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Abstract: The adoption of renewable energy technologies in developing nations is recognized to
have positive environmental impacts; however, what are their effects on the electricity supply chain
workers? This article provides a quantitative analysis on this question through a relatively new
framework called social life cycle assessment, taking Malaysia as a case example. Impact assessments
by the authors show that electricity from renewables has greater adverse impacts on supply
chain workers than the conventional electricity mix: Electricity production with biomass requires
127% longer labor hours per unit-electricity under the risk of human rights violations, while the
solar photovoltaic requires 95% longer labor hours per unit-electricity. However, our assessment also
indicates that renewables have less impacts per dollar-spent. In fact, the impact of solar photovoltaic
would be 60% less than the conventional mix when it attains grid parity. The answer of “are renewables
as friendly to humans as to the environment?” is “not-yet, but eventually.”

Keywords: renewable energy; supply chain; social responsibility; social life cycle assessment;
labor conditions; Malaysia; solar PV; Biomass; Hydro

1. Introduction

Countries around the globe are competing for the increased adoption of renewable energy
technologies, and developing nations are leading this trend in the aim of meeting the growing
electricity demand in a sustainable manner. Various studies have demonstrated the positive
environmental externalities and macroeconomic effects of such initiatives, including their impacts on
GDP, unemployment, and balance of trade [1–4]. However, there are fewer studies that examine the
social impacts of renewable energy development quantitatively. This should be a point of concern for
developing nations, where worker often suffer from poor labor conditions as part of global supply
chains. For this reason, the adoptions of renewable energy technologies should be assessed not only
from environmental and economic perspectives but also from the social responsibility perspective
as well.

The question the authors intend to discuss through this analysis is, “are renewable energy technologies
as friendly to humans as to the environment?” This analysis tries to answer this substantial question
quantitatively with the help of a relatively new framework called the social life cycle assessment. The rest
of the article is structured as follows in conformity with ISO 14040/14044. Section 2 explains the goal
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and scope, methods and data employed in this analysis. Section 3 presents the results of the impact
assessment. Finally, based on the results, Section 4 presents the interpretation and conclusions.

2. Methods

2.1. Goal and Scope

The goal of this analysis is to assess the adverse social impacts of renewable electricity production
in a developing nation, and to compare them to that of the conventional electricity production mix.
For this, the authors choose Malaysia as the case example. Estimated to increase its gross domestic
product at about 5–6% annually until 2020, the electricity generation in Malaysia is also expected
to grow significantly with 3.5% annual growth [5]. To meet the growing electricity demand in a
sustainable manner, the Malaysian government has launched the National Renewable Energy Policy
in 2010, setting a renewable energy target of 11% of the total energy mix by 2020. Local policymakers
acknowledge the need to capture the environmental, economic, and social impacts of renewable
energy development to accelerate this rapid expansion, which push them to publish statistical data
on renewable energy projects for research purposes. This makes the country a very fitting case for
this analysis. While this analysis focuses on Malaysia, the results should be representative of how
renewable development in southeast Asian nations would affect the labor in the electricity supply
chain, due to the similar renewable cost structures in these nations.

The products assessed in this analysis were electricity from solar PV, biomass power, hydropower
and the current electricity production mix in Malaysia. The system considered in this study was
cradle-to-gate, or the product life cycle from resource production to the electricity production but
without consideration of waste disposal or decommission after the life of the plant.

2.2. Social Life Cycle Assessment

Life cycle assessment (LCA) is a commonly-used analytical framework to quantify the impact
of a product or a service over its lifetime. LCA has been primarily applied to the assessment of
environmental emissions, most notably to compare the carbon dioxide emissions. Social life cycle
assessment, or S-LCA, is an emerging framework to assess the social impacts of products or services
through LCA. S-LCA has been developed in conformity to the international standard of LCA,
ISO14040/44, and its first guideline was published by United Nations Environmental Programme
and Society of Environmental Toxicology and Chemistry [6]. S-LCA looks into social impact on
the workers in the product supply chain, for categories including health and safety, human rights,
cultural heritage, working conditions, and governance. Results from S-LCA enable the identification
of areas of improvement and comparison of products from the standpoint of their social performance,
which could be valuable for both policymaking and corporate decision-making is to facilitate the
enhancement of social conditions.

For its helpfulness in policymaking, S-LCA has been increasingly applied to various products and
services in the last several years, including tourism, farming, and recycling systems [7–10]. However,
few have applied S-LCA to assess the impact of the introduction of science and technology; in fact,
none of the preceding studies have applied the framework to make a comparison of different electricity
generation systems.

The authors believe S-LCA can be an ideal framework to quantitatively discuss the intersections
between science and society that have policy implications. S-LCA can be especially beneficial in the
energy sector, where the supply chains are cross-border and the interactions between human rights,
standard of living and natural resources are complex. The authors hope that this analysis fills this gap.

2.3. Social Hotspots Database

Social Hotspots Database (SHDB) was used in this analysis as the database to calculate the social
impact of the supply chain of renewable electricity. SHDB is a follow-up initiative to the UNEP/SETAC
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Guidelines developed by New Earth, and is the first commercially available database for S-LCA to
enable the identification of the social impact along the product supply chain [11,12]. SHDB is based
on the global trade analysis project (GTAP) input-output model, and the database is composed of
sector and country-specific tables of indicators for 57 sectors in 133 countries to support identifying
hotspots in supply chains based on potential social impacts. SHDB enables the efficient application
of S-LCA by providing data for: (1) labor intensity in worker hours per unit process; (2) risk for, or
opportunity to affect relevant social themes or sub-categories related to human rights, labor rights,
and decent work, governance and access to community services; and (3) gravity of a social issue [13].
With SHDB, social impacts of a product system can be measured in “Risk Hours (RH).” Risk Hours
represents the weighted cumulative labor hours where workers in the supply chain may be at risk for
each specific social issue. The authors used the 2013 version of SHDB, which is based on the GTAP
model published in 2008 and social risk data from years 2010–2012 [14]. Considering major renewable
energy development projects in Malaysia took place around 2011 [15], the 2013 SHDB would provide
timely valid risk data for this analysis.

2.4. Impact Assessment Method

SHDB provides an impact assessment method for S-LCA named Social Hotspot Index (SHI).
SHDB and SHI have 22 midpoint impact categories (called Social Themes) and five endpoint impact
categories (called Social Category) as illustrated in Figure 1. For each theme and for many indicators,
impact subcategories called Characterized Social Issues are available as summarized in Table 1.
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Figure 1. Social Hotspots Database midpoint and endpoint impact categories [16].

Table 1. Characterized Social Issues by Social Theme and Category [13].

Social Theme (Name of Table) Data Indicator Characterized Issue

Labor Laws/Conventions

Number of Labor Laws Risk of Country not passing Labor Laws

Number of Labor Laws by sector Risk of Country not passing Labor Laws by
Sector

Number of Labor Conventions ratified (out
of 81 possible)

Risk of Country not adopting Labor
Conventions

Number of Labor Conventions ratified by
sector

Risk of Country not adopting Labor
Conventions by Sector

Year of last Minimum Wage Update Risk of Minimum Wage not being updated
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Table 1. Cont.

Social Theme (Name of Table) Data Indicator Characterized Issue

Wage Assessment

Minimum Wages (USD) Risk of Country Average Wage being <
Minimum WageAverage Unskilled Wages (USD) in country

Non-Poverty Guideline (USD) Risk of Country Average Wage being <
Non-Poverty GuidelineAverage Unskilled Wages (USD) in country

Minimum Wages (USD) Risk of Sector Average Wage being <
Minimum WageAverage Unskilled Wages (USD) by sector

Non-Poverty Guideline (USD) Risk of Sector Average Wage being <
Non-Poverty GuidelineAverage Unskilled Wages (USD) by sector

Population living in Poverty Percent of Population living on <$2/day Risk of Population living on <$2/day

Child Labor
Child Labor % in country Risk of Child Labor in country

Child Labor % by sector Risk of Child Labor by sector

Forced Labor
Qualitative Risk of Forced Labor in country

Qualitative Risk of Forced Labor by sector

Excessive Working Time Percent working >48 h/week in country Risk of Population working >48 h/week in
country

Qualitative Risk of Population working >48 h/week by
Sector

Freedom of Association, Collective
Bargaining, Right to Strike

Qualitative Risk of not having Freedom of Association
Rights

Qualitative Risk of not having Collective Bargaining
Rights

Qualitative Risk of not having the Right to Strike

Unemployment Unemployment Average % from 2000–2009 Risk of High Unemployment in country

Unemployment % by sector Risk for High Unemployment by sector

Legal System

World Bank Worldwide Governance
Indicator—Rule of Law

Risk of Fragility in Legal System
Bertelsmann Transformational Index - Rule
of Law, Independent Judiciary

CIRI Human Rights Index—Independent
Judiciary

Global Integrity Index—Judicial
Accountability

Global Integrity Index—Rule of Law

Global Integrity Index—Law Enforcement

World Justice Project—Average

Indigenous Rights

Presence of indigenous population, X Not characterized

Indigenous Population, % Amount of Indigenous Population

ILO Convention adopted for Indigenous
Population, Y or N Risk of country not adopting Indigenous

ILO convention and UN Declaration
UN Declaration for Indigenous Population,
endorsed (Y), abstained (A), against (N)

Number of Laws enacted to protect
Indigenous Population

Risk of country not passing Laws to protect
Indigenous Population

Qualitative Risk for Indigenous Rights Infringements
by Sector

Gender Equity

Social Institutions and Gender Index

Risk of Gender Inequity

Global Gender Gap

World Bank Gender Development Indicator

World Bank Gender Empowerment Index

CIRI Human Rights Index—Economic

CIRI Human Rights Index—Political

CIRI Human Rights Index—Social

Adolescent fertility rate (births per 1000
women ages 15–19) Not characterized

Fertility rate, total (births per woman) Not characterized
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Table 1. Cont.

Social Theme (Name of Table) Data Indicator Characterized Issue

Share of women employed in the
nonagricultural sector (% of total
nonagricultural employment)

Not characterized

% Unemployment, (% of female labor force
unemployed/% of male labor force
unemployed)

Not characterized

% of women workers vs. men by sector Risk of Gender Inequity by sector

High Conflict Zones

Heidelberg Conflict Barometer—# of
conflicts

Risk for High Conflict
Heidelberg Conflict Barometer—maximum
intensity of conflicts (1–5)

Heidelberg Conflict Barometer—change in
conflicts (positive = worsening)

Number of Refugees—UN Refugee Agency

Center for Systemic Peace Indicator

Minority Rights Group Indicator

Top Risers from last year in Minority Rights
Group Indicator, X

Qualitative Risk for High Conflict specific to sectors

Human Health—Communicable
Diseases and Other Health Risks

besides Disease

Life expectancy at birth (years) 2008 Risk of low life expectancy

Mortality rates for injuries (per 100,000
population) 2004 Risk of high mortality rates due to injury

Proportion of undernourished % of total
population, (−) = <5% 2005–2007 Risk of high undernourishment

Deaths due to indoor and outdoor air and
water pollution (per one million population)
2004

Risk of death due to air and water pollution

Population affected by natural disasters,
average per year per million 2000–2009 Risk of death due to natural disasters

Cases of HIV (per 1000 adults 15–49 years)
2010 Risk of HIV 2010

Cases of Tuberculosis (per 100,000
population) 2008 Risk of Tuberculosis 2008

Cases of Malaria (per 100,000 population)
2008 Risk of Malaria 2008

Cases of Dengue Fever (per 100,000
population) 2005 Risk of Dengue Fever, 2005

Cases of Cholera 2008 Risk of Cholera 2008

Mortality rates from communicable
diseases (per 100,000 population) 2004

Risk of mortality from communicable
diseases

Children Out of School

Children out of School—male Risk of Children not attending School–male

Children out of School—female Risk of Children not attending
School–female

Children out of School—total Risk of Children not attending School–total

Access to Improved Drinking Water

Access to Improved Drinking Water,
%—rural

Risk of not having access to Improved
Drinking Water—rural

Access to Improved Drinking Water,
%—urban

Risk of not having access to Improved
Drinking Water—urban

Access to Improved Drinking Water,
%—total

Risk of not having access to Improved
Drinking Water—total

Access to Improved Sanitation

Access to Improved Sanitation, %—rural Risk of not having access to Improved
Sanitation—rural

Access to Improved Sanitation, %—urban Risk of not having access to Improved
Sanitation—urban

Access to Improved Sanitation, %—total Risk of not having access to Improved
Sanitation—total

Access to Hospital Beds Access to Hospital Beds—# beds/1000 pop Risk of not having Access to Hospital Beds
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Based on the inventory data for 705 indicators, SHDB weights and calculates the SHI as Equation (1).

SHI =
∑n

T=1 RavgW
∑n

T=1 RmaxW
(1)

where n represents the number of Social Themes, Ravg represents the average risk of the Social
Theme, Rmax represents the maximum risk for a theme and W represents the weighting factor [17].
The weighting factor is assigned based on the risk levels: 10 for very high, 5 for high, 1 for medium and
0.1 for low. For normalization of the results, the SHDB simply weights all Social Categories equally.

This social life cycle impact assessment methodology is illustrated by Shemfe et al. as Figure 2 [17].
The 22 midpoint impact categories of SHDB are part of the international auditable certification for the
promotion of labor rights, SA8000 [18]. Although currently there are no ISO norms specifically for
S-LCA, SHDB is based on the principles of LCA ISO norms (ISO 14040/14044) and is in conformity to
the UNEP/SETAC Guidelines [19].
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2.5. Data Collection

The authors collected the life-cycle cost structure data for renewable energy sources in Malaysia
from a report published by ASEAN Centre for Energy in 2016 [20], which reports the levelized
costs of electricity (LCOE) of renewable electricity based on surveys of 21 solar photovoltaic (PV),
five biomass, and five hydro power plants in Malaysia. In this report, LCOE is defined as the net
present value of the unit cost of electricity over a lifetime, calculated by dividing the net present value
of all costs over the lifetime of the project by the total electricity output of the project [20]. Due to
the difficulties in assuming different lifetimes for every project, a lifetime of 20 years was assumed
for all plants. A discount rate of 10% is used for all projects, which applies to social impacts as well.
Each cost breakdown is then assigned a GTAP model section code as well as a harmonized commodity
description and coding systems 6-digit trade category code (HS-6) by the authors.

The countries-of-origins data for each capital expenditure (CAPEX) sector were collected from
the economic atlas, which are derived from the countries reporting to the United Nations Statistical
Division (COMTRADE), and raw trade data on services are from the International Monetary Fund
(IMF) Direction of Trade Statistics database [21]. The authors referenced the import trade statistics of
Malaysia in 2016 for each respective HS-6 code, with the cut-off importing a share value of 5%.
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2.6. Product Modeling

Based on the data collection method detailed in the previous section, the levelized cost structure
of each renewable electricity in Malaysia in 2016 is modeled as Figure 3. For solar PV, plants are
classified based on their capacity as small (below 100 kW output), medium (above 100 kW but below
1000 kW), and large (above 1000 kW). For biomass and hydro power electricity, the cost modeling was
based on the country average data. The costs reported by ASEAN Centre for Energy were converted
into USD2002 by multiplying by 0.74957 to adjust for inflation. Because of the lack of necessary trade
data, the mineral products from Brunei were calculated as the ones from Malaysia. Since the mineral
products from Brunei only amounts to 0.2% of the LCOE of hydroelectricity, this change does not affect
the results significantly. For the conventional electricity model in Malaysia, the default product model
provided by SHDB for electricity in Malaysia was used without modifications. (The cost structures
and the country-of-origins models are attached as Supplementary Materials as Tables S1 and S2.)
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3. Results

3.1. Social Life Cycle Impact Assessment

The social impact of 1 kWh of electricity from five renewable sources (biomass, solar PV small,
solar PV medium, solar PV large, and hydro) as well as the conventional production mix were
assessed with SHDB on openLCA 1.7.2. The calculated Risk Hours inventories were then weighted and
converged into 24 Social Themes and 5 Social Categories with the Social Hotspot Index as illustrated
in Figures 4 and 5.
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Figure 5 indicate that regardless of the energy sources, renewable electricity has similar social
impact patterns: the health and safety category has the greatest adverse social impact in the supply
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chain due to the great impact from toxics and hazards. A similar pattern is also observed for the
conventional electricity mix.

3.2. Process and Country Contributions

The calculated process and country contributions of biomass, solar PV and Hydro are illustrated
in Figure 6a–c, respectively. Here, the areas for each process are drawn in proportion to the total Risk
Hours of each sector/country.

Figure 6 shows that the construction in Malaysia is the largest social footprint contributor for
both hydro and solar PV electricity. In particular, construction is responsible for more than 60% of
the social footprint of hydroelectricity. For solar PV, electronic equipment and metals from China are
the second largest contributor when combined, which reflects the fact that a large share of the solar
panels, and its mounting parts come from China. Another large contributor to solar PV was the public
administration in Malaysia, which reflects the licensing cost for a significant portion of the capital
expenditures for solar PV plants in Malaysia. On the contrary, the largest social footprint contributor
of biomass electricity came from the forestry in Malaysia, followed by the construction in Malaysia.
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4. Discussion

4.1. Normalized Social Footprint per Unit-Electricity vs. Unit-Cost

Figure 7 shows the calculated normalized social footprint for each electricity source, (a) per
1 kWh and (b) per 1 USD of generation cost. According Figure 7a, the electricity from renewables
had a greater adverse social impact per unit-electricity than the conventional electricity mix per kWh,
except for hydroelectricity. Biomass (19.5 RH) exhibited 227% of the social impact of conventional
electricity (8.6 RH). Solar PVs exhibited differing degrees of social impact: small-scale solar PV
(defined as < 100 kW output) had the greatest social impact among the five assessed renewable energy
sources with 20.7 RH; mid-scale and large-scale solar PVs (defined as 100–1000 kW and > 1 MW,
respectively) had a similar social impact with 16.7 and 16.6 RH, respectively, which are 14% less than
biomass but 95% more than the conventional electricity mix per 1 kWh. Hydro, on the other hand,
exhibited a significantly reduced social impact with 4.9 RH, which is 43% smaller than the conventional
electricity mix.

This result may be mainly attributed to the high cost of renewable electricity. According to ASEAN
Centre for Energy (2016), the costs of electricity for each energy source in Malaysia are as follows:

solar PV small ($0.20/kWh) > solar PV medium ($0.17/kWh) > solar PV large ($0.15/kWh)
>> biomass ($0.10/kWh) >> conventional ($0.03/kWh) ~ hydro ($0.03/kWh)

As such, comparing the social impact per unit generation cost, rather than per unit electricity
generated, reveals that the solar power plant is much less impactful than all other energy sources.
These comparisons are illustrated in Figure 7b, where solar PV has a 60% smaller social impact than
conventional electricity per dollar spent, as follows:

conventional (281.5 RH) >> biomass (192.6 RH) > hydro (168.6 RH) >> solar PV large
(110.5 RH) > solar PV small (103.5 RH) > solar PV medium (98.2 RH)

This comparison of social footprint per unit electricity vs. unit cost indicates that while the
electricity from solar PV and biomass in Malaysia have a agreater adverse social impact than
the conventional energy mix per unit electricity at present, labor conditions for these renewable
electricity sources per unit cost are significantly better than those of conventional electricity generation.
This suggests that when the generation costs of these renewable sources eventually drop and reach
grid parity, the social impact of electricity generation will be mitigated through the development of
these sources.
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4.2. Geographical Social Hotspots of Renewable Electricity

Figure 6 shows that a great proportion of the social footprint of renewable electricity came from
outside of the country as a result of the global supply chain. Figure 8 illustrates the social footprint
contribution proportions of China, the largest overseas contributor, and of Malaysia.
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The results show that renewable electricity has a less adverse social impact domestically, while the
effects are transferred to the exporting countries, in this case China. This indicates the possibility to
improve the social impact of renewable electricity across the globe by improving labor conditions in a
few exporting countries.

5. Conclusions

What do all these data suggest? Based on Figure 7a, it can be concluded that electricity generation
through renewable energy technologies causes significantly greater stress among workers, with the
exception of hydroelectricity. However, on the other hand, when the social impacts per generation cost
were compared, renewables had far lower impacts than the conventional electricity mix as illustrated
in Figure 7b. This is a fascinating result, because it suggests that while renewables are not as friendly to
humans as to the environment at the moment, they will have the potential to be much more favorable to
humans than the conventional energy mix in the future when costs of renewable electricity eventually
drop. In fact, it is estimated that when solar PV achieves grid parity in the future, labor conditions
through the electricity supply chain will be as much as 60% less than the conventional electricity
generation in Malaysia. It was also discovered that these adverse social effects are transferred to few
exporting countries, including China, as illustrated in Figure 8. This could provide an opportunity to
reduce the social impacts of renewable electricity across the nation, by improving labor conditions in a
few exporting countries.

Are renewable energy technologies as friendly to humans as to the environment? Based on the
findings, the authors conclude that the answer is, “not-yet, but eventually.” This analysis suggests a
clear path toward the reduction of the adverse impacts of renewables: to continue the efforts to reduce
the cost of renewable energy technologies, while improving the labor conditions in key exporting
countries like China.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/5/1370/s1,
Table S1: Cost Structures and the Country of Origins Model: (a) Biomass; (b) Solar PV; (c) Hydro, Table S2: SHDB
product models: (a) Biomass; (b) Solar PV; (c) Hydro.

http://www.mdpi.com/2071-1050/11/5/1370/s1
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