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p-th power relations and Euler-Carlitz relations
among multizeta values

By

Yoshinori MISHIBA*

Abstract

In this paper, we study p-th power relations and Euler-Carlitz relations among multizeta
values in characteristic p. By definition, two multizeta values have the p-th power relation
if their indices map to each other multiplying by some power of p. The multizeta values of
depth one at “even” integers satisfy Fuler-Carlitz relations which are analogues of the relations
among the Riemann zeta values at positive even integers. We prove that all algebraic relations
among given multizeta values come from p-th power relations and Euler-Carlitz relations if
their indices satisfy some conditions.

§1. Introduction

Let n = (ni,...,nq4) € (Z>1)? be a d-tuple (d > 1) of positive integers such that
ni > 2. The sum
)= ) W cR
my>>mg>0 1 d
is called the multiple zeta value (MZV) and studied by many mathematicians. Many
relations over Q among MZV are known. For example, Euler showed that

(z(n) € (2mV/—1)" - Q%

for each positive even integer n > 2. We also have the harmonic product formula. The
simplest case is as follows:

Cz(n1)Cz(n2) = (z(n1,n2) + (z(n2, n1) + (z(n1 + ne).
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We also want to know the linear/algebraic independence among given MZVs. However,
we do not even know whether (z(n) is transcendental over Q for each positive odd
integer n > 3. In general, such problems seem very difficult.

Next, we consider the positive characteristic case. We fix a prime number p and
its power g. Let 6 be a variable, A := F[f] the one variable polynomial ring over F,,
K :=TF,(0) the fraction field of A, K := F,((6#~!)) the oo-adic completion of K, Cs
the oo-adic completion of an algebraic closure of K, and K the algebraic closure of K
in Coo. Let n = (n1,...,nq) € (Z>1)% be a d-tuple (d > 1) of positive integers. Such
an n is called an index of weight wt(n) := > n; and depth dep(n) := d. For an index
n, Thakur ([9, Section 5.10]) defined the multizeta value in characteristic p by

1
C(ﬁ) = Z at...q"d € KOO'
ai,...,aqg€EA:monic 1 d
deg(a1)>--->deg(aq)>0

We are also interested in determining all relations over K among given MZVs. For an
index n = (n1,...,nq) and an integer e € Z, we set

pen = (p°na, ..., p°na) € Z[1/p]?.

If p°n € Z4, the p-th power relation

€

C(p°n) = ((n)?

follows immediately from the definition of ((n). The MZVs of depth one are defined by
Carlitz ([4]) and called the Carlitz zeta values. Carlitz showed the relation

B
1—‘n—l—l

for each positive integer n > 1 which is divisible by ¢ — 1, where

= (P [[(1-07) e (o7 KX
i=1
is the Carlitz period, B, € A is the Bernoulli-Carlitz number and I',,;+1 € A is the
factorial of Carlitz (see Section 2). These relations are called the Euler-Carlitz rela-
tions. These are analogues of Euler’s relations of the special zeta values at positive even
integers. We say that a positive integer n > 1 is “even” (resp. “odd”) if n is divisible
(resp. not divisible) by ¢ — 1. After works of Wade ([10]) and Yu ([11], [12]), finally
Chang and Yu ([5, Corollary 4.6]) proved that all relations over K among the Carlitz
zeta values come from p-th power relations and Euler-Carlitz relations. This means that
if ny,...,ng > 1 are positive “odd” integers such that n;/n; is not an integral power of



p-TH POWER RELATIONS AND EULER-CARLITZ RELATIONS AMONG MULTIZETA VALUES 15

p for each i # j, then 7T, ((ny),...,((ng) are algebraically independent over K. This is
generalized in [7, Theorem 1.1] as follows: if nq,...,ng satisfy the above assumptions,
then the set

{r}t U{¢(m)|m € Sub(n)}

has 1+ d(d + 1)/2 elements and these elements are algebraically independent over K,
where for an index n = (ny,...,n4), we set

Our results in this paper contain this as a special case.
To explain the results, let us introduce some notations.

Definition 1.1. Let n = (ny,...,n4) be an index.
(1) We set

Sub’ (n) == {(ni,,...,n )1 <r<d, 1<ip <---<i, <d}.

Thus we have

d(d+1)

Sub’(n) D Sub(n), #Sub'(n) <2%—1 and # Sub(n) < 5

(2) For each 1 <j <i<d+1, we set
Ny = (7, 41, - M),
Thus we have
Sub(n) = {n;|l <j <i<d+1}.

(3) Let n/ be another index. We say that n and n’ are equivalent and denote by n ~ n’
if there exists an integer ¢ € Z such that n = p°n’, or both n,n’ are of depth 1 and
n = (m),n’ = (m') for some m,m’ € (¢ — 1)Z (hence dep(n) = dep(n’) if n ~ n'). For
positive integers m and m’, we write m ~ m’ if the indices (m) and (m') of depth one
are equivalent.

(4) Let S be a set of indices. We denote by S/~ the quotient set of S by the equivalence

relation ~.

The purpose of this paper is to generalize the result [7, Theorem 1.1] to the following
three directions:

e n;/n; may be an integral power of p,
e n; may be “even”,

e treat elements ((m) for m € Sub’(n).
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We expect that if the given indices satisfy some “good” conditions, then all algebraic
relations over K among the multizeta values at such points come from p-th power
relations and Euler-Carlitz relations. In fact, in this paper, we prove the following
theorems:

Theorem 1.2. Let n = (n1,...,nq) be an index such that the n;’s are “odd”
and distinct from each other. Assume that there exists exactly one pair j; < jo such
that nj, ~nj,. We set

S :={m|m € Sub'(n), (n;,,n;,) & Sub(m)}.
Then we have

tr.degze K (7, C(m)lm € §) = #(({(g— 1)} U S)/~).

Note that the condition (nj,,n;,) ¢ Sub(m) means that m is not an index of the
form m = (..., nj,n4,,...).

As a consequence of Theorem 1.2, we have the following corollary:

Corollary 1.3. Letn = (ny,...,nq) be an index of positive “odd” integers such
that n;/n; is not an integral power of p for each i # j. Then we have

tr.degge K (7, C(m)[m € Sub/(n)) = 2°.
We also have the following theorem:

Theorem 1.4. Let n = (n1,...,nq) be an index such that the n;’s are “odd”
and distinct from each other. Assume that there exists exactly one pair j1 # jo Such
that nj, ~ nj,. Then we have

d(d+1)

tr.degge K (7, ((m)|m € Sub(n)) = #(({(g — 1)} USub(n))/~) = =

Remark.  We do not know in general that when
7, ¢(n) and ¢((g —1)m,n) (or m,((n) and {(n, (g —1)m))

are algebraically independent over K, where n is “odd”. Thus we do not treat “even”
integers in Theorems 1.2 and 1.4. When we treat “even” integers, we need to assume
that the above elements are already algebraically independent over K as in Theorem
1.5.

For a set S of indices, we define a set [S] by
[S] := {m: index|m ~ n for some n € S}.

Theorems 1.2 and 1.4 follow from the following theorem:
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Theorem 1.5.  Let n(™ = (ngm), . (m)) (1<m<k, k>2)beindices. If
the following conditions (1) ~ (5) hold, then we have

k
tr.degr K (7, ¢(n)|n € Uy,_; Sub(n'™)) = # <<{(q -niu Sub(@“’“)) /N) :

m=1

(1) dep(n™) = di > 2.

)
2) n® £ @2, ai).

(3) Sub(n®) . [UE4 Sub(nt™)] = {n®¥}.

(4) tr.degr K (7, ¢(n)|n € UL Sub(nt™)) = #(({(q — D} U UL, Subn™))/~).
)

1<m<k—1 1<j<i<dn+1, i—j=ds.

One of the following four conditions holds:

(5-1)
k m k k k m m m
’I’Lg ) 7677’7(,—) or nElk)-1—12 (ng )77n((ik)) 76@7() 1).7 —( .5 )’H" 7(’ 2))
and
k k k k
ng ) A ngm) or nfi )+1 9 = (né ),---,nék_)) %ﬂi?}rl = (nETiavniTl))
for each (m,i,7) and Tbg ),TLElIZ)Jrl 2 #q—1.
(5-1)'
k k k
ndk) Pt n(m) or nfi )1 (ng ). ,nilk)_l) % _Eml)’j = (ng.m), . ,nETQ))
and
m k k k m m m
n £nl™ or nlf), = (), ng,f D Anll = 0 e
for each (m,i,j) and ndk nﬁ{ffl *q—
(5-2) There ezists exactly one triple (mg, o, jo) such that
k k (k ( k (
n{ ~ nE?_"i fik) ”5’?0)7 ﬂdk),l ~ ﬂz':?o)ﬂ’ —Ezk)+1 2 @z’:%—ol)’jo’

nék) # nél_?Q for some € (resp. n® £ (n§™) n{")) if dy > 3 (resp. dj = 2), and

for other (m,i,j)’s

k m k k m
ng. )7ndk)7én( ) or nék)l’nék)—l-:lQ?éﬂ’E :Ej
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and
(k) (k) (m) (k) (k) (m)
nyng 7 n; = or ng 1,0, 11,2 7> n T j¥1s
and ngk), ”dk,.) Aq—1, and Q(k) A ngz)Jrl 9
(5-2)" There exists exactly one triple (mo,ig, jo) such that
k k n ( (k
n") ~ ”E'TO)’ fik) ), R, )1 ~ _Z-:ﬁ’f,jo, ﬂdk)+1 2 ﬂg:?;o)—kl’

and for other (m,i,j)’s
k) (k m k k m
ng), (lk_)%nz(- 1) or n k) An (m)

N 112 7 1 5
and
(k) . (k) (m) nF) k) (m)
ny Ny, 7 ng = or ng 1,Mg, 11,2 7 T jy1s

and ngk),nd ) Aq—1, and n(k) Al ngz)Jrl g

Proof of Theorem 1.2. We fix an order of the set S = {n"), n® ...} such that
dep(n™) < dep(n'?) < ---. For each 1 < k < #8, we show the equality

(1.1)  trdegr K(7, ¢(nM),....¢n™)) = #({(¢—1),nY,... 00/ ~)

by induction on k. If dep(n*)) = 1, then the equality comes from the result of Chang
and Yu ([5, Corollary 4.6]). Let dep(n(®)) > 2, then it is clear that the conditions (1),
(2) and (3) of Theorem 1.5 hold. By the induction hypothesis, the condition (4) also
holds. When ngk) & {nj,,nj,}, the condition (5-1) holds if dj > 3, and the condition
(5-1), (5-2) or (5-2)" holds if d, = 2. Similarly, when ndk) & {nj,,nj,}, the condition
(5-1)" holds if dj > 3, and the condition (5-1)’, (5-2) or (5-2)’ holds if di = 2. When
ngk) (k) (this means that n( ) = = ny, and ngz) = n,,), then we have d, > 3 by the
deﬁnitlon of S, and the conditions (5-1) and (5-1)" hold. In any case, the condition (5)
of Theorem 1.5 holds, and hence the equality (1.1) follows from Theorem 1.5. O

Proof of Theorem 1.4. By Theorem 1.2, we may assume that jo = j; + 1. The
proof is similar to that of Theorem 1.2. We fix an order on S as before, and show the
equality (1.1) by induction. Let dep(n®)) > 2. Then the conditions (1), (2) and (3) of
Theorem 1.5 hold clearly, and the condition (4) follows from the induction hypothesis.
In this case, the conditions (5-1) and (5-1)" hold. O

The next proposition does not follow from Theorem 1.5, but we can show this by
similar arguments of the proof of Theorem 1.5.

Proposition 1.6.  Let n = (n1,n2,n3) be an index of depth three. If the n;’s are
“odd” and distinct from each other, then we have

tr.degz K (7, ¢(m)|m € Sub(n)) = #({(¢ — 1)} U Sub(n))/ ~
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In Section 2, we define notations which are used in this paper and briefly review
Papanikolas’ theory of pre-t-motives. In Section 3 (resp. 4), we study “lifts” of p-th
power (resp. Euler-Carlitz) relations. To apply Papanikolas’ theory to MZVs which
have p-th power or Euler-Carlitz relations, we need their lifts. In Section 5, we prove
Theorem 1.5 and Proposition 1.6. The proofs are refinements of the proofs in [7].

§2. Preliminaries

We continue to use the notations of the Introduction. Let ¢ be a new variable
independent from 6. We fix an oo-adic valuation | — | on Co. Let T := {f €
Coo[t]|f converges on |t|oo < 1} be the Tate algebra over Co, and L the fraction field
of T. For a formal Laurent series f = Y, a;t" € Coo((t)) and an integer n € Z, we define
the n-fold twisting of f by f(™ := > a?nti. The fields K(t) C LL are stable under the
action f — f(" for each n € Z and their fixed parts under the action f — f(=1 are
F,(t). Let | f|oo := max;{|a;|oc } denote the Gauss norm of f.

The formal power series

o
__a_ t —
Q(t) = (—(9) g—1 H (1 — 0q1> € Koo[[t]]
i=1
is an entire function and it is an element of T*. Clearly, it satisfies

1
Q(0) = = and Q=Y = (t - 9)Q.
Since §2(t) has infinitely many zeros, it is transcendental over K (t).
Let Dg:=1 and D; := H;;E (09" —09") for i > 1. For an integer n > 0 with g-adic
expansion n =) n;q* (0 < n; < q), the factorial of Carlitz I',, 11 € A is defined by

Ty o= [ [ D}

We set D,,(t) (resp. I'n41(t)) to be the inverse image of D,, (resp. I's 1) by the -
isomorphism F,[t] — A;¢t — 6. For an integer n > 0, the Bernoulli-Carlitz number
B,, € A is defined by

T
n=o  ntl i=0

o) 00 -1
Z Bn z”zz(Z%qu) .

For each integer n > 0, Anderson and Thakur ([2, 3.7.1]) defined a polynomial H,, € A[t]
by

S T R | I
21w ‘(1 2o ) |

1=0
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We also set

S’z(n) = Z ain

a€ A:monic
deg(a)=1

for each n > 1 and 7 > 0. These satisfy
ng_ , .S,
[Hy 1o < 10]&T and (H, Q") (0) = %(n)
T
for each n > 1 and i > 0 (see [2, 3.7.4], [3, 2.4.1]).
For an index n = (n1,...,ng), the formal power series

H(il) . H(id)

D S e 7 R T T e (e T T el

converges on |t|oo < 0|9, and it is an element of T. Clearly, it satisfies

(1)
1D H, . = n L,
no (t — @)ynat-tna’

(t — @)rait-tna Ln,,

where we set L, = Ly := 1 when d = 1. Anderson and Thakur ([3, 2.5.6]) showed

that

iy

Lﬁ(e) =T, - 'FndC(ﬂ)'

Next, we recall Papanikolas’ theory of pre-t-motives. We do not give the complete
details, but see [8] for more on this theory. See also [6, Section 2], [7, Section 3].

A pre-t-motive M is a finite dimensional K (t)-vector space equipped with a bijective
additive map p: M — M such that o(fm) = f("Yp(m) for f € K(t) and m € M. We
always assume that M is rigid analytically trivial. Thus such M is determined by the
matrix ® € GL,.(K(t)) (r := dim M) representing the @-action with respect to a fixed
basis, such that

v = ou

for some matrix ¥ € GL,(L). The Betti realization w(M) is defined and is functorial
on M (see [8, 3.4 and 3.5]). The space w(M) is an Fy(t)-vector space and its dimension
over IF,(t) is equal to the dimension of M over K (t). The category of (rigid analytically
trivial) pre-t-motives forms a neutral Tannakian category over F,(¢) with fiber functor
w. We denote by Gjs the fundamental group of the Tannakian subcategory generated
by M. When we fix a basis of M and choose a matrix ¥ as above, we also define

Gy := Spec(F,(t)[X,1/det X]/Kerv) C GL,.r,_(4),
where X = (X;;) is a matrix of r x r variables and v is the Fy(¢)-morphism defined by

v Fg(t)[X, 1/ det X] — L @, Ly Xij > Uy,
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Here we set ¥ := U7 0, € GL,(L ®% () L), where Uy (resp. Us) € GL, (L @7, L)
is the matrix defined by (V1);; := ¥,;; @ 1 (resp. (V2);; := 1 ® ¥;;). Papanikolas (|8,
Theorem 4.2.11]) showed that the scheme Gy is a closed subgroup scheme of GL,F, 1)
Moreover, he proved the following theorem:

Theorem 2.1 ([8, Theorems 4.3.1, 4.5.10, 5.2.2]).  There exists a natural isomor-
phism Gy — G and the equality

dim Gy = tr.degg K(t) (Y4, 4)

holds. Moreover, this value is equal to

tr.degz K (W3;(0)|i. j)
if ® € Mat,.(K[t]), det ® = c(t — )™ for some n € Z>o and c € K™, each entry of ¥ is
entire and U € GL,(T).

Remark.  The last part of Theorem 2.1 is proved by using a very deep result in
[1, Theorem 3.1.1], which is called the ABP-criterion. We use the last part of Theorem
2.1 to prove our theorems.

Example 2.2. Let n = (ny,...,ng) be an index. Let M[n] be the pre-t-motive
defined by the (d 4+ 1) x (d 4 1)-matrix

r (t _ 9)n1+"'+nd 0 0 - 01
Hy D= 0ymsime (= gymeiine 00 0
i) = 0 G-y
: (t—6)™ 0
i 0 s 0 HS Y (t—0)ma1]
We also set
in—l—---—l—nd O O e O-
in-l-"'-l-ndLn Qnat-tng 0 - 0
—=21
\If[n] — Qnit-tnag, Qnat-tnag
—l ngy ULED)
: : . Qnd
Qnittnag, Qna2t-tnag, oo Qnay,
L Ngt11 Ngt1,2 Ngyi,a -

Then we have ¥[n](~) = ®[n]¥[n]. By Theorem 2.1, we have Gy = G and

dim Gy [y = tr.degg K(t)(Q, Lyy|m € Sub(n))
= tr.degz K (7, ¢(m)|m € Sub(n)).
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—_—

The matrix ¥[n] = (¥[n];;) is calculated as

—~—

Ulaly = (@ L@t 3OS ST Ly L, @ QUL

s=j5 r=0 s=ig <ty <--+
<tp_1<ir=t

for each j < 7, where we denote Lyy := Lﬂke'

Example 2.3. Fork = 1,2, let ®; € GL,, (K(t)) and ¥}, € GL,, (L) be matrices
such that \Ill(e_l) = &, U, and let My be the pre-t-motive defined by ®;. Since My, is a
direct factor of M; ® My, there exists a surjective map

G‘Ih@‘lfz = GM1EBM2 - GMk = G‘Ifk

by Tannakian duality and Theorem 2.1. This coincides with the restriction of the k-th
projection GL,, x GL,, - GL,, .

§ 3. Lifts of p-th power relations

In this section, we study p-th power relations among L,,’s, which are lifts of p-th

power relations among MZVs. For an index n = (n1,...,n4), we use the notations
Q= Qmttma and 0/ = (ng,...,nq_1).
Lemma 3.1.  For each positive integer n > 1 and each non-negative integer

e > 0, we have

e ()

Proof. We have

(Eetio)” = ()" 0= e

Therefore

€

((Emen)) = () o)

for each 7 > 0. Thus we have

(1{[—@)(9)) - s = (T E)
H, \*




p-TH POWER RELATIONS AND EULER-CARLITZ RELATIONS AMONG MULTIZETA VALUES 23

for each 7 > 0. O
We set " o)
pen—1 pen X
< elF,(t
’Ye,n Hﬁ_l Pn(t)pe q( )
and
d
’yeaﬂ = H Fyevni
i=1
for any index n = (ny,...,nq). When p~°n € Z%, we also set
_p_e

Veem = Vep-ep:

The next lemma gives a p-th power relation among L,, and Lye,,, which is a lift of

the p-th power relation ((p°n) = ((n)? .

Lemma 3.2.  For each index n of depth d and each integer e € 7Z such that
pen € 72, we have
Lpeﬂ = ’ye,ﬂLz .

Proof. By the definition of 7. , for negative integers e, we may assume that e > 0.
We prove this equality by induction on d. When d = 0, it is clear. We take d > 1 and
assume that the above equality holds for any indices whose depths are lower than d.
Then we have

(P BLpep, — Yo (VL)Y

€

peng—1

=HY (= 0P QP L+ QP RL e — e (Hfz;i)l (t—0)"Q"L, + QﬁLﬁ)p
= QpeﬂLpeg - ’Ye,ﬂ(QﬂLg)pe + (t — e)pend Qv (Hzg;j;—leeﬂ’ —Ye.n' Ve,ng (Hr(z;i)l )peLZf)
= O BL ey — e ( QLY+ (8= O P Ly (HEY) e, (HE D))

= OB Lpey — Yo (Q2L) 4 (¢ = O QI Ly (HD DS

= P e — Yo (Q2L,)P".

Thus
QP 2L = Yo (2L, + ¢

for some ¢ € Fy(t). Since we have

n e I\p€n1 Fpend Fnl e 'FndC(ﬂ) P
(Ve,ﬁ(Q_Lﬂ)p )(0) = 1-\%51 T ng xnitotng
. I1p€nl e FpendC(peﬁ)
peni+t--+peng

- (QpeﬂLpeﬂ) (9)7
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we conclude ¢(f) = 0, and hence ¢ = 0. O

Lemma 3.3. Letn = (ny,...,nq) be an index and ¥ := ¥in] € GLg441(IL) the
matriz defined in Example 2.2. Take 1 < j<i<d+1andl <l <k <d+1 such that
n;; = PNy for some integer e € Z. Then the equality

Uii /Ui = Ve, (Vre/Trr)?

holds.

Proof. We may assume that e > 0. By Example 2.2, we have

{Ivllj/‘j” - Z Z(_l)’" Z Lﬂilio T Lﬂiri,,._]_ ® (P Lﬂsj

s=j r=0 s=t9<ip<--
<1 <ip=1%

- Z Z(_l)r Z Lpeﬁilio e Lpeﬂiﬂ‘,,_l ® QpeﬂkeLpeﬁse

s=4 r=0 s=i0<t1< "
<ip_1<ir=k

- Z Z(_l)T Z Fye’ﬂilio o ’ye’ﬂiri,._l Te,n,, (Lﬂilio o Lﬂirir_l ® QkaLﬂse)pe

s=¢ r=0 S=ig<t1<-*
<ip_1<ir=k

e

k k—s p
= ’Ye»ﬂke (Z Z(_l)r Z Lﬁilio T LﬂiTi,,_l ® QﬂuLﬂd)

s=¢ r=0 S=ig<lt1<- -+
<bp_1<ir=k

= Yeunye (Whe/ Vi)

§4. Lifts of Euler-Carlitz relations

In this section, we study Euler-Carlitz relations among 2 and L,,’s, which are lifts
of Euler-Carlitz relations among 7 and Carlitz zeta values at positive “even” integers.

* and

Let n > 1 be a positive “even” integer. By [6, Remark 3.3], there exist ¢, € F,(¢)
fn € K(t) such that

Q"L, —cp = [nO".
This gives a lift of the Euler-Carlitz relation at n. The ¢, is determined by

Tn¢(n) _ TwBy

= c K*.
" | ]

cn(0) =
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Let n = (n1,...,nq) be an index and take j such that n; is “even”. Then we have

U1/ g1 = en, (1= (7 @ Q)™),

where ¥ := U[n| is the matrix defined in Example 2.2.

Proofs

§ 5.

In this section, we always assume that algebraic groups are defined over Fy(t). We
need the following lemma. This can be proved easily and we omit the proof.

Let
mi,...,my € Z be non-zero integers. Assume that V is stable under the G,,-action on
G," defined by

Lemma 5.1. Let V C G," be an algebraic subgroup of dimension zero.

a.(xy,...,z.) = (a"™x1,...,a"x.) (a € Gy, (x;) € G,).

Then V (Fy(t)) is trivial.

From now on, we identify group schemes over F,(t) with the sets of F,(¢)-valued

points of them. We use letters a, :cgn)

Proof of Theorem 1.5. For 1 < ¢ < k, let G=¢ be the algebraic group defined by
the matrix [Q] ® @1{1:1 U[n,,]. Then G=¢ is an algebraic subgroup of

,... for coordinate variables of algebraic groups.

(m)

lf ﬂi’j/ -

(m)

(m/) peﬂ
(m)

( i en ) -
14 (m) 14
L1
a @@ () EGmXHGLdm—l—l
m=1 : a"dm m=1

(m) (m)

. L T4, +1.1 Ty 41d,, L

(m/) n(¢/)+...+ngm//) (m) n(m)+...+nl(im) pe )
T [a ™= Ve (xij Ja™ m)

(m)
O
(m)

Ljt1,5

/anj+1+"'+ndm — Cn(.m)(l _anj )

if ngm)

is “even” J

By Theorem 2.1 and the condition (4), this inclusion is actually an equality for

1 < ¢ < k—1. It suffices to show that this inclusion is actually an equality for ¢ = k.

We already have

dim G=F ! <dimGSF < dim G=F1 +1

by the condition (3) and it suffices to show that the second inequality is an equality.

Let

Y: GSF — GSFL and 754 G5 G =G, (1< 0<k)
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be the surjections obtained as in Example 2.3. We set V¢ := Kern<f to be the

unipotent radical of G=¢. Then we have the following commutative diagram

| y<k o<k =L G,, |
.
| —> Vsl g1 g 1

with exact rows, where v is the restriction of 1 to V=F. The morphism ¢’ is surjective.
It is clear that Ker )’ is a normal subgroup of G=*. The conjugate action X — A~1X A
of G=¥ on Ker factors through the action of G,, on Ker’ by

(k) _ n{ ol (k)
a.(...,O,xkorl’l,O, )=(...,0,a* Wxy’4,0,..0).

Now, we assume that dim G=F = dim G=*~! and we shall induce a contradiction.
Since dim Ker )’ = 0, the group Ker ' is trivial by Lemma 5.1. Let X = (a;gn)) (resp.
A= (agn))) be any element of V=F such that a:gn) =0ifi—j # 1 (resp. agn) =0if
i—j#dr—1)and (m,i,j5) # (k,di +1,1). For each 1 <m < k, we set xgm) = wyj:ij
(1 <j<dy) and ag.m) = a&?llﬂ,j (1<j<dy,—diy+2). Wealsoset d:=d—1
(which is > 1 by the condition (1)). Then the m-th component of A~ X A is equal to

1
xﬁm) 1
0 wgm)
0
0 :
d+2 aiVay}) — ay™ay™ ) o )
0 ay Ty —ay Y
0
0
2d+2 | —afa™aiy) — (™) 0
; AT — o)
0
0
3d+2 aé"j)gag?lg(agm)xgﬂ - agm)$§m)) (m) (m) ¢ ( )O( ) (m) . (m)
0 adT:),azZLJrg(azm %22 — a3 ay™)
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for each 1 < m < k. Thus the (7, j)-th entry of the m-th (resp. k-th) component of
A7IX A s

( 1 (i—j=0)
2™ (i—j=1)
(@2l — e Ay Tl g = rd 1, 2 )
(resp agk)xgjzl ék) §’“) + g&l,l) (resp. i —j=d+1=dy))
\ 0 (otherwise)

Therefore, if the equalities
(5.1) @™ 2 —al™) 2 =0 (I<m<k, 1<j<i<dn+l, i—j=d)
hold, then X *A71X A € Kery/ = {1} and the equality

k k k (k
(52) at(ilk),la‘:((ilk)—i-l dn at(ilk)—i—l 233'21) =0

must hold. We show that this implication induces a contradiction and hence we have
dim G=F = dim G=F~1 + 1.
First, we assume that the condition (5-1) holds. If @gz)’l A ﬂc(ilz)Jrl,Q’ we can take

k k) (k
ailk)—l—l 23321) # 0, aglk) xfzk)ﬂ dy = aiml),]xz('?ll = ET—)I—leT)l =0

for each (m,,7). Then the equalities (5.1) hold and hence the equality (5.2) also holds.

However, it becomes afi )+1 2.7:5’? = 0. This is a contradiction. If n( ) nélk)Jrl 5 (and

hence ngk) n )) there exists an integer e such that ngk) 1=D nElk)H 5. Then we can
take

7(,m1),] ET)l = GET—)I—leT)l =0

for each (m, 1, j) and the equality (5.2) becomes

( (k) )P ¢ (k) (k) k) _

Yen® Qg 112) Ta41,d, — Ydp+1,2721

CRg, 41,2

(k)

(k )
for each Qg1 2 and z,

Then e must be zero. However, since n®) # (n gk), o ,ngk))

by the condition (2), e is non-zero. This is a contradiction.
Similarly, when the condition (5-1)" holds, we obtain a contradiction.
Next, we assume that the condition (5-2) holds. Then we can take

(B L) g g m) L m ) )

L9219 X g, 11,dy, Qi q,5%54-1 = G j11855-1 =

for each (m,1,j) # (mo,i0,Jjo) and a&k)l,aéklrl 5 as any elements. There exist integers

€1, €9, €3,e4 € 7 such that

(mo) (k) (mo) (k) (mo) _ (k) (k)
G, 01 ,Jo =p° ndk+1 2 Iy, Joo+1 =p° ndk 1 T = ndk ’ n:?;o 1 =" ny
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Then the (mo, i0, jo)-th equality of the equalities (5.1) becomes

(k) pel (k)yps (k) \p©2 (k) p3 _
761@&1;)+1’2 (adk+1,2) Vesn) (z21) WGQ,Q(Z)Yl(adkal) 763’112? (xdk+1,dk) =0.

We take any afii)Jrl’Q and set

(k) P
k)\pc4
P

X
761@&?_,_1,2764,71(1“( 21 )

(k)

k €1 —e
agy,,1 = ( " P

Aq,.+1,2

(k) peB
762 ,ﬂg;)y 1 7@3 ,n;i_) (xdk +1,dg )

Then the equalities (5.1) hold and the equality (5.2) becomes

) P
(k)\pea
Vern®, Yoy o (T21)"

k
Ry +1,2

( (k) )pel_e2 (k) (k) (k) 0

. Adr 41,2 Lap+1,de — Ydp+1,2T21 =

Yoo n® 7 (k>($(k) )
ezmg 1 lesmg di+1,dy

(k)

and holds for each a; "y, ,. This implies e; = e2. Then we have ngk) (k)

= n,/, for each
¢ (resp. nt*) ~ (nng),nng))) if d > 3 (resp. dp = 2). In any case, we obtain a
contradiction.
(k)

1 9.

Similarly, when the condition (5-2)" holds, we have n(*) = ( .,ngk)) (resp.

n®) ~ n(m0)) if d), > 3 (resp. dj, = 2). In any case, we obtain a contradiction. O

Proof of Proposition 1.6. We use the notations in the proof of Theorems 1.5. We
set

n® =ny, n® =ny, n® = ng,

n® = (n1,n2), @(5) := (ng,n3), Q(ﬁ) = (n1,n2,n3).

By Theorem 1.5 and the result of Chang and Yu ([5, Corollary 4.6]), we have
tr.deg K (7, (™)L <m < 4) = #(({(g — D} U {n™[1 <m < 4})/~).
If we prove
tr.deg K (7,¢(n™)[1 <m < 5) = #(({(¢ = D}U{n™ |1 <m < 5})/~),

then Proposition 1.6 follows from Theorem 1.5.

Assume that n(® % n® and dimG=® = dim G=*. In this case, the equality
aé‘i)xg;) - agé)ajgi) = 0 implies the equality agsl)xég) - agg)xé?) = 0. We may assume that
ny ~ ng ~ ng, otherwise we obtain a contradiction from [7, Theorem 1.1] and Theorem

1.4. We set
a) = agi), ag = ag;) = a§51), as = aég),

.4 (4 (5) — .(5)
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For each j, we have n; = p®n for some n > 1 and e; > 0 with min{e;} = 0. We set
a := aj, and x := x;, for some jy such that e;, = 0. Thus we have a; = 'yej’napej and
Tj = %j’nxpej for each j. Then

€1 €2 €2 €1 . . €2 €3 €3 €2
a? " xP " —a? "xP " =0 implies a? 2P —a? 2P T =0

for any a,x € Fy(t). Since e; # ez, we conclude that e; — ey divides ez — e3. By
symmetric arguments, since es # e3, we conclude that e3 — ey divides es — e; This
means that e; — ea = +(ey — e3). However this is a contradiction because we assume
that n(® £ n® and e; # es. O
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