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Abstract—This paper describes multichannel speech enhance-
ment for improving automatic speech recognition (ASR) in noisy
environments. Recently, the minimum variance distortionless re-
sponse (MVDR) beamforming has widely been used because it
works well if the steering vector of speech and the spatial covari-
ance matrix (SCM) of noise are given. To estimating such spatial
information, conventional studies take a supervised approach
that classifies each time-frequency (TF) bin into noise or speech
by training a deep neural network (DNN). The performance of
ASR, however, is degraded in an unknown noisy environment.
To solve this problem, we take an unsupervised approach that
decomposes each TF bin into the sum of speech and noise by using
multichannel nonnegative matrix factorization (MNMF). This
enables us to accurately estimate the SCMs of speech and noise
not from observed noisy mixtures but from separated speech
and noise components. In this paper we propose online MVDR
beamforming by effectively initializing and incrementally updat-
ing the parameters of MNMF. Another main contribution is to
comprehensively investigate the performances of ASR obtained
by various types of spatial filters, i.e., time-invariant and variant
versions of MVDR beamformers and those of rank-1 and full-
rank multichannel Wiener filters, in combination with MNMF.
The experimental results showed that the proposed method out-
performed the state-of-the-art DNN-based beamforming method
in unknown environments that did not match training data.

Index Terms—Noisy speech recognition, speech enhancement,
multichannel nonnegative matrix factorization, beamforming.

I. INTRODUCTION

MULTICHANNEL speech enhancement using a micro-
phone array plays a vital role for distant automatic

speech recognition (ASR) in noisy environments. A standard
approach to multichannel speech enhancement is to use beam-
forming [1]–[10]. Given the spatial information of speech and
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noise, we can emphasize the speech coming from one direction
and suppress the noise from the other directions [11]–[15].
This approach was empirically shown to achieve the significant
improvement of ASR performance in the CHiME Challenge
[16]–[18]. There are many variants of beamforming such as
multichannel Wiener filtering (MWF) [11], [12], minimum
variance distortionless response (MVDR) beamforming [13],
generalized sidelobe cancelling (GSC) [14], and generalized
eigenvalue (GEV) beamforming [15], which are all performed
in the time-frequency (TF) domain.

To calculate demixing filters for beamforming, the steering
vector of speech and the spatial covariance matrix (SCM)
of noise should be estimated. The steered response power
phase transform (SRP-PHAT) [19] and the weighted delay-
and-sum (DS) beamforming [20] are not sufficiently robust
to real environments [16]. Recently, estimation of TF masks
has actively been investigated [1]–[8], assuming that each TF
bin of an observed noisy speech spectrogram is classified into
speech or noise. The SCMs of speech and noise are then
calculated from the classified TF bins. The steering vector
of the target speech is obtained as the principal component of
the SCM of the speech [1]–[3]. For such binary classification,
an unsupervised method based on complex Gaussian mixture
models (CGMMs) [1] and a supervised method based on deep
neural networks (DNNs) [2]–[8] have been proposed.

Although DNN-based beamforming works well in controlled
experimental environments, it has two major problems in real
environments. One problem is that the performance of ASR in
unknown environments is often be considerably degraded due
to the overfitting to training data consisting of many pairs of
noisy speech spectrograms and ideal binary masks (IBMs) of
speech. Although multi-condition training with various kinds
of noisy environments mitigates the problem [21], it is still an
open question whether DNN-based beamforming works when
a microphone array with different geometry and frequency
characteristics is used in unseen noisy environments. The other
problem is that the spatial features such as inter-channel level
and phase differences (ILDs and IPDs), which play an essen-
tial role in conventional multichannel audio signal processing,
are simply input to DNNs without considering the physical
meanings and generative processes of those features.

To solve these problems, we recently proposed an unsuper-
vised method of speech enhancement [22] based on several
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Fig. 1. The proposed approach to unsupervised speech enhancement based
on a variant of beamforming that calculates the SCMs of speech and noise
from the corresponding spectrograms obtained by MNMF.

types of beamforming using the SCMs of speech and noise
estimated by a blind source separation (BSS) method called
multichannel nonnegative matrix factorization (MNMF) [23]
(Fig. 1). Given the multichannel complex spectrograms of
mixture signals, MNMF can estimate the SCMs of multiple
sources (i.e., speech and multiple noise sources) as well as
represent the nonnegative power spectrogram of each source as
the product of two nonnegative matrices corresponding to a set
of basis spectra and a set of temporal activations. The SCMs of
speech and noise estimated by MNMF that decomposes each
TF bin into the sum of speech and noise are expected to be
more accurate than those estimated by a CGMM [1] or a DNN
[2]–[8] that classifies each TF bin into speech or noise. The
unsupervised speech enhancement method is also expected to
work well even in unknown environments for which there are
no matched training data. In this paper, we newly propose an
online extension of MNMF-informed beamforming that can
process the observed mixture signals in a streaming manner.

The main contribution of this paper is to describe the com-
plete formulation of the proposed method of MNMF-informed
beamforming and report comprehensive comparative experi-
ments. More specifically, we test the combination of MNMF
with various types of beamforming, i.e., the time-variant and
time-invariant versions of full-rank MWF [11], rank-1 MWF
[12], and MVDR beamforming [13], using the CHiME-3 data
and a real internal test set. These variants are compared with
the state-of-the-art methods of DNN-based beamforming [3]
using phase-aware acoustic features [4]–[6] and cost functions
[24]. In addition, we evaluate the performance of the online
extension of the proposed method.

The rest of this paper is organized as follows. Section II
describes related work on multichannel speech enhancement.
Section III and Section IV explain three types of beamforming
(full-rank MWF, rank-1 MWF, and MVDR beamforming) and
MNMF, respectively. Section V explains the proposed method
of MNMF-informed beamforming. Section VI reports com-
parative experiments and Section VII concludes the paper.

II. RELATED WORK

We review non-blind beamforming methods based on the
steering vector of speech and the SCM of noise for ASR in
noisy environments. We also review BSS methods including
several variants of MNMF.

A. Beamforming Methods

There are several variants of beamforming such as DS [20]
MVDR [13], GEV [15] beamforming and MWF [11], [12].
The DS beamforming [20] uses only the steering vector of
target speech and the other methods additionally use the SCM
of noise. The GEV beamforming aims to maximize the signal-
to-noise ratio (SNR) [15] without putting any assumptions on
the acoustic transfer function from the speaker to the array
and the SCM of the noise. The MVDR beamforming and the
MWF, on the other hand, assume that the time-frequency (TF)
bins of speech and noise spectrograms are distributed accord-
ing to complex Gaussian distributions [11]–[13]. In Section III,
we review the relationships between MVDR beamforming and
rank-1 and full-rank MWF in terms of the propagation process
and and the filter estimation strategy.

TF Mask estimation has actively been studied for comput-
ing the SCMs of speech and noise [1]–[8]. Our unsupervised
method is different from DNN-based mask estimation [2]–[8]
in two ways. First, our method decomposes each TF bin into
the sum of speech and noise, while the mask-based methods
calculate the SCM of speech from noisy TF bins without
any decomposition. Second, our method uses no training data,
while in general the DNN-based methods need a sufficient
number of pairs of noisy spectrograms and ideal binary masks
(IBMs). The performance of the DNN-based mask estimation
would be degraded in unseen conditions that are not covered
by the training data because of overfitting to the training data.

The major limitation of most DNN-based methods is that
only single-channel magnitude spectrograms are used for mask
estimation by discarding the spatial information such as ILDs
and IPDs. Recently, Wang et al. [6] and Pertilä [5] have inves-
tigated the use of ILDs and IPDs as acoustic features for mask
estimation. Erdogan et al. [24] proposed a method for estimat-
ing a phase-sensitive filter in single-channel speech enhance-
ment. For comparative evaluation, inspired by these state-of-
the-art methods, we use both spatial and magnitude features
for DNN-based multichannel mask estimation.

B. Multichannel Nonnegative Matrix Factorization

Multichannel extensions of NMF [23], [25]–[29] represent
the complex spectrograms of multichannel mixture signals by
using the SCMs and low-rank power spectrograms of multiple
source signals. Ozerov et al. [26] pioneered the use of NMF for
multichannel source separation, where the SCMs are restricted
to rank-1 matrices and the cost function based on the Itakura-
Saito (IS) divergence is minimized. This model was extended
to have full-rank SCMs [27]. Sawada et al. [23] introduced
partitioning parameters to have a set of basis spectra shared by
all sources and derived a majorization-minimization (MM) al-
gorithm. Nikunen and Virtanen [28] proposed a similar model
that represents the SCM of each source as the weighted sum of
direction-dependent SCMs. While these methods can be used
in a underdetermined case, Kitamura et al. [29] proposed inde-
pendent low-rank matrix analysis (ILRMA) for a determined
case by restricting the SCMs of [23] to rank-1 matrices. This
can be viewed as a unified model of NMF and independent
vector analysis (IVA) and is robust to initialization.
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TABLE I
BEAMFORMING METHODS.

Speech: Full-rank Speech: Rank-1
Noise: Full-rank Noise: Full-rank

MAP Full-rank MWF Rank-1 MWF
Eqs. (8) & (9) Eqs. (12) & (13)

ML - MVDR
- Eqs. (15) & (16)

III. BEAMFORMING METHODS

This section introduces three major methods of beamform-
ing; full-rank and rank-1 versions of multichannel Wiener fil-
tering (MWF) and minimum variance distortionless response
(MVDR) beamforming (Table I) [11].

A. Overview
The goal of beamforming is to extract a source signal of in-

terest from a mixture signal in the short-time Fourier transform
(STFT) domain. Let xft ∈ CM be the multichannel complex
spectrum of the mixture at frequency f and frame t recorded
by M microphones, which is assumed to be given by

xft = xs
ft + xn

ft, (1)

where xs
ft and xn

ft are the multichannel complex spectra of
speech and noise (called images), respectively. The notations
are listed in Table II. The goal is to estimate a linear demixing
filter wft that obtains an estimate ŝft of the target speech sft
from the mixture (speech + noise) xft as follows:

ŝft = wH
ftxft. (2)

As shown in Table I, the beamforming methods can be
categorized in terms of sound propagation processes.
• The full-rank propagation process considers various prop-

agation paths caused by reflection and reverberation. It is
thus represented by using an M ×M full-rank SCM for
each source.

• The rank-1 propagation process considers only the direct
paths from each sound source to the microphones. It
is thus represented by using an M -dimensional steering
vector for each source.

The full-rank propagation process reduces to the rank-1 propa-
gation process when the full-rank SCM is restricted to a rank-1
matrix whose eigenvector is equal to the steering vector.

The beamforming methods can also be categorized in terms
of estimation strategies.
• The maximum a posteriori (MAP) estimation assumes the

target speech spectra to be complex Gaussian distributed.
• The maximum likelihood (ML) estimation uses no prior

knowledge about the target speech spectra.

B. Full-Rank Multichannel Wiener Filtering
The full-rank MWF [30] assumes both the target speech xs

ft

and the noise xn
ft to follow multivariate circularly-symmetric

complex Gaussian distributions as follows:

xs
ft ∼ NC(0,Pft), (3)

xn
ft ∼ NC(0,Qft), (4)

TABLE II
MATHEMATICAL NOTATIONS.

Observation Speech Noise

Multichannel spectrum ∈ CM x xs xn

Steering vector ∈ CM - p q
Spatial covariance matrix ∈ SM++ X P Q

where Pft ∈ SM++ and Qft ∈ SM++ are the full-rank SCMs of
the speech and noise at frequency f and time t, respectively,
and SM++ indicates the set of M ×M Hermitian positive defi-
nite matrices. Using the reproducible property of the Gaussian
distribution, we have

xft ∼ NC(0,Pft + Qft). (5)

Given the mixture xft, the posterior distribution of the mul-
tichannel speech image xs

ft is obtained as follows:

xs
ft | xft ∼ NC

(
Pft (Pft + Qft)

−1
xft, (6)

Pft −Pft (Pft + Qft)
−1

Pft

)
. (7)

To obtain a monaural estimate ŝft of the speech, it is necessary
to choose a reference channel (dimension) m from the MAP
estimate of the speech image xs

ft. The time-variant demixing
filter wWF

ft is thus given by

wWF
ft(m) = (Pft + Qft)

−1Pftum, (8)

where um ∈ CM is the M -dimensional one-hot vector that
takes 1 in dimension m. If the speaker does not move and
the noise is stationary, Pft and Qft are often assumed to be
time-invariant, i.e., Pft = Pf and Qft = Qf . In this case,
the time-invariant demixing filter wWF

f is given by

wWF
f (m) = (Pf + Qf )

−1Pfum. (9)

In reality, the speech is not stationary, but such time-invariant
linear filtering is known to be effective for speech enhancement
with small distortion. In general, the enhanced speech signals
obtained by the time-variant filter tends to be more distorted
than those obtained by the time-invariant filter.

The optimal reference channel m∗ is chosen such that the
average-a-posteriori SNR is maximized with respect to m as
follows [4], [31]:

m∗ = argmax
m

∑T
t=1

∑F
f=1 wH

ft(m)Pftwft(m)∑T
t=1

∑F
f=1 wH

ft(m)Qftwft(m)
, (10)

where wft(m) is a demixing filter obtained by assuming the
reference channel to be m. Different microphones may thus
be selected for individual utterances.

C. Rank-1 Multichannel Wiener Filtering

The rank-1 MWF [32] is obtained as a special case of the
full-rank MWF when the spatial covariance matrix Pft of the
speech is restricted to a rank-1 matrix as follows:

Pft = λftpftp
H
ft, (11)
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where λft and pft ∈ CM are the power and steering vector of
the speech at frequency f and time t, respectively. Substituting
Eq. (11) into Eq. (8) and using the Woodbury matrix identity,
we obtain the time-variant demixing filter wWF1

ft as follows:

wWF1
ft (m) =

Q−1ft pft

pH
ftQ

−1
ft pft + λ−1ft

pH
ftum. (12)

In practice, to achieve reasonable performance, we assume the
time-invariance of the speech, i.e., λft = λf and pft = pf .
Similarly, the time-invariant filter wWF1

f is given by

wWF1
f (m) =

Q−1f pf

pH
f Q−1f pf + λ−1f

pH
f um. (13)

Given the steering vector pft or pf , the power spectral density
λft in Eqs. (12) or λf in (13), can be estimated as follows:

λft '
‖Pft‖
‖pftpH

ft‖
, λf '

‖Pf‖
‖pfpH

f ‖
, (14)

where ‖ · ‖ represents the Frobenius norm of a matrix.

D. Minimum Variance Distortionless Response Beamforming

The MVDR beamforming [13] can be derived as a special
case of the rank-1 MWF when the power spectral density of
the speech in Eq. (11) (the variance of the Gaussian distribu-
tion in Eq. (3)) approaches infinity, i.e., we do not put any
assumption on the target speech. The time-variant and time-
invariant demixing filters are given by

wMV
ft(m) =

Q−1ft pft

pH
ftQ

−1
ft pft

pH
ftum, (15)

wMV
f (m) =

Q−1f pf

pH
f Q−1f pf

pH
f um. (16)

IV. MULTICHANNEL NONNEGATIVE MATRIX
FACTORIZATION

This section introduces multichannel nonnegative matrix fac-
torization (MNMF) [23]. In this paper we assume that the
observed noisy speech contains N sound sources, one of which
corresponds to target speech and the other sources are regarded
as noise. Let M be the number of channels (microphones).

A. Probabilistic Formulation

We explain the generative process of the multichannel obser-
vations of noisy speech, X = {xft}F,T

f=1,t=1, where xft ∈ CM

is the multichannel complex spectrum of the mixture at fre-
quency f and time t. Let snft ∈ C be the single-channel
complex spectrum of source n at frequency f and time t and
xnft ∈ CM be the multichannel complex spectrum (image) of
source n. If the sources do not move, we have

xnft = gnfsnft, (17)

where gnf ∈ CM is the time-invariant steering vector of
source n at frequency f . Here sft is assumed to be circularly-
symmetric complex Gaussian distributed as follows:

snft ∼ NC(0, λnft) , (18)

where λnft ≥ 0 is the power spectral density of source n at
frequency f and time t. Using Eq. (17) and Eq. (18), xnft

can be said to be multivariate circularly-symmetric complex
Gaussian distributed as follows:

xnft ∼ NC(0, λnftGnf ) , (19)

where and Gnf = gnfgH
nf is the rank-1 SCM of source n

at frequency f . In MNMF, the rank-1 assumption on Gnf is
relaxed to deal with the underdetermined condition of M < N
by allowing Gnf ∈ SM++ to take any full-rank positive definite
matrix. Assuming the instantaneous mixing process (source
additivity) in the frequency domain, we have

xft =

N∑
n=1

xnft. (20)

Using Eq. (19) and Eq. (20), the reproducible property of the
Gaussian distribution leads to

xft ∼ NC

(
0,

N∑
n=1

λnftGnf

)
. (21)

The nonnegative power spectral density λnft of each source
n is assumed to be factorized in an NMF style as follows:

λnft =

K∑
k=1

vnkfhnkt, (22)

where K is the number of basis spectra, vnkf ≥ 0 is the power
of basis k at frequency f and hnkt ≥ 0 is the activation of
basis k at time t. This naive model has NK basis spectra in
total. One possibility to reduce the number of parameters is
to share K basis spectra between all N sources as follows:

λnft =

K∑
k=1

znkvkfhkt, (23)

where znk indicates the weight of basis k in source n. Sub-
stituting Eq. (23) into Eq. (21), we obtain the probabilistic
generative model of X as follows:

xft ∼ NC

(
0,

K∑
k=1

vkfhkt

N∑
n=1

znkGnf

)
. (24)

B. Parameter Estimation

Given X, our goal is to estimate V = {vkf}K,F
k=1,f=1, H =

{hkt}K,T
k=1,t=1, Z = {znk}N,K

n=1,k=1, and G = {Gnf}N,F
n=1,f=1

that maximize the likelihood obtained by multiplying Eq. (24)
over all frequency f and time t. Let two positive definite
matrices Xft ∈ SM++ and Yft ∈ SM++ be as follows:

Xft = xftx
H
ft, (25)

Yft =

K∑
k=1

vkfhkt

N∑
n=1

znkGnf . (26)

The maximization of the likelihood function given by Eq. (24)
is equivalent to the minimization of the log-determinant diver-
gence between Xft and Yft given by

DLD(Xft|Yft) = tr
(
XftY

−1
ft

)
− log

∣∣∣XftY
−1
ft

∣∣∣−M, (27)
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The total cost function f(V,H,Z,G) to be minimized w.r.t.
V, H, Z, and G is thus given by

f(V,H,Z,G) =

F∑
f=1

T∑
t=1

DLD(Xft|Yft). (28)

Since Eq. (28) is hard to directly minimize, a convergence-
guaranteed MM algorithm was proposed (see [23] for detailed
derivation). The updating rules are given by

vkf ← vkf

√√√√√∑n znk
∑

t hkttr
(
Y−1ft XftY

−1
ft Gnf

)
∑

n znk
∑

t hkttr
(
Y−1ft Gnf

) , (29)

hkt ← hkt

√√√√√∑n znk
∑

f vkf tr
(
Y−1ft XftY

−1
ft Gnf

)
∑

n znk
∑

f vkf tr
(
Y−1ft Gnf

) , (30)

znk ← znk

√√√√√∑f vkf
∑

t hkttr
(
Y−1ft XftY

−1
ft Gnf

)
∑

f vkf
∑

t hkttr
(
Y−1ft Gnf

) . (31)

Gnf is obtained as the unique solution of a special case of the
continuous time algebraic Riccati equation GnfΨnfGnf =
Gold

nfΦnfGold
nf . In the original study on MNMF [23], this equa-

tion was solved using an iterative optimization algorithm. In
the field of information geometry, however, the analytical so-
lution of this equation is known to exist as follows:

Φnf =
∑
k

znkvkf
∑
t

hktY
−1
ft XftY

−1
ft , (32)

Ψnf =
∑
k

znkvkf
∑
t

hktY
−1
ft , (33)

Gnf ← Ψ
− 1

2

nf

(
Ψ

1
2

nfGnfΦnfGnfΨ
1
2

nf

) 1
2

Ψ
− 1

2

nf , (34)

where Gnf is updated to the geometric mean of two positive
definite matrices Ψ−1nf and Gold

nfΦnfGold
nf [33]–[35].

V. MNMF-INFORMED BEAMFORMING

This section explains the proposed MNMF-informed beam-
forming and its online extension. Our method takes as input
the multichannel noisy speech spectrograms X and outputs a
speech spectrogram, which is then passed to an ASR back-end
(Fig. 1). MNMF is used to estimate the SCMs of speech and
the other sounds from X. The steering vector p of the target
speech and the SCM Q of noise are then computed. Finally,
the enhanced speech is obtained by using one of the three
kinds of beamforming described in Section III.

A. Estimation of Spatial Information
To use a beamforming method (Section III), we compute the

SCMs P and Q of speech and noise by using the parameters
V, H, Z, and G of MNMF (Section IV). Assuming that source
n = 1 is the target speech (see Section V-C), we have

Pft =

K∑
k=1

vkfhktz1kGf1, (35)

Qft =

K∑
k=1

vkfhkt

N∑
n=2

znkGnf , (36)

where Pft and Qft are the time-variant SCMs of speech and
noise, respectively. The time-invariant SCMs Pf and Qf are
also given by

Pf =
1

T

T∑
t=1

Pft, (37)

Qf =
1

T

T∑
t=1

Qft. (38)

The corresponding steering vectors pft and pf of the target
speech are approximated as the principal components of Pft

and Pf , respectively, as follows:

pft = PE(Pft) , (39)
pf = PE(Pf ) . (40)

B. Online MNMF

We propose an online extension of MNMF that incremen-
tally updates the parameters V, H, Z, and G. Suppose that
X is given as a series of J mini-batches in a sequential order,
where each mini-batch j consists of multiple frames ∈ t(j).
The notation ∗(j) represents a statistic of mini-batch j. The
latest statistics are considered with a weight ρ. When ρ < 1,
the current mini-batch is put more emphasis [36]. The online
updating rules are as follows:

α
(j)
kf =

∑
n

z
(j)
nk

∑
t∈t(j)

hkttr
(
Y−1ft XftY

−1
ft G

(j)
nf

)
, (41)

β
(j)
kf =

∑
n

z
(j)
nk

∑
t∈t(j)

hkttr
(
Y−1ft G

(j)
nf

)
, (42)

v
(j)
kf ←

√
Fj(vkf , αkf , vkf )

Fj(βkf )
, (43)

γ
(j)
nk =

∑
f

v
(j)
kf

∑
t∈t(j)

hkttr
(
Y−1ft XftY

−1
ft G

(j)
nf

)
, (44)

δ
(j)
nk =

∑
f

v
(j)
kf

∑
t∈t(j)

hkttr
(
Y−1ft G

(j)
nf

)
, (45)

z
(j)
nk ←

√
Fj(znk, γnk, znk)

Fj(δnk)
, (46)

Φ
(j)
nf =

∑
k

z
(j)
nk v

(j)
kf

∑
t∈t(j)

hktY
−1
ft XftY

−1
ft , (47)

Ψ
(j)
nf =

∑
k

z
(j)
nk v

(j)
kf

∑
t∈t(j)

hktY
−1
ft , (48)

G
(j)
nf ← Fj(Ψnf )

− 1
2(

F
1
2
j (Ψnf )Fj(Gnf ,Φnf ,Gnf )F

1
2
j (Ψnf )

) 1
2

Fj(Ψnf )
− 1

2 , (49)

where the function Fj is defined as follows:

Fj(x) = x(j) + ρx(j−1), (50)

Fj(a, x, a) = a(j)x(j)a(j) + ρa(j−1)x(j−1)a(j−1). (51)
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Algorithm 1 Offline MNMF-informed beamforming.
1: Initialize G by ILRMA
2: for iteration = 1 to MaxIteration do
3: Update V by Eq. (29)
4: Update H by Eq. (30)
5: Update Z by Eq. (31)
6: Update G by Eq. (34)
7: end for
8: Estimate P by Eq. (35) or (37)
9: Estimate Q by Eq. (36) or (38)

10: Estimate p by Eq. (39) or (40)
11: Estimate w by Eq. (8), (9), (12), (13), (15), or (16)
12: Estimate y by Eq. (2)

C. Initialization of MNMF
We randomly initialize all parameters except for G. Since

MNMF is sensitive to the initialization of G [37], we use
a constrained version of MNMF called independent low-rank
matrix analysis (ILRMA) [29] for initializing G. Since IL-
RMA can be used in the determined condition of M = N , in
this paper we assume M = N for MNMF. In ILRMA, Gnf is
restricted to a rank-1 matrix, i.e., Gnf = gnfgnf (see Section
IV-A). Using Eq. (17) and Eq. (20), we have

xft = Gfsft, (52)

where sft = [s1ft, · · · , sNft]
T ∈ CN is a set of source spectra

and Gf = [g1f , · · · ,gNf ] ∈ CM×N is a mixing matrix. If Gf

is a non-singular matrix, we have

sft = WH
f xft, (53)

where WH
f = [w1f , · · · ,wNf ]

H = G−1f is a demixing matrix
and wnf ∈ CM is a demixing filter of source n. We use IL-
RMA for estimating Wf , compute Gf = W−H

f , and initialize
Gnf = gnfgnf + εI, where ε is a small number.

In this paper, we assume that the target speech is predom-
inant in the duration of X (e.g., one utterance). To deal with
longer observations, voice activity detection (VAD) would be
needed for segmenting the signals into multiple utterances. In
reality, it can be said to be rare that a target utterance largely
overlaps another utterance with the same level of volume. To
make source 1 correspond to the target speech, the steering
vector gf1 of source 1 is thus initialized as the principal
component of the average empirical SCM as follows:

ginit
f1 = PE

(
1

T

T∑
t=1

Xft

)
. (54)

In the online version, the average of the empirical SCMs is
taken over the first mini-batch.

The procedures of the offline and online versions of speech
enhancement are shown in Algorithm 1 and Algorithm 2. In
the online version, the spatial information of the target speech
and noise are initialized by using the first relatively-long mini-
batch (e.g., 10 s), and then updated in each mini-batch (e.g., 0.5
s). As described in Section III-C, when the time-variant rank-
1 MWF is used, the SCM Pft, the steering vector pft, and
the power λft of the speech are assumed to be time-invariant,
while those of noise are kept to be time-variant.

Algorithm 2 Online MNMF-informed beamforming.

1: Initialize G(1) by ILRMA
2: for j = 1 to J do
3: for iteration = 1 to MaxIteration do
4: Update V(j) by Eq. (43)
5: Update H(j) by Eq. (30)
6: Update Z(j) by Eq. (46)
7: Update G(j) by Eq. (49)
8: end for
9: Estimate P(j) by Eq. (35) or (37)

10: Estimate Q(j) by Eq. (36) or (38)
11: Estimate p(j) by Eq. (39) or (40)
12: Estimate w(j) by Eq. (8), (9), (12), (13), (15), or (16)
13: Estimate y(j) by Eq. (2)
14: end for

VI. EVALUATION

This section reports comprehensive experiments conducted
for evaluating all the variants of the proposed method based
on unsupervised MNMF-informed beamforming (i.e., full-rank
MWF, rank-1 MWF, or MVDR, time-variant or time-invariant,
and offline or online), in comparison with the state-of-the-art
methods based on supervised DNN-based mask estimation.
To evaluate the performance of ASR, we used a common
dataset taken from the third CHiME Challenge [16], where a
sufficient amount of training data are available. We also used
an internal dataset consisting of multichannel recordings in
real noisy environments whose acoustic characteristics were
different from those of the ChiME-3 dataset.

A. Configurations

We describe the configurations of the speech enhancement
methods used for evaluation. The multichannel complex spec-
trograms of noisy speech signals recorded by five or six mi-
crophones at a sampling rate of 16 [kHz] were obtained by
short-time Fourier transform (STFT) with a Hamming window
of 1024 samples (160 [ms]) and a shifting interval of 160
samples (10 [ms]), i.e., M = 5 or 6 and F = 513.

1) MNMF-Informed Beamforming: In MNMF, the number
of basis spectra was set as K = 25 and the number of sources
was set as N = 5 (one source for speech and the remaining
four sources for noise). MNMF was combined with the time-
variant and time-invariant versions of full-rank MWF, rank-
1 MWF, and MVDR beamforming (MNMF-{TV, TI}-{WF,
WF1, MV}). The demixing filter was computed from the same
SCMs estimated by MNMF to prevent the initialization sen-
sitivity from affecting the ASR performance.

2) DNN-Based Beamforming: For comparison, we used the
time-invariant version of MVDR beamforming based on DNN-
based mask estimation because the time-invariant version of
MVDR beamforming has been the most common choice among
various kinds of beamforming in DNN-based beamforming.

To estimate masks, we used different combinations of mag-
nitude and spatial features [6] described below:
• The log of the outputs of D-channel mel-scale filter banks

(LMFBs) were computed at each time t from the mag-
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nitude spectrogram of a reference channel m∗ manually
specified or automatically selected by Eq. (10), where we
set D = 100. These features were stacked over 11 frames
from time t− 5 to time t+ 5 at each time t.

• The (M−1)-dimensional ILDs and IPDs (sine and cosine
of phase angle differences) from the reference channel
m∗ were extracted at each frame t and frequency f .
This is considered to be more robust to over-fitting than
using all the

(
M
2

)
-dimensional ILDs and IPDs between

M channels as proposed in [6].

These features were stacked over 11 frames from time t − 5
to time t+5 to obtain up to (11D+3F (M −1))-dimensional
features at each time t, which were fed into DNNs.

To train DNNs, we tested two kinds of cost functions with
different target data [24] described below:

• Ideal binary masks (IBMs) are used as target data, i.e., a
TF mask aft takes 1 when |xsftm∗ | > |xnftm∗ | and takes
0 otherwise, as in the standard DNN-based mask estima-
tion. The cost function is based on the cross-entropy loss
between the target masks and the outputs of a DNN.

• Phase-sensitive filters (PSFs) are used as target data, i.e., a
TF filter aft is defined as aft = Real(xsftm∗/xftm∗), as
proposed in [24]. The cost function is based on the phase-
sensitive spectrum approximation (PSA) between the fil-
tered and ground-truth speech spectra given by DPSA =
|aftxftm∗ − xsftm∗ |2.

We defined a baseline using LMFBs and IBMs (DNN-IBM)
and its counterpart using LMFBs and PSFs (DNN-PSF). As
extensions of DNN-IBM, we tested the additional use of ILDs
and/or IPDs (DNN-IBM-{L, P, LP}). A standard feed-forward
DNN was trained under each configuration. Although a bidi-
rectional long short-term memory network (BLSTM) was orig-
inally proposed for DNN-IBM [3], the feed-forward DNN
slightly outperformed the BLSTM in our preliminary exper-
iments. We thus report the results obtained with the feed-
forward DNN in this paper. The steering vector pf of speech
and the SCM of noise Qf used in Eq. (16) are given by

pf = PE

(
1∑T

t=1 aft

T∑
t=1

aftXft

)
, (55)

Qf =
1∑T

t=1 1− aft

T∑
t=1

(1− aft)Xft. (56)

As a common baseline, the weighted delay-sum (DS) beam-
forming called Beamformit [20] was also used for comparison.

3) Automatic Speech Recognition: We used a de-facto stan-
dard ASR system based on a DNN-HMM [38], [39] and a stan-
dard WSJ 5k trigram model as acoustic and language models,
respectively, with the Kaldi WFST decoder [40]. The DNN had
four hidden layers with 2,000 rectified linear units (ReLUs)
[41] and a softmax output layer with 2,000 nodes. Its input
was a 1,320-dimensional feature vector consisting of 11 frames
of 40-channel LMFB outputs and their delta and acceleration
coefficients. Mean and variance normalization was applied to
input vectors. Dropout [42] and batch normalization [43] were
used in the training of all hidden layers.

4) Performance Evaluation: The performance of ASR was
measured in terms of the word error rate (WER) defined as
the ratio of the number of substitution, deletion, and insertion
errors to the number of words in the reference text. The per-
formance of speech enhancement was measured in terms of
the speech distortion ratio (SDR) [44] defied as the ratio of
the energy of target components to that of distortion compo-
nents including interference, noise, and artifact errors. In ad-
dition, the performance of speech enhancement was measured
in terms of the perceptual evaluation of speech quality (PESQ)
[45] and short-time objective intelligibility (STOI) [46] which
are closely related to the human auditory perception.

B. Evaluation on CHiME-3 Dataset

We report the comparative experiment using the common
dataset used in the third CHiME Challenge [16].

1) Experimental Conditions: The training set consists of
1,600 real utterances and 7,138 simulated ones obtained by
mixing the clean training set of WSJ0 with background noise.
The test set includes 1,320 real utterances (“et05 real noisy”)
with M = 5 and 1,320 simulated ones (“et05 simu noisy”)
with M = 6. In the real data, each utterance was recorded by
six microphones placed at a handheld tablet, from which five
channels except for the second channel on the back side of
the tablet were used and the fifth channel facing the speaker
was set as a reference channel m∗. There were four types of
noisy environments: bus (BUS), cafeteria (CAF), pedestrian
area (PED), and street place (STR).

To estimate TF masks, the five kinds of DNNs, DNN-{IBM,
PSF} and DNN-IBM-{L, P, LP}, were trained by using the
simulated training set. The DNN-HMM acoustic model was
also trained using the same data. The SDRs, PESQs, and
STOIs were measured for only the simulated test set because
the clean speech data were required. The WERs were mea-
sured for both the simulated and real test set.

2) Noisy Speech Recognition: The performances of ASR
are listed in Table III. Among the MNMF-based variants,
MNMF-TV-WF and MNMF-TV-WF1 attained the best aver-
age WERs of 11.83% for the real data and were significantly
better than Beamformit with the average WER of 15.54%.
Among the DNN-based variants, the DNN-IBM achieved the
best average WER of 11.35% for the real data. MNMF-TV-WF
and MNMF-TV-WF1 were still comparable with DNN-IBM
trained by using the matched data. This result is considered to
be promising because our unsupervised method does not need
any prior training. In our evaluation, neither the use of spatial
information such as ILDs and IPDs nor the PSF-based cost
function was effective in terms of the WER.

The WERs obtained by the MNMF-based variants for the
simulated PED and STR data were worse than those for the
real PED and STR data, while the DNN-based variants worked
well for both data. As listed in Table IV, the DNN-HMM is
considered to mismatch the enhanced speech for the PED and
STR data because the performances of speech enhancement
for the simulated PED and STR data were comparable with
those for the BUS and CAF data. The WERs for the real BUS
data were remarkably worse than those for the simulated BUS
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TABLE III
THE EXPERIMENTAL RESULTS OF NOISY SPEECH RECOGNITION (WERS) FOR THE SIMULATED AND REAL EVALUATION DATA OF CHIME-3.

SCM estimation Beamforming Simulated data Real data
Method (Target / Features) Time Type BUS CAF PED STR Av. BUS CAF PED STR Av.

Not enhanced 11.64 17.18 14.05 15.33 14.55 31.00 24.62 18.33 14.81 22.19
Beamformit Inv. DS 9.88 14.59 13.56 15.05 13.27 19.91 15.45 13.32 13.49 15.54

DNN-PSF PSF / LMFB Inv. MV 6.43 8.70 8.52 8.65 8.07 14.51 11.02 10.59 9.41 11.38
DNN-IBM IBM / LMFB Inv. MV 6.41 8.63 8.50 8.39 7.98 14.28 11.23 10.39 9.49 11.35
DNN-IBM-L IBM / LMFB + ILD Inv. MV 6.24 8.12 8.46 7.75 7.64 15.52 11.43 12.71 10.40 12.51
DNN-IBM-P IBM / LMFB + IPD Inv. MV 6.52 8.11 11.41 8.87 8.65 14.11 10.81 11.49 9.47 11.47
DNN-IBM-LP IBM / LMFB + ILD + IPD Inv. MV 6.54 8.18 9.53 8.27 8.13 15.82 10.63 12.43 10.25 12.28

MNMF-TV-WF ILRMA + MNMF Var. WF 7.58 10.59 14.23 13.67 11.52 14.73 11.30 11.21 10.07 11.83
MNMF-TI-WF ILRMA + MNMF Inv. WF 7.43 10.52 14.21 13.56 11.43 14.90 11.77 11.58 10.05 12.07
MNMF-TV-WF1 ILRMA + MNMF Var. WF1 7.60 11.09 14.48 13.80 11.74 13.68 11.51 11.77 10.35 11.83
MNMF-TI-WF1 ILRMA + MNMF Inv. WF1 7.68 11.34 14.53 13.80 11.84 14.26 11.54 11.51 10.24 11.89
MNMF-TV-MV ILRMA + MNMF Var. MV 7.71 11.34 14.61 14.01 11.92 14.60 11.73 11.49 10.12 11.99
MNMF-TI-MV ILRMA + MNMF Inv. MV 7.75 11.30 14.49 13.77 11.83 14.60 11.65 11.55 10.14 11.99

TABLE IV
THE EXPERIMENTAL RESULTS OF SPEECH ENHANCEMENT (SDRS, PESQS, AND STOIS) FOR THE SIMULATED EVALUATION DATA OF CHIME-3.

Simulated data (SDR) Simulated data (PESQ) Simulated data (STOI)
Method BUS CAF PED STR Av. BUS CAF PED STR Av. BUS CAF PED STR Av.

Not enhanced 6.75 7.74 8.33 6.56 7.35 2.32 2.09 2.13 2.19 2.18 0.88 0.85 0.87 0.86 0.87
Beamformit 5.45 7.60 8.32 5.46 6.71 2.42 2.21 2.20 2.22 2.26 0.89 0.86 0.87 0.85 0.87

DNN-PSF 8.59 13.85 12.64 9.43 11.13 2.82 2.52 2.60 2.61 2.64 0.96 0.94 0.95 0.94 0.95
DNN-IBM 8.75 13.39 12.74 9.59 11.25 2.82 2.52 2.61 2.61 2.64 0.96 0.94 0.95 0.94 0.95
DNN-IBM-L 10.99 14.38 12.91 11.12 12.35 2.84 2.54 2.60 2.63 2.65 0.96 0.95 0.95 0.95 0.95
DNN-IBM-P 10.68 14.18 12.53 10.61 12.00 2.83 2.54 2.55 2.59 2.63 0.96 0.95 0.93 0.94 0.94
DNN-IBM-LP 11.49 14.55 12.67 11.32 12.51 2.83 2.54 2.54 2.60 2.63 0.96 0.95 0.94 0.94 0.95

MNMF-TV-WF 17.69 16.41 16.28 14.28 16.16 2.91 2.60 2.65 2.65 2.70 0.97 0.95 0.93 0.94 0.94
MNMF-TI-WF 17.36 16.29 16.16 14.08 15.97 2.89 2.60 2.64 2.65 2.69 0.97 0.95 0.93 0.93 0.94
MNMF-TV-WF1 15.65 15.61 14.83 13.12 14.80 2.89 2.58 2.59 2.63 2.67 0.97 0.95 0.92 0.93 0.94
MNMF-TI-WF1 15.81 15.65 14.86 13.21 14.88 2.89 2.58 2.58 2.63 2.67 0.97 0.95 0.92 0.93 0.94
MNMF-TV-MV 13.68 15.17 14.33 12.33 13.87 2.88 2.58 2.58 2.63 2.67 0.96 0.94 0.92 0.93 0.94
MNMF-TI-MV 13.69 15.18 14.33 12.33 13.88 2.88 2.58 2.57 2.63 2.66 0.96 0.94 0.92 0.93 0.94
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Fig. 2. The observed spectrogram of noisy speech.
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Fig. 3. The enhanced spectrogram obtained by Beamformit.

data. A main reason would be that the spatial characteristics
of speech and noise fluctuated over time due to the vibration
of the bus in a real environment. The low-rank assumption
of MNMF still held in the bus and the time-variant types of
beamforming thus slightly worked better.

Interestingly, while the WERs obtained by the MNMF-based
variants were much worse than those obtained by the DNN-
based variants for the simulated data, all the methods yielded
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Fig. 4. The enhanced spectrogram obtained by DNN-IBM.
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Fig. 5. The enhanced spectrogram obtained by MNMF-TI-MV.

similar results for the real data. This indicates that the DNN-
based beamforming tends to overfit the training data.

3) Speech Enhancement: The performances of speech en-
hancement are listed in Table IV. The MNMF-based variants
were generally excellent in terms of the SDR, and were almost
comparable with the DNN-based variants in terms of the PESQ
and STOI. In our evaluation, the SDRs were closely related to
the WERs. MNMF-TV-WF achieved the best average SDR
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Microphone array

Fig. 6. Recording environment for the noisy JNAS dataset.

of 16.16 dB, while the DNN-based variants showed lower
SDRs up to 12.51 dB. Interestingly, the WERs obtained by
the DNN-based variants were much better than those obtained
by the MNMF-based variants for the simulated data. Fig-
ures 2, 3, 4, and 5 show the input noisy speech spectrogram
and the enhanced speech spectrograms obtained by Beamfor-
mit, DNN-IBM, and MNMF-TI-MV, respectively. Although
the low-frequency noise components were not sufficiently sup-
pressed by the DNN-based methods, those components are
considered to have a little impact on ASR. MNMF-TI-MV
was shown to estimate harmonic structures more clearly.

The full-rank MWF worked best in speech enhancement
and the rank-1 MWF showed the second highest performance.
While the full-rank MWF can consider various propagation
paths caused by reflection and reverberation, the rank-1 MWF
and MVDR beamforming can consider only the direct paths
from sound sources to the microphones. When the full-rank
SCMs were accurately estimated by MNMF, the performance
of speech enhancement was proven to be improved.

C. Evaluation on JNAS Dataset

We report the comparative experiment using the internal
dataset recorded in real noisy environments. We also evaluated
the online version of the proposed method.

1) Experimental Conditions: We made an internal dataset
consisting of 200 sentences taken from the Japanese newspaper
article sentence (JNAS) corpus [47] and spoken by five male
speakers in a noisy crowded cafeteria (Fig. 6). The utterances
were recorded with a five-channel microphone array (M = 5)
and the total duration was about 20 min. To make a realistic
condition, we used a hemispherical array with micro-electro-
mechanical system (MEMS) microphones that are widely used
in commercial products. The distance between the speaker and
the array was 1m. The noisy JNAS dataset has significantly
different acoustic characteristics from those of the CHiME-3
dataset, as it was recorded in a different noisy environment by
using a different microphone array (Table V).

The ASR performance was evaluated using this dataset. The
DNN-HMM acoustic model was also trained using the multi-
condition data, in which the noise data of the CHiME-3 were
added to the original clean 57,071 utterances of the JNAS. The
model had six hidden layers with 2,048 sigmoidal nodes and
an output layer with 3,000 nodes. A trigram language model
was also trained using the JNAS. The Julius decoder [48] was
used in this evaluation.

TABLE V
COMPARISON OF TWO ASR TASKS.

Test set CHiME-3 Noisy JNAS

Noisy environments 4 (including cafe) 1 (another cafe)
Microphone type Condenser MEMS
Microphone array geometry Rectangle Hemisphere
Speaker distance 0.2 - 0.5 m 1 m
Speaker gender 2 males & 2 females 5 male
Speaker language English Japanese

TABLE VI
THE EXPERIMENTAL RESULTS OF NOISY SPEECH RECOGNITION (WERS)

WITH OFFLINE SPEECH ENHANCEMENT FOR THE NOISY JNAS DATA.

Method Training data Avg.

Not enhanced 38.52
Weighted DS 32.01

DNN-IBM CHiME-3 12.27
DNN-IBM JNAS 11.37
DNN-PSF CHiME-3 12.11
DNN-PSF JNAS 14.82

MNMF-TV-WF 10.01
MNMF-TI-WF 9.91
MNMF-TV-WF1 9.36
MNMF-TI-WF1 9.30
MNMF-TV-MV 9.30
MNMF-TI-MV 9.36

The noisy JNAS task was very different from the CHiME-3
task in terms of microphone setups and noise environments.
Since the DNNs for mask estimation were trained using the
noise data of the CHiME-3 data set, the noise condition of
noisy JNAS was unknown. In noisy JNAS test sets, two kinds
of DNNs were used for mask estimation. One was the same
DNN as that in the CHiME-3 test sets. The other was trained
by adding the noise data of the CHiME-3 to the original clean
utterances of the JNAS corpus.

The online versions of the proposed MNMF-based variants
were also evaluated. To investigate the length of the first mini-
batch size, the online enhancement processing was performed
using consecutive 10 utterances of the same speaker. For online
speech enhancement, the basic mini-batch size was fixed to
0.5 s, and experiments were conducted by changing the size
of the first mini-batch from 5 s to 20 s. They were compared
with the offline processing with the consecutive 10 utterances.
The value of the weight ρ was set to 0.9.

2) Noisy Speech Recognition: The performances of ASR
are listed in Table VI. Training the DNN using the JNAS data
used for training the DNN-HMM was effective (from 12.27%
to 11.37%) because the speech data became matched in terms
of spoken languages and noisy environments. MNMF-TI-WF1
and MNMF-TV-MV achieved the best WER of 9.30%, which
was 18.21% relative improvement from that obtained by DNN-
IBM trained by using the data used for training the DNN-
HMM. The DNN-based beamforming was found to work worse
in unknown recording conditions. This may have been due to
over-fitting to the CHiME-3 noise data and it is difficult in
practice to cover all the noisy conditions.

In the noisy JNAS tasks, there was also only a little differ-
ence among the beamforming methods, but the MVDR beam-
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TABLE VII
THE EXPERIMENTAL RESULTS OF NOISY SPEECH RECOGNITION (WERS)

WITH ONLINE SPEECH ENHANCEMENT FOR THE NOISY JNAS DATA.

Method Offline Online
First mini-batch size 20 s 15 s 10 s 5 s

MNMF-TV-WF 9.10 9.07 9.07 9.55 11.32
MNMF-TI-WF 9.17 9.29 8.98 9.58 11.56
MNMF-TV-WF1 8.94 10.43 10.72 10.57 12.21
MNMF-TI-WF1 9.00 10.49 10.95 10.47 12.30
MNMF-TV-MV 8.71 9.95 11.94 11.21 12.84
MNMF-TI-MV 8.78 9.95 11.68 10.92 12.78

forming was the most effective in combination with the offline
versions of the proposed method. The use of a time-variant
noise SCM also did not bring notable improvement.

3) Online Speech Enhancement: The performances of ASR
obtained by the online versions of the proposed method are
listed in Table VII. The online MNMF-TI-WF achieved the av-
erage WER of 8.98% while the offline MNMF-TI-WF achieved
the average WER of 9.17%. The performance of the online
MNMF-TI-WF using a long first mini-batch was better than
that of the offline version because the initial estimates of SCMs
were accurate in all frequency bins. On the other hand, the per-
formances of the online MNMF-TI-MV and MNMF-TI-WF1
were worse than those of the offline versions even when the
first mini-batch was long. The offline MNMF-TI-MV achieved
the average WER of 8.71% while the online MNMF-TV-MV
achieved the average WER of 9.95%. MVDR beamforming
and rank-1 MWF estimated the principal eigenvector of the
SCM of speech as the steering vector for every mini-batch,
which may degrade the ASR performance. The initialization
of the online versions depends on the first mini-batch size. The
performance was degraded when the first mini-batch contained
a few segments of the target speech.

The practical problem of our approach lies in the computa-
tional complexity of MNMF related to the repeated inversions
of SCMs. The real-time factors of the DNN- and MNMF-based
beamforming methods were around 0.42 and 50, respectively.
An order of magnitude faster approximations of MNMF [49],
[50] was recently proposed, which was comparable with IL-
RMA in speed, and could be extended similarly to an online
version for real-time noisy speech recognition.

The remaining problem lies in a long waiting time (10 s or
20 s) before achieving reasonable performance. This problem
could be mitigated in a realistic scenario in which a micro-
phone array (smart speaker) is assumed to be fixed in a room,
e.g., a microphone array is placed on the center of a table for
meeting recording. Every time sound activities are detected,
the SCMs of the corresponding directions can be incrementally
updated. A strong advantage of the proposed online method
is that is can adapt to the room acoustics on the fly.

D. Experimental Findings

The two experiments using the CHiME-3 and JNAS datasets
indicates that it is reasonable to use the MNMF-informed time-
invariant rank-1 Wiener filtering (MNMF-TI-WF1) for dealing
with noisy speech spectrograms recorded in real unseen envi-
ronments. In online speech enhancement, the MNMF-informed

time-invariant full-rank Wiener filtering (MNMF-TI-WF) tends
to work best because the steering vector of speech is more
difficult to update than the SCM of speech in an online manner.
Since the WERs and SDRs obtained by the time-invariant
beamforming methods are almost equal to those obtained by
the time-variant methods, in practice it would be better to use
the time-invariant methods for improving the temporal stability
of speech enhancement.

VII. CONCLUSION

This paper described the unsupervised speech enhancement
method based MNMF-guided beamforming. Our method uses
MNMF to estimate the SCMs of speech and noise in an un-
supervised manner and then generates an enhanced speech
signal with beamforming. We extended MNMF to an online
version and initialized MNMF with ILRMA. We evaluated
various types of beamforming in a wide variety of conditions.
The experimental results in real-recording ASR tasks demon-
strated that the proposed methods were more robust in an
unknown environment than the state-of-the-art beamforming
method with DNN-based mask estimation.

We plan to integrate BSS- and DNN-based SCM estimation
in order to improve the performance of ASR. Learning a basis
matrix from a clean speech database is expected to improve the
performance of speech enhancement [37]. When a microphone
array is specified beforehand, learning the normalized SCM of
the target speech is also expected to improve the performance.
When noisy environments are covered by training data used
for DNN-based mask estimation, MNMF can be initialized by
using the results of DNN-based mask estimation [2] to further
refine the SCMs of speech and noise. It would be promising
to use recently-proposed semi-supervised speech enhancement
methods based on NMF or MNMF with a DNN-based prior
on speech spectra [51]–[53].
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