even be assigned to these
noises.

7. Experimental Results

7.1 Experimental Environment of Machine Operation

In our experiment, 12 participants of both genders and dif-
ferent skin colors were asked to sit at a table and use a
sewing machine. A total of 71 experiences were recorded
for the three different tasks shown in Table 2.

According to the standard “Sewing Machine Operation
Manual” that was provided by the manufacturer, Task A in-
cluded five operations with a fixed order of operational steps
and no degrees of freedom. Two operations consisted of
touching the same spot continuously. Task B contained two
methods to accomplish the task: one had six steps and the
other had eight. The major steps of both methods were the
same, but several steps were substitutable. There was one
occluded step. Unnecessary or supportive touches were also
possible. Task C had nine essential steps, of which con-
tained two order-changeable operations. The occluded in-
teractions appeared twice at the same location.

The recording devices used were Intel RealSense
SR300, with a resolution of 640×480 for both color and
depth sources at 30 fps (the actual fps dropped to about
23 fps for real-time recording), and an IMU (LP-WS1105
16G/1500 dps [32]) attached above the camera, which pro-
vided geomagnetism, acceleration, and angular velocity
data at 50 Hz. The operational tasks usually lasted for 1–
2 minutes. About 3,000 frames for each experience were
gathered.

The process of hotspot detection was performed off-
line after each FPV video was recorded. It is mainly because
the registration of each FPV frame to the global map is not
tractable in real-time processing, and the detected touches
need to be accumulated throughout the record.

7.2 Evaluation Metric and Parameters

The ground truth of the temporal interactions < pih j > and
their orders for each task are manually made by consulting
the standard operation manual, which gives the most com-
mon methods for achieving each task.

We labeled all hand shapes into six catalogs. The RF

Table 2 The properties of the three operational tasks.

Properties Task A Task B Task C
number of experience 17 26 28
operation steps (occluded) 5 (0) 6 or 8 (1) 9 (2)
hotspots (occluded) 4 (0) 4 (1) 6 (1)
interaction patterns 3 4 6
repeating touches o o o
supportive touches (noises) - o o
alternative operations - o -
order-changeable operations - - o

Fig. 5 Locations detected by (a) attention, (b) hand position, and (c)
touch. These are visualized by the heat map (accumulated frequencies).

classifier was trained with 50 trees. To distinguish between
the hands being supportive or active, we first smoothed the
motion of the fastest moving area of the hand with a me-
dian filter and used the small velocity threshold of C = 2.4
cm/s (on average 1 pixel per frame) in the detection of an
occluded interaction. As with removing the noise of a sup-
portive hand, if the interaction pattern in a sequence was
classified as p2 (rest) and the average motion of the hand
was lower than C, it is removed. Figure 11 shows the
classification of the performances of the hand shapes of all
hotspots. The classification was evaluated with a 10-fold
cross-validation.

In order to detect hotspots with the TC approach, we
found that the depth measurement noises usually flashed out
quickly. However, the true touches usually lasted at least 0.5
s longer. Hence, the within-window frequency threshold κ
(mentioned in Sect. 5.3) was set to 0.3 of fps in our experi-
ment. Meanwhile, the detection results were not sensitive to
temporal window size, because the windows were overlap-
ping. We set ω to 1 second and the sliding step σ to 0.25ω.
In order to filter out saccades in detecting attention, we em-
pirically reduced the angular velocity threshold to 50◦/s as
compared to the walking-around situations in [19].

7.3 Hotspot Detection

We compared the performance of hotspot detection for three
commonly used features: the hand location, the attention lo-
cation, and the touch location. Figure 5 shows the accumu-
lated frequencies of the three features on the global map.
We noted that the touch location achieves the finest resolu-
tion as compared to the attention location and hand location.
So, we applied only the touch-based method for further pro-
cessing. We then compared the simple frequency-based (Fr)
approach and the TC approach. Figure 6 above illustrates
the results of the hotspot detections for three different oper-
ational tasks. The results of both methods match the crucial
locations (i.e., the buttons or plate) on the machine’s sur-
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Fig. 7 (a) Precision, (b) Recall, and (c) F-score of the retrieval of the temporal interactions for three
tasks.

Fig. 8 Examples of the results of the detection of temporal interactions in Task C. In this experience,
ten interactions are included: seven touch-based interactions (black), two occluded interactions (green),
and one supportive interaction (orange). Each temporal interaction is automatically labeled with hotspot
locations and its interaction patterns, where Is is a supportive interaction and Io is an occluded interac-
tion.

Fig. 6 Results of hotspot detection with the Fr approach (upper row) and
the TC approach (lower row) on the global map.

face. However, the TC approach shows a higher spatial res-
olution (connected areas) with smooth boundaries, whereas
the block-based Fr approach contains some irregular adja-
cent areas and noises. In the following, we show the results
of using touch with the TC approach.

7.4 Temporal Interaction Detection

We evaluated the performance of interaction detection com-
pared to the ground truth. The results of the detection of
temporal interactions before and after the detection of oc-
clusions and noise removals are illustrated in Fig. 7. Higher
F-scores for Task A than for other tasks is obtained both be-
fore and after the postprocessing due to the task’s simplest
interaction patterns. The increasing of steps and patterns for
Task B and C, the detection errors, the supportive noises,
and the missing occlusion steps were the main reasons for
the degeneration of the score. The removal of supportive

Table 3 Detailed results of interaction detection (recall and precision).

Interaction Type Regular Supportive Occlusion

Task A
ratio 100% 0% 0%

R 0.88 0 0
P 0.91 0 0

Task B
ratio 74.8% 12.6% 12.6%

R 0.83 0.81 0.77
P 0.87 0.96 0.95

Task C
ratio 71.5% 8% 20.4%

R 0.81 0.77 0.64
P 0.86 0.71 0.92

Average
R 0.83 0.79 0.68
P 0.88 0.83 0.92

interactions (+RS) was the main reason for the significant
improvements in precision for Tasks B and C. After the oc-
cluded interactions (+OCC) were added, the recall rate sig-
nificantly improved. For the overall result, the accuracies
of the detections of the supportive interactions and occlu-
sion interactions were 79.2% and 68.3%, respectively. The
detailed results of these processes are shown in Table 3.

Fig. 8 shows some examples of detecting interactions.
For examples, one occlusion interaction has been retrieved
(solid green) while the other is still missing (dotted green).
Meanwhile, one supportive interaction (orange) has been re-
moved.

7.5 Task Modeling

We checked the performance of the obtained task models
with the different numbers of hidden states. Figure 9 shows
the sum of the log-likelihood ψns given by Eq. (11) and the
chosen optimal numbers ns (red dots) in Eq. (12). The sum



CHEN et al.: HOTSPOTS BASED INTERACTION MODELING
327

Fig. 9 Relationships between the number of states and the performance of the models. The optimal
numbers for Tasks A, B, and C are 5, 11, and 12, respectively.

Fig. 10 Results of task modeling by HMM. The hidden states and their transition probabilities are
shown. Observations (interactions) are represented by circles, to which colors are given on the basis of
their interaction patterns. State transitions and observations with very low probabilities (less than 0.1)
are omitted.

of the log-likelihood increases quickly with the increasing
number of states, but it slows down after reaching the opti-
mal number.

Figure 10 illustrates the obtained task models. The in-
teraction patterns and their orders, as given in the standard
operation manual, are shown in the right column. The ac-
quired models are shown in the left columns.

The result of Task A was almost perfect model of sin-
gle routines in which each hidden state corresponded to an
independent interaction, that is, four observations (interac-
tions) to four states. In addition, S 4 shows a relatively high

self-transition probability, which represents a self-repeating
interaction of pushing the same button twice. The postpro-
cessing does not affect the modeling because no supportive
or occluded interactions had been included in this task (see
Table 2).

Task B had two alternative ways of accomplishment, as
depicted in the standard manual. The two transition paths in
the obtained model, that is (S 5 → S 6, S 8, S 9 → S 10) and
(S 5 → S 7 → S 10), support the alternative procedures. The
repeating push interactions in one way (S 5, S 6 and S 9, S 10)
while the single push interaction in the other way (S 5 and



328
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.2 FEBRUARY 2019

Fig. 12 The correlation between the Hidden State Numbers and the Density of the Observation Ma-
trix. The Density (1-Sparsity) is calculated with k/mn, where k is the number of non-zero elements
and m, n is the size of the observation matrix. The red dots show the state numbers chosen with our
threshold-based method.

Fig. 11 Results of interaction pattern classification by the RF classifier,
evaluated with 10-fold cross-validation.

S 10) are shown accurately. Furthermore, the occluded es-
sential interactions (green) are supplemented to a relatively
high probability to be observed, whereas the unnecessary
noises (gray) are reduced to a low probability to disappear in
the final model. Although S 3 and S 4 are split, they show the
same observations and the same “in-and-out” states. This
splitting may be caused by some noises appearing before
or after the same observation among different experiences.
Therefore, we can regard the two states as being a same
state.

For Task C, the obtained model matches the standard
operations well with all the noise interactions excluded and
all the essential interactions included. Each state only ob-
serves a single pattern. However, there are some low-
probability side transition paths that occurred because of the
misdetections in the training samples.

7.6 Discussion

The experimental results show that the acquired task models
represent the properties and variations of the experts’ oper-
ations adequately. Although misdetections occur because
of noises and occlusion, all essential operations are prop-
erly retrieved by integrating multiple experiences. However,
learning with only positive expert samples may not result
in a perfect model with clear boundaries between correct
and incorrect samples. We need to introduce failures, such

as beginner’s experiences, in order to acquire more precise
models in future studies.

We note that the observations in each hidden state in
the obtained models are sparse; that is, in any hidden state,
only a single interaction pattern has the dominant probabil-
ity, as shown in Fig. 10. Alternative or order-changeable in-
teractions are modeled on separate paths. Figure 12 shows
the correlation between the hidden state numbers and the
sparsity of the observation matrix. The chosen optimal state
numbers (red dots) lie a little ahead of the sparsest point.
Thus, the sparse solution of the observation matrix may also
serve as a criterion to choose the state number for HMM.

This point can be an important factor for possible appli-
cations. We can consider applications such as (i) automatic
guidance generation, in which an observation sequence with
the highest probability is suggested as the most probable
way of achieving a task at each step, and (ii) behavior pre-
diction or fault detection, in which the most plausible future
operational steps are predicted and used for avoiding failure.
If the candidates for the interaction at each state are limited,
guidance or prediction can be easier, because we can safely
recommend or choose the appropriate interaction.

For future studies, the integration of a beginner’s expe-
rience is an interesting topic. Beginners’ experiences that
may contain more variations or even faults as mentioned
above could provide valuable information for (i) analyzing
interaction difficulties or possible faults, (ii) inspiring ex-
perts to find new ways to execute tasks, (iii) acquiring bet-
ter models for guiding beginners, (iv) user ability accessing,
and so forth.

8. Conclusion

In this paper, we proposed a novel approach for analyzing
and modeling recorded experiences, via egocentric vision,
of the operating of machines. With our method, impor-
tant regions of the machine and interaction patterns were
detected as hotspots, after which HMM was applied to the
modeling of the interaction sequences. The experimental
results of 71 experts’ experiences illustrate the method’s ef-
fectiveness for accurately retrieving essential operation in-
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teractions and modeling operational tasks. However, there
were still misdetections of hotspots that may be harmful to
obtaining good operational models, and there were difficul-
ties in determining the number of hidden states in the HMM.
These problems must be considered in conjunction with spe-
cific applications (e.g., what guidance is designed for whom
and how). Experiences of other types of users, such as be-
ginners, could be good resources for this purpose.
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