
1 
 

The Impact of Kinetically Restricted Structure on Thermal 

Conversion of Zinc Tetraphenylporphyrin Thin Films to the 

Triclinic and Monoclinic Phases 

 

 

Nobutaka Shioya,† Miyako Hada,† Takafumi Shimoaka,† Richard Murdey,‡ Kazuo Eda,§ and 

Takeshi Hasegawa*,† 

 

 
† Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, 

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan 
‡  Laboratory of Molecular Aggregation Analysis, Division of Multidiscipinary Chemistry, 

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan 
§ Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokko-dai, Nada-

ku, Kobe, Hyogo 657-8501, Japan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
† To whom correspondence should be addressed. 

E-mail: htakeshi@scl.kyoto-u.ac.jp   



2 
 

ABSTRACT: The powerful combination of p-polarized multiple-angle incidence 

resolution spectroscopy (pMAIRS) and grazing incidence X-ray diffraction (GIXD) is 

applied to the structural characterization of zinc tetraphenylporphyrin (ZnTPP) in vapor-

deposited films as a function of the deposition rate. The deposition rate is revealed to have 

an impact on the initial film structure and its conversion by thermal annealing. The 

pMAIRS spectra reveal that a fast deposition rate yields a kinetically restricted 

amorphous film of ZnTPP having a ‘face-on orientation,’ which is readily discriminated 

from another ‘randomly oriented’ amorphous film generated at a slow deposition rate. In 

addition, the GIXD patterns reveal that the film grown at a slow deposition rate involves 

a minor component of triclinic crystallites. The different initial film structure significantly 

influences the thermal conversion of ZnTPP films. The randomly oriented amorphous 

aggregates with the triclinic crystallite-seeds are converted to the thermodynamically 

stable phase (monoclinic) via the metastable triclinic phase. The kinetically restricted 

structure, on the other hand, is followed by a simple thermal conversion: the molecules 

are directly converted to the monoclinic one rather than the triclinic one. 
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INTRODUCTION 

Porphyrin has a functionalizable skeleton and its derivatives are employed to 

make an active layer in organic thin film devices.1-14 Zinc tetraphenylporphyrin (ZnTPP; 

Figure 1) is a solvent-soluble low molecular-weight material, and a thin film can be 

prepared by both dry- and wet-processes. The spin-coated thin film is, for example, used 

as a p-type semiconductor in organic photovoltaic devices,7,8 while the vapor-deposited 

film is incorporated in gas sensors.9 Comprehensive understanding of the structure-

controlling factors for both wet- and dry-films is thus of great importance, since the device 

properties are closely correlated with the film structure.6 Unfortunately, however, the 

structural analysis of the ZnTPP thin film is very limited,15-18 although many studies have 

been reported on the device applications.6-14  
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Figure 1  The correlation between the polymorphs and the (C–H) band for the ZnTPP 

casted films:25 the spin-coated film prepared from a chloroform solution exhibits 

amorphous (a), and the thermally-annealed film belongs to the monoclinic crystal (Type-

I) of ZnTPP (b). When a low-volatile solvent of 1,2,4-trichlorobenzene (TCB) is used, 

another monoclinic phase (Type-II) is formed in the film (c). 

 

Thin films of organic semiconductors such as porphyrin and phthalocyanine are 

generally not suitable for an X-ray diffraction (XRD) analysis due to the low diffraction 

intensity in the thin film. An as-grown film, in fact, is known to give almost no diffraction 

signals,6,16,19,20 which results in a misleading impression that all these films are composed 

of the randomly oriented amorphous portions, since the XRD pattern retrieves no 

orientation information for minute fractions of both crystallites and amorphous 

aggregates. 
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In recent years, keen attention is attracted for p-polarized multiple-angle incidence 

resolution spectrometry (pMAIRS)21-23 as a powerful tool for characterizing the 

polymorphs and molecular orientation in such a low-crystallinity film. For the pMAIRS 

analysis, the C–H out-of-plane deformation vibration (denoted as (C–H)) band of an 

aromatic ring is a highly useful band for discussing the molecular structure in an organic 

semiconductor thin film, since the band intensity and position are correlated with the ring 

orientation and the polymorphs, respectively.24-27 As noted in Figure 1, some 

representative polymorphs of ZnTPP have already been revealed to have specific 

pMAIRS spectra having different patterns.25 In fact, once the correlation between the 

pMAIRS and grazing incidence X-ray diffraction (GIXD) data is obtained, the molecular 

structure in terms of the molecular orientation and the polymorphs in a ZnTPP casted film 

can be revealed by the pMAIRS spectra alone.25 

In the present study, the powerful combination technique of pMAIRS and GIXD 

is first employed for the structural analysis of ZnTPP in a ‘vapor-deposited’ thin film. In 

our former study, the dominant factor for controlling the molecular structure in a ‘casted 

film’ was revealed to be the ‘evaporation time’ of solvent. In other words, the “film-

forming time” is the key factor, which gives us an impression that ‘vapor-deposited films’ 

should also be controlled by changing the deposition rate of the vacuum evaporation. As 
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the deposition rate increases, in general, the rate of nucleation increases, which yields a 

kinetically stable or restricted structure.28,29 Actually, previous reports demonstrate that 

the deposition rate has a substantial impact on the resulting crystal phase and its 

crystallinity of some organic semiconductors in evaporated films.29-31 Therefore, the 

present study focuses on the effect of deposition rate on the initial film structure of ZnTPP, 

followed by a structural conversion by thermal annealing. The deposition rate is found to 

significantly influence not only the initial structure, but also the thermal conversion of the 

film via two different intermediate amorphous states.  

EXPERIMENTAL METHODS  

Film Preparation: Zinc(II) tetraphenylporphyrin (ZnTPP) was provided by Tokyo 

Chemical Industry Co. Ltd. (Tokyo, Japan), which was used without further purification. 

The Si wafer having a thickness of 0.675 ± 0.025 mm was purchased from Valqua FFT 

(Tokyo, Japan), and it was chemically treated to have a hydrophobic surface by using a 

octadecyltrimethoxysilane (ODS) solution (0.5%) of an organic solvent involving 

methylethylbenzene (SAMLAY®-A)32,33 that was provided by courtesy of Nippon Soda 

Co., Ltd. (Tokyo, Japan). The surface generally has a weak interaction with organic 

semiconductor molecules, and thus it can be regarded as an inert surface.34 The vapor-
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deposited thin film with a thickness of 50 nm was prepared under a base pressure of 10-4 

Pa. The sample temperature was maintained at ambient temperature, and the average 

deposition rate was 80 and 0.2 nm min-1 followed by thermal annealing at 100 and 200°C 

for 2h on a laboratory bench, which are named fast- and slow-deposition, respectively. 

The fast- and slow-deposited thin films of ZnTPP are denoted as the FD-T and SD-T films 

(T; annealing temperature), respectively, throughout this paper.  

Film Characterization: The GIXD patterns (with an in-plane geometry) were recorded 

by a RIGAKU (Tokyo, JAPAN) SuperLab diffractometer at ambient temperature. The X-

ray was generated by using a Cu rotating anode X-ray generator at 40 kV and 30 mA (Cu 

K radiation). The incident angle of X-ray was fixed at 0.2° from the surface parallel. 

The pMAIRS spectra were measured on a Thermo Fischer Scientific (Madison, WI) 

Nicolet 6700 FT-IR spectrometer equipped with a Thermo Fischer Scientific (Yokohama, 

Japan) automatic MAIRS equipment (TN 10-1500) under the optimal condition 

determined for a Si substrate.23 The p-polarized IR ray was generated through a Harrick 

Scientific (Pleasantville, NY) PWG-U1R wire-grid polarizer, and it was detected by a 

MCT detector. The interferogram was measured 500 times for each angle. The 

experimental details are referred to our former study.25 

The orientation angle, ߶ , of a transition moment can simply be calculated by 
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using the dichroic ratio of pMAIRS-IP (in-plane) to -OP (out-of-plane) spectra 

୍ܣ) ⁄ܣ ) as long as the optimized experimental conditions are employed23,35:  

߶ ൌ tanିଵ ඨ
୍ܣ2
ܣ

	 , (1)  

where ߶ is the averaged orientation angle from the surface normal. 

RESULTS AND DISCUSSION 

Effect of deposition rate on the initial film structure of ZnTPP: Figure 2a presents 

GIXD-IP patterns of ZnTPP-FD and -SD films without thermal annealing. No apparent 

diffraction peaks are observed and no significant difference is found between the two 

patterns, which indicate that the structure of both films is nearly amorphous. In fact, the 

pMAIRS spectral pattern in the (C–H) region of 850-650 cm-1 (Figure 2b) also indicates 

that the films have an amorphous structure: the band positions of the four peaks at 798, 

752, 719 and 700 cm-1 are all in good agreement with the characteristic bands of the 

amorphous state as shown in Figure 1a. This result gives us an impression that the 

deposition rate does not influence an average crystallinity in the film significantly.  
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Figure 2  GIXD-IP patterns (a) and pMAIRS spectra (b) of the fast- and slow-deposited 

films of ZnTPP prepared at ambient temperature. 

 

A large difference is found, however, in the molecular orientation as revealed by 

the pMAIRS spectra (Figure 2b). The orientation is typically revealed by using the (C–

H) bands of the aromatic rings of ZnTPP, which are truly useful for discussing the 

orientation of the porphyrin and the phenyl rings individually. According to the surface 

selection rule of pMAIRS,21,22 when the (C–H) band appears stronger in the IP spectrum 

than that in OP one, the rings have the edge-on orientation; whereas the face-on 

orientation is revealed when the OP band is stronger than the IP one.25 On this rule, the 

porphyrin ring in the ‘FD’ film is found to have the face-on orientation, since the (C–H) 

band appears at 798 cm-1 dominantly in the OP spectrum (Figure 2b). The ‘SE’ film has 
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a ratio of unity, on the other hand, which holds for most of the bands. This quantitative 

agreement between the IP and OP spectra means that the molecule involving the 

porphyrin ring is randomly oriented in the film.  

Since the film structure is amorphous, the face-on orientation found in the FD-RT 

film is not induced by the crystallization of ZnTPP. On considering the fact that the face-

on orientation is found only in the “FD” film, the orientation should be a kinetically 

generated temporal orientation specifically induced by the very fast deposition rate. If this 

speculation is true, the temporal face-on oriented structure should be relaxed to a 

randomly oriented structure, followed by crystallization by thermal annealing (or 

aging).36 To confirm this expectation, the annealed film is investigated in the next section. 

Effect of thermal annealing on the film structure in FD films: Figure 3a presents 

pMAIRS spectra of the FD films annealed at 100 and 200°C as well as the un-annealed 

film. When the film is annealed at 100°C (FD-100), most of the IP bands exhibit 

comparable intensities to the OP ones except a few bands such as the (C–H) band at 797 

cm-1. Therefore, the molecules become a mostly random orientation (or slightly edge-on 

orientation) as expected, which implies a structural relaxation. Through this annealing 

experiment, the face-on orientation in the FD-RT film is thus found to be a kinetically 

induced frozen structure.  
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Figure 3  pMAIRS spectra (a) and GIXD-IP patterns (b) of the fast-deposited thin films 

of ZnTPP. Magnified spectra of the (C–H) wavenumber region are shown in (c). The 

characteristic peaks of the amorphous, monoclinic, and triclinic phases are marked by “A,” 

“M,” and “T,” respectively. 

 

When the low-wavenumber region is magnified (Figure 3c), the (C–H) bands 

specific to the monoclinic phase are found at 754 and 741 cm-1 (marked by “M”) 

particularly in the IP spectrum implying some monoclinic37 crystallites in the film, whose 

crystal structure is the same as that of a wet film prepared from a chloroform solution 

(Figure 1b).25 This result is supported by the weak XRD peak at 6.9° (Figure 3b) that 

corresponds to the monoclinic phase.25,37  

Of note is that another polymorph is also observed with a minor quantity in the 

FD-100 film by new band components at 762 and 748 cm-1 in the pMAIRS spectra (Figure 
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3c), which are attributed to the triclinic phase38 of ZnTPP as discussed later. Here, the 

(C–H) band of the ‘phenyl’ ring at 748 cm-1 appears mainly in the OP spectrum, which 

means that the ‘phenyl’ rings in the triclinic crystallites have the face-on orientation 

judging from the surface selection rule of pMAIRS. This further implies that the 

‘porphyrin’ ring is oriented in an edge-on manner, since the porphyrin ring is known to 

take a nearly perpendicular stance to the phenyl plane in the triclinic crystallites.38 The 

triclinic crystallite, regardless, is considered to be minute fragments in the film because 

no diffraction peak of triclinic is observed in the XRD pattern (Figure 3b). In short, the 

FD-100 film is concluded to be composed of the randomly oriented monoclinic 

crystallites (accompanying amorphous aggregates) with major quantity, and minute 

fragments of the oriented triclinic crystallites. 

When the same film is heated up to 200ºC (FD-200), to our surprise, the porphyrin 

in the FD-200 film gets back to the face-on type like the FD-RT film judging from the 

(C–H) band at 797 cm-1 (Figure 3c). This revived face-on orientation should be a result 

through a different mechanism from that for generating the FD-RT film when referred to 

the XRD patterns in Figure 3b. Since the diffraction peaks due to the monoclinic phase 

are clearly observed (Figure 3b), the face-on orientation should have a strong correlation 

with generation of the monoclinic crystallites of ZnTPP. 
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Effect of thermal annealing on the film structure in SD films: On the other hand, the 

SD film has a simple correlation of the molecular orientation with the annealing 

temperature: the dichroic ratio of the OP band to the IP one increases as the annealing 

temperature increases, which is typically found for the band at 798 cm-1 (Figure 4a). The 

change of the dichroic ratio indicates that the face-on oriented component increases with 

increasing the annealing temperature. As noted in the previous section, this orientation is 

found to be a good correlation with the monoclinic crystallites as found from the XRD 

pattern (Figure 4b). The SD-200 film, in fact, has the orientation angle of ca. 30° (see 

Table 1) that is in good agreement with the value25 of the wet film consisting only of 

monoclinic crystallites. In other words, the SD-200 film can be recognized to be identical 

to the spin-coated film (Figure 1b) prepared from the chloroform solution.  
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Figure 4  pMAIRS spectra (a) and GIXD-IP patterns (b) of the slow-deposited thin films 

of ZnTPP. Magnified spectra of the (C–H) wavenumber region are shown in (c). The 

characteristic peaks of the amorphous, monoclinic, and triclinic phases are marked by “A,” 

“M,” and “T,” respectively. 

 

 

Table 1  The orientation angle of the porphyrin calculated using the (C–H) band at 

798 cm-1 in the pMAIRS spectra. 

Abbreviation 
Porphyrin 

߶୮୭୰° Orientation type 

FD-RT 44 Face-on 

FD-100 59 Random (Slightly edge-on) 

FD-200 49 Random (Slightly face-on) 

SD-RT 55 Random 

SD-100 41 Face-on 

SD-200 29 Face-on 

 

 

The SD-100 film, on the other hand, has a more complicated structure. The XRD 

pattern (Figure 4b) includes not only the monoclinic peak (2ߠ ൌ 6.9° )37, but also the 

triclinic peak (7.2°)38. In a cooperative manner, the pMAIRS spectral pattern is largely 

different from the SD-200 film (Figure 4c). By comparing the pMAIRS spectra (Figure 

4c) with the XRD pattern (Figure 4b), the new bands at 762, 748, 736 and 705 cm-1 are 

readily assigned to the (C–H) band of the triclinic crystallites. It should be noted that this 

triclinic structure is a metastable phase in the thin film, since the triclinic phase is soon 
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transformed into the monoclinic one when employing a high-annealing temperature of 

200°C as found from the GIXD-IP (Figure 4b) and GIXD-OP25,39 patterns (Figure S1 in 

the Supporting Information). When using the relatively low temperature of 100°C, 

therefore, the two types of crystallites coexist, and the annealing process at a high 

temperature induces the thermodynamically stable structure, i.e., the monoclinic phase.  

Influence of deposition rate on the thermal conversion: When comparing the XRD 

patterns between the FD and SD films (Figures 3b and 4b, respectively), a large difference 

is found that the triclinic phase of ZnTPP is available specifically in the ‘SD’ films (as 

summarized in Figure 5). This implies that the slow-deposition rate promotes nucleation 

of the triclinic crystallites. In effect, the GIXD-IP pattern of the as-deposited SD film 

(SD-RT) indicates an ambiguously weak peak at ca. 2ߠ ൌ 	 7.0° (Figure 4b), suggesting 

that a small fraction of crystallites is available. This result can also be confirmed from the 

GIXD-OP patterns as found in Figure S2, in which the triclinic peak at 2ߠ ൌ 7.2° is 

observed only in the SD-RT film. 



16 
 

 
Figure 5  Schematic summary of the different two thermal conversions of ZnTPP thin 

films grown at fast (80 nm min-1) and slow (0.2 nm min-1) deposition rates. 

 

Difference of the initial film structure influences the following thermal conversion. 

In the case of SD films, the triclinic crystallite is grown by thermal annealing below 

100°C, which yields the clear diffraction peak as well as the monoclinic peak (Figure 4b). 

By contrast, the FD film annealed at 100°C has the triclinic component alone with an 

ignorable quantity, and instead a more stable phase, monoclinic, is dominantly formed as 

discussed above. When annealed at 200°C, both films are composed of the monoclinic 

phase alone (Figures 3 and 4). 

These results indicate that the triclinic phase is obtained by a relatively low 

molecular dynamics such as a slow deposition and a low temperature annealing. In 

addition, the triclinic crystallite-seeds generated in the SD-RT film enhance the crystal 

growth of triclinic with an aid of the thermal annealing. The triclinic phase is thus in a 

metastable state, which is kinetically favored at room temperature; whereas the 
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monoclinic phase increases as the temperature increases. The quantity ratio between the 

monoclinic and triclinic crystallites after the thermal annealing is a function of the number 

of the triclinic seeds generated in the initial film. In this manner, the balance between the 

deposition rate and the annealing temperature is the key to produce the metastable triclinic 

phase. 

SUMMARY: Influence of the deposition rate on the thermal conversion of vapor-

deposited thin films of ZnTPP has been revealed by using the powerful combination of 

the pMAIRS and GIXD techniques. The two different amorphous states depending on the 

deposition rate have readily been found in terms of the molecular orientation by using 

pMAIRS. A fast deposition rate induces a kinetically restricted face-on orientation, which 

is discriminated from the random orientation in the SD-RT film. These different 

amorphous structures yield different thermal conversions. The amorphous aggregates 

having a random orientation are readily crystallized with improving the orientation with 

an aid of the thermal annealing. On the other hand, the amorphous components having 

the face-on orientation found in the kinetically restricted film are first relaxed to be a 

random orientation followed by crystallization. The GIXD technique also has revealed 

some changes of crystal structure. The kinetically trapped amorphous aggregates are 
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directly converted to the thermodynamically stable phase, i.e., the monoclinic phase; 

whereas the randomly oriented one are changed to the monoclinic phase through the 

metastable triclinic phase. In addition, the present study has revealed a general rule for 

obtaining the triclinic crystallite that has not been found in a casted film thus far. 
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