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A new conjecture for Rubin‐Stark elements and its

applications

By

Takamichi Sano *

Abstract

We review a new conjecture recently proposed by the author, and also by Mazur and

Rubin. We explain that this conjecture is a natural generalization of Darmon�s conjecture on

cyclotomic units, and Gross�s conjectures on Stickelberger elements.

§1. Introduction

This article is a research announcement of the paper [17]. The aim of this article is

to explain in detail a new conjecture (Conjecture 2), which was proposed by the author

in [17, Conjecture 3], generalizing conjectures of Gross and of Darmon ([10, 6]), and to

explain its applications. Mazur and Rubin also proposed essentially the same conjecture
as Conjecture 2 in the recent preprint [14].

Conjecture 2 concerns special elements, called Rubin‐Stark elements, which are

related to special values of L ‐functions of number fields. We sketch the formulation of

Conjecture 2. Let k be a number field, and consider a finite abelian extension K/k . Let

S be a finite set of places of k
,
which contains all infinite places of k and all places which

ramify in K . Take a finite set T of places of k satisfying certain conditions (see §2.1
for the precise conditions). Let $\theta$_{K/k,S,T}(s) denote the equivariant (S, T)-L ‐function for

K/k (see §2.1 for the definition . Let r be the vanishing order of $\theta$_{K/k,S,T}(s) at s=0.

The Rubin‐Stark conjecture (Conjecture 1), proposed by Rubin in [16, Conjecture \mathrm{B}' ],
predicts that the leading term (namely, the coefficient of s^{r} ) of the Taylor expansion
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of $\theta$_{K/k,S,T}(s) at s = 0 is the image of an integral element $\eta$_{K/k,S,T}^{r} ,
which is called

the Rubin‐Stark element, under a regulator map. For any intermediate field K/L/k,
Conjecture 2 describes a precise relation between the Rubin‐Stark elements $\eta$_{K/k,S,T}^{r} and

$\eta$_{L/k,S,T}^{r'} ,
where r' denotes the vanishing order of $\theta$_{L/k,S,T}(s) at s = 0 . When r = r',

it is known that the norm map \mathrm{N}_{K/L} sends $\eta$_{K/k,S,T}^{r} to $\eta$_{L/k,S,T}^{r'} (see Proposition 2.5).
This relation is usually called the �norm relation In the general case, the author

defined in [17] \mathrm{a} �higher norm� \mathcal{N}_{K/L} ,
which coincides with the norm map \mathrm{N}_{K/L} when

r=r'
, using an idea of Darmon in [6] (see §2.3). Assuming the Rubin‐Stark conjecture,

Conjecture 2 is formulated as follows:

\mathcal{N}_{K/L}($\eta$_{K/k,S,T}^{r})= Rec ($\eta$_{L/k,S,T}^{r'}) ,

where Rec is a map constructed by using local reciprocity maps, and coincides with

the identity map when r = r' (see §2.3). We thus generalized the �norm relation� of

Rubin‐Stark elements.

Conjecture 2 is indeed a generalization of Conjectures of Gross and of Darmon

([10, 6]). Gross�s conjecture ([10, Conjecture 4.1]) concerns $\theta$_{K/k,S,T}(0) ,
which is usually

called the Stickelberger element, and predicts the equality

(1.1) $\theta$_{K/k,S,T}(0)=h_{k,S,T}R_{K/k,S,T},

where h_{k,S,T} is the (S, T) ‐modified class number of k
,

and R_{K/k,S,T} is the (�algebraic

regulator�, constructed by using local reciprocity maps. Observing that $\eta$_{K/k,S,T}^{0} =

$\theta$_{K/k,S,T}(0) and that $\eta$_{L/k,S,T}^{r'} is described explicitly by using h_{k,S,T} when L = k
,

we

know that the equation (1.1) is a special case of Conjecture 2. Darmon�s conjecture ([6,
Conjecture 4.3]) is an analogue of Gross�s conjecture for cyclotomic units. Observing
that cyclotomic units are examples of Rubin‐Stark elements with r = 1

,
we can prove

that Darmon�s conjecture is also a special case of Conjecture 2.

Formulating Conjecture 2, the author was inspired by the work of Burns in [2].
Burns formulated in [2, Theorem 3.1] essentially the following (conjectural) relation

between $\eta$_{K/k,S,T}^{r} and $\eta$_{L/k,S,T}^{r'} :

(1.2)  $\Phi$($\eta$_{K/k,S,T}^{r})=$\Phi$^{K/L} (Rec ($\eta$_{L/k,S,T}^{r'}) ),

where  $\Phi$ is any �evaluator�, and  $\Phi$^{K/L} is its restriction on L (see §2.4 for the precise
definition . In this article, we refer (1.2) as �Burns�s conjecture� (Conjecture 3). As

explained in the proof of [2, Corollary 4.1], Burns�s conjecture is a generalization of

Gross�s conjecture (see Remark 2.8). The author proved that, under some assumptions,
our new conjecture (Conjecture 2) and Burns�s conjecture (Conjecture 3) are equiva‐
lent (see [17, Theorem 3.15] or Proposition 2.12). Burns proved that the Rubin‐Stark
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conjecture and most of Burns�s conjecture are deduced from the �equivariant Tama‐

gawa number conjecture (ETNC
�

( [3, Conjecture 4 (iv)] ) ,
a vast generalization of the

classical class number formulas, for a particular Tate motive (see [2, Theorem 3.1] or

Theorem 2.9). Using this result, the author proved that, under some assumptions, most

of our new conjecture (Conjecture 2) is deduced from the ETNC for a particular Tate

motive (see [17, Theorem 3.21] or Theorem 2.13). This is the main result of [17].
In a recent joint work with Burns and Kurihara ([5]), we were able to prove that

our new conjecture (Conjecture 2) and Burns�s conjecture (Conjecture 3) are equivalent
under no assumptions. We also proved that Conjecture 2 is deduced from the ETNC

for a particular Tate motive completely. Since the ETNC for Tate motives for abelian

extensions over \mathbb{Q} is known to be true, by the works of Burns, Greither, and Flach

([4, 7]), we have proved that Conjecture 2 is true for abelian extensions over \mathbb{Q} . As

applications, we gave a proof of Gross�s �conjecture for tori� ([10, Conjecture 8.8]),
which was verified by Greither and Kučera in some particular cases ([8, 9 and a full

proof of Darmon�s conjecture, whose (non‐2‐part� was proved by Mazur and Rubin via

Kolyvagin systems ([13, Theorem 3.9]). Note that the main result of [17] gives sufficient

ingredients to prove the (non‐2‐part� of Darmon�s conjecture, as explained in [17, §4].
Since we mentioned so many conjectures, we illustrate their relations;

Burns [2] |
The Rubin‐Stark conjectureETNC

Burns [2](weak version), [5](completely)
[17](weak version), [5](completely)

The new conjecture (Conjecture 2) Burns�s conjecture (Conjecture 3)

[17](\backslash \mathrm{n}\mathrm{o}\mathrm{n}-2‐part�), [5](completely) Burns [2]
[17]

Darmon�s conjecture Gross�s conjecture
[5]

Gross�s (

conjecture for tori�

Notation

For a finite abelian group G, \mathrm{a} \mathbb{Z}[G] ‐module (resp. algebra) is simply called a

G‐module (resp. algebra). Tensor products, \mathrm{H}\mathrm{o}\mathrm{m}
,

and exterior powers over \mathbb{Z}[G] are

denoted by \otimes_{G}, \mathrm{H}\mathrm{o}\mathrm{m}_{G} ,
and \displaystyle \bigwedge_{G} respectively. For any subgroup H \subset  G ,

the norm

element is defined by

\displaystyle \mathrm{N}_{H} :=\sum_{ $\sigma$\in H} $\sigma$\in \mathbb{Z}[G].
Let M be a G‐module, and Q be a G‐algebra. For any positive integer r

,
there is
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a canonical homomorphism

\displaystyle \mathrm{H}\mathrm{o}\mathrm{m}_{G}(M, Q) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{G}(\bigwedge_{G}^{r}M, (\bigwedge_{G}^{r-1}M)\otimes_{G}Q)
defined by

 f\mapsto (f^{(r)} :m_{1}\displaystyle \wedge\cdots\wedge m_{r}\mapsto\sum_{i=1}^{r}(-1)^{i+1}m_{1}\wedge\cdots\wedge m_{i-1}\wedge m_{i+1}\wedge\cdots\wedge m_{r}\otimes f(m_{i})) .

For any positive integers r and s with r\leq s, \mathrm{d}∧ne a homomorphism

(1.3) \displaystyle \bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(M, Q) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{G}(\bigwedge_{G}^{s}M, (\bigwedge_{G}^{s-r}M)\otimes_{G}Q)
by  f_{1}\wedge\cdots ∧  f_{r}\mapsto f_{r}^{(s-r+1)_{\circ}}\cdots\circ f_{2}^{(s-1)}\circ f_{1}^{(s)} . From this, we often regard an element

of \displaystyle \bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(M, Q) as an element of \displaystyle \mathrm{H}\mathrm{o}\mathrm{m}_{G}(\bigwedge_{G}^{s}M, (\bigwedge_{G}^{s-r}M)\otimes_{G}Q) . Note that, when

r=s
,

we have

(1.4) ( f_{1} ∧ . . . ∧ f_{r} )(m_{1} ∧ . . . ∧ m_{r} ) =\det(f_{i}(m_{j}))_{1\leq i,j\leq r}.

§2. Conjectures

In this section, we formulate a new conjecture concerning Rubin‐Stark elements

(see Conjecture 2). Throughout this section, we fix a finite abelian extension K/k of

number fields, and denote its Galois group by G . For any set  $\Sigma$ of places of  k
,

we denote

by $\Sigma$_{K} the set of places of K lying above places in  $\Sigma$.

§2.1. The Rubin‐Stark conjecture

We review the formulation of Rubin�s integral refinement of the Stark conjecture

([16, Conjecture \mathrm{B}

Let S and T be sets of places of k satisfying the following:

\bullet  S contains all infinite places of k and all places which ramify in K,

\bullet  S\cap T=\emptyset.

The (S, T) ‐unit group of K is defined by

\mathcal{O}_{K,S,T}^{\times} := { a\in K^{\times} : \mathrm{o}\mathrm{r}\mathrm{d}_{w}(a) =0 for all w\not\in S_{K} and a\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} w') for all w'\in T_{K} },

where \mathrm{o}\mathrm{r}\mathrm{d}_{w} denotes the normalized additive valuation at w . We assume that \mathcal{O}_{K,S,T}^{\times}
is torsion‐free. This condition is satisfied when, for example, T contains two primes of

unequal residue characteristics.
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The equivariant (S, T)-L ‐function for K/k is defined by

$\theta$_{K/k,S,T}(s) :=\displaystyle \prod_{v\in T} (1- Frobv-1\mathrm{N}v^{1-s} ) \displaystyle \prod_{v\not\in S}(1- Frobv-1\mathrm{N}v^{-s})^{-1},

where \mathrm{N}v denotes the cardinality of the residue field at v
,

and Frobv \in  G denotes the

Frobenius automorphism at v. $\theta$_{K/k,S,T}(s) is a \mathbb{C}[G] ‐valued complex function defined

on {\rm Re}(s) > 1 . It is well‐known that $\theta$_{K/k,S,T}(s) has a meromorphic continuation on \mathbb{C},
and holomorphic at s=0.

Fix an integer r with 0\leq r< |S| . Assume that S has r places which split completely
in K . This assumption ensures that the function

$\theta$_{K/k,S,T}^{(r)}(s) := \displaystyle \frac{1}{s^{r}}$\theta$_{K/k,S,T}(s)
is holomorphic at s = 0 (see [18, Proposition 3.4, Chapitre I]). It is easy to see that

$\theta$^{(r)}K/k,S,T(0) \in \mathbb{R}[G].
Let Y_{K,S} denote the free abelian group on S_{K} . Define

X_{K,S} := \displaystyle \{\sum_{w\in S_{K}}a_{w}w\in Y_{K,S} : \sum_{w\in S_{K}}a_{w}=0\}
By Dirichlet�s unit theorem, we have the isomorphism of \mathbb{R}[G] ‐modules

$\lambda$_{K,S} :\mathbb{R}\otimes_{\mathbb{Z}}\mathcal{O}_{K,S,T}^{\times}\rightarrow^{\sim}\mathbb{R}\otimes_{\mathbb{Z}}X_{K,S},
defined by

$\lambda$_{K,S}(a) :=-\displaystyle \sum_{w\in S_{K}}\log|a|_{w}w,
where | |_{w} denotes the normalized absolute value at w.

We set n:= |S|-1 and label the elements of S as

S=\{v_{0}, v_{1}, . . . , v_{n}\}

so that v_{1} ,
. . .

, v_{r} split completely in K . For each v_{i} \in  S ,
we fix a place w_{i} of K lying

above v_{i} . Set V :=\{v_{1}, . . . , v_{r}\}.
Define the Rubin‐Stark element for (K/k, S, T, V)

$\eta$_{K/k,S,T,V} \displaystyle \in \mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}\mathcal{O}_{K,S,T}^{\times}
as the unique element which corresponds to $\theta$_{K/k,S,T}^{(r)}(0)(w_{1} -w_{0})\wedge\cdots ∧ (w_{r}-w_{0}) \in

\displaystyle \mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}X_{K,S} under the isomorphism

\displaystyle \mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}\mathcal{O}_{K,S,T}^{\times}\rightarrow^{\sim}\mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}X_{K,S}
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induced by $\lambda$_{K,S} . Note that $\eta$_{K/k,S,T,V} depends on the choice of the labeling of the

elements of S ,
and of each place w_{i} of K lying above v_{i}.

The Stark conjecture predicts that $\eta$_{K/k,S,T,V} \displaystyle \in \mathbb{Q}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}\mathcal{O}_{K,S,T}^{\times} (see [16, Proposi‐
tion 2.3]). The Rubin‐Stark conjecture predicts the (�integrality� of $\eta$_{K/k,S,T,V} : Rubin

defined a lattice

\displaystyle \bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}:= { a\displaystyle \in \mathbb{Q}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}\mathcal{O}_{K,S,T}^{\times} :  $\Phi$(a) \in \mathbb{Z}[G] for all  $\Phi$\displaystyle \in\bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G]) },
and conjectured

Conjecture 1 (The Rubin‐Stark conjecture for (K/k, S, T, V

$\eta$_{K/k,S,T,V} \displaystyle \in\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}.
Remark 2.1. Our formulation of the Rubin‐Stark conjecture is slightly different

from the original formulation of Rubin ([16, Conjecture \mathrm{B} . By [16, Proposition 2.4

and Lemma 2.6 (ii)], it is not difficult to see that these conjectures are equivalent.

Remark 2.2. As noted in the remark after [16, Conjecture \mathrm{B}' ], the validity of the

Rubin‐Stark conjecture does not depend on the choice of the labeling of the elements

of S ,
and of each place w_{i} of K lying above v_{i}.

Remark 2.3. Clearly, we have

im (\wedge^{r}\mathcal{O}_{K,S,T}^{\times} \rightarrow \mathbb{Q}\otimes_{\mathbb{Z}} \wedge^{r}\mathcal{O}_{K,S,T}^{\times}) \subset \cap^{r}\mathcal{O}_{K,S,T}^{\times}.
G G G

But in general we have

$\eta$_{K/k,S,T,V} \not\in im (\wedge^{r}\mathcal{O}_{K,S,T}^{\times} \rightarrow \mathbb{Q}\otimes_{\mathbb{Z}} \wedge^{r}\mathcal{O}_{K,S,T}^{\times}) .

G G

(See [16, §4.1].) This shows that Rubin‐Stark elements have �denominators� in general.

Remark 2.4. The Rubin‐Stark conjecture for (K/k, S, T, V) is known to be true

in the following cases:

(i) V = \emptyset i.e.  r = 0 (in this case, the Rubin‐Stark element is the �Stickelberger ele‐

ment� $\theta$_{K/k,S,T}(0) \in \mathbb{R}[G] ,
and the Rubin‐Stark conjecture asserts that $\theta$_{K/k,S,T}(0)

\in \mathbb{Z}[G] . This is a well‐known result, due to Deligne and Ribet, see [16, Theorem

3.3]),
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(ii) [K:k] \leq 2 ([16, Corollary 3.2 and Theorem 3.5]),

(iii) K is an abelian extension over \mathbb{Q} (Burns, [2, Theorem \mathrm{A}] ).

§2.2. The \backslash \backslash _{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}} relation�

As mentioned in [16, Introduction], the study of Rubin�s integral refinement of the

Stark conjecture was an attempt to relate the Stark conjecture to the theory of Euler

systems, initiated by Kolyvagin in [12]. An Euler system is a certain norm compatible

system of global units. Rubin‐Stark elements have norm compatible relations as follows.

Proposition 2.5 (�norm relation�, [16, Proposition 6.1], [17, Proposition 3.5]).
Let L be an intermediate field of K/k ,

and put H :=\mathrm{G}\mathrm{a}1(K/L) . Then we have

\mathrm{N}_{H}^{r}($\eta$_{K/k,S,T,V})=$\eta$_{L/k,S,T,V},

where \mathrm{N}_{H}^{r} denotes the map

\displaystyle \mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G}^{r}\mathcal{O}_{K,S,T}^{\times}\rightarrow \mathbb{R}\otimes_{\mathbb{Z}}\bigwedge_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times}
induced by \mathrm{N}_{H} : \mathcal{O}_{K,S,T}^{\times}\rightarrow \mathcal{O}_{L,S,T}^{\times}.

Using this relation, Rubin constructed Euler systems from Rubin‐Stark elements,

assuming the Rubin‐Stark conjecture (see [16, Corollary 6.3 and the following Remark]).
One of the motivations of formulating our new conjecture is to generalize this

relation of Rubin‐Stark elements. See Remark 2.6 below.

§2.3. A new conjecture

We fix an intermediate field L of K/k ,
and set H := \mathrm{G}\mathrm{a}1(K/L) . Assume that

v_{1} ,
. . .

, v_{r'} split completely in L for some integer r' with r \leq  r' \leq  n
,

and set V' :=

\{v_{1}, . . . , v_{r'}\} . Our conjecture describes a relation between two Rubin‐Stark elements

$\eta$_{K/k,S,T,V} and $\eta$_{L/k,S,T,V'}.
We denote by I(H) the augmentation ideal of \mathbb{Z}[H] . Set I_{H} := I(H)\mathbb{Z}[G] . It is

easy to see that

I_{H}=\mathrm{k}\mathrm{e}\mathrm{r} (\mathbb{Z}[G] \rightarrow \mathbb{Z}[G/H]) .

For any non‐negative integer i
, put

Q_{H}^{i} :=I_{H}^{i}/I_{H}^{i+1} and Q(H)^{i} :=I(H)^{i}/I(H)^{i+1}

Note that Q_{H}^{i} is naturally regarded as a G/H‐module. There is a natural isomorphism
of G/H‐modules

(2.1) Q_{H}^{i}\simeq \mathbb{Z}[G/H]\otimes_{\mathbb{Z}}Q(H)^{i}
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For each v_{i} \in  S ,
we denote by G_{i} the decomposition group of v_{i} in G . Note that,

if 1 \leq i\leq r' ,
then G_{i} \subset H since v_{i} splits completely in L . For i with r<i\leq r' ,

define

a G/H‐homomorphism

\mathrm{R}\mathrm{e}\mathrm{c}_{i} :\mathcal{O}_{L,S,T}^{\times}\rightarrow Q_{H}^{1}
by

\displaystyle \mathrm{R}\mathrm{e}\mathrm{c}_{i}(a) :=\sum_{ $\tau$\in G/H}$\tau$^{-1}(\mathrm{r}\mathrm{e}\mathrm{c}_{w_{i}}( $\tau$ a)-1) ,

where \mathrm{r}\mathrm{e}\mathrm{c}_{w_{i}} : L^{\times} \rightarrow G_{i} \subset  H denotes the local reciprocity map at the place of L lying
under w_{i} . The element

\displaystyle \bigwedge_{r<i\leq r'}\mathrm{R}\mathrm{e}\mathrm{c}_{i} \in\bigwedge_{G/H}^{r'-r}\mathrm{H}\mathrm{o}\mathrm{m}_{G/H}(\mathcal{O}_{L,S,T}^{\times}, Q_{H}^{1})
defines a map

\displaystyle \bigwedge_{G/H}^{r'}\mathcal{O}_{L,S,T}^{\times}\rightarrow(\bigwedge_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{G/H}Q_{\acute{H}}^{r-r}\simeq(\bigwedge_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}
(See (1.3) and (2.1).) One can show that this extends to a map

\displaystyle \bigcap_{G/H}^{r'}\mathcal{O}_{L,S,T}^{\times}\rightarrow(\bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r},
which we denote by \mathrm{R}\mathrm{e}\mathrm{c}_{V,V'} (see [17, Proposition 2.7]). Note that, if V=V' i.e. r=r',
then Q(H)^{0} = \mathbb{Z}[H]/I(H) is identified with \mathbb{Z} and \mathrm{R}\mathrm{e}\mathrm{c}_{V,V} is the identity map in this

case.

When r>0 (resp. r=0 ), we define the (�higher norm�

\displaystyle \mathcal{N}_{H} :\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}\rightarrow(\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times})\otimes_{\mathbb{Z}}\mathbb{Z}[H]/I(H)^{r'-r+1}
(resp. \mathcal{N}_{H} : \displaystyle \bigcap_{G}^{0}\mathcal{O}_{K,S,T}^{\times}=\mathbb{Z}[G] \rightarrow \mathbb{Z}[G]/I_{H}^{r'+1} )

by \mathcal{N}_{H}(a) :=\displaystyle \sum_{ $\sigma$\in H} $\sigma$ a\otimes$\sigma$^{-1} (resp. the natural map). Note that, if r=r'
,
then by the

canonical identifications

\mathbb{Z}[H]/I(H)\simeq \mathbb{Z} and \mathbb{Z}[G]/I_{H}\simeq \mathbb{Z}[G/H],

we have

\mathcal{N}_{H}= \left\{\begin{array}{ll}
\mathrm{N}_{H} :\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}\rightarrow\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times} & \mathrm{i}\mathrm{f} r>0,\\
\mathbb{Z}[G] \rightarrow \mathbb{Z}[G/H] & \mathrm{i}\mathrm{f} r=0.
\end{array}\right.
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Thus, \mathcal{N}_{H} is related to the usual norm. This is the reason why we call \mathcal{N}_{H} the (�higher
norm�

We define an injection

 $\iota$ : (\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}\rightarrow \left\{\begin{array}{ll}
(\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times})\otimes_{\mathbb{Z}}\mathbb{Z}[H]/I(H)^{r-r+1} & \mathrm{i}\mathrm{f} r>0,\\
\mathbb{Z}[G]/I_{H}^{r'+1} & \mathrm{i}\mathrm{f} r=0
\end{array}\right.
as follows. When r>0 ,

one can show that there is a canonical injection

 $\iota$:\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times}\rightarrow\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}
satisfying  $\iota$(\mathrm{N}_{H}^{r}a) = \mathrm{N}_{H} a for any a \in \displaystyle \bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times} (see [17, Lemma 2.11 and Remark

2.12]). It can be shown that the map

(\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}\rightarrow(\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}
\displaystyle \rightarrow(\bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times})\otimes_{\mathbb{Z}}\mathbb{Z}[H]/I(H)^{r'-r+1},

where the first map is induced by  $\iota$ and the second by the natural injection  Q(H)^{r-r}\mapsto
\mathbb{Z}[H]/I(H)^{r-r} ,

is also injective (see [17, Lemma 2.11]). We denote this injection also

by  $\iota$ . When  r=0 ,
we define

 $\iota$ : (\displaystyle \bigcap_{G/H}^{0}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'} \simeq Q_{\acute{H}}^{r}\mapsto \mathbb{Z}[G]/I_{H}^{r'+1}

to be the natural injection.

Conjecture 2. Assume that the Rubin‐Stark conjecture (Conjecture 1) holds for

(K/k, S, T, V) and (L/k, S, T, V') . Then \mathcal{N}_{H}($\eta$_{K/k,S,T,V}) \in \mathrm{i}\mathrm{m} $\iota$ and

 $\iota$^{-1}(\mathcal{N}_{H}($\eta$_{K/k,S,T,V}))=(-1)^{r(r'-r)}\mathrm{R}\mathrm{e}\mathrm{c}_{V,V'}($\eta$_{L/k,S,T,V'}) .

Remark 2.6. If V = V' i.e. r = r'
,

then one sees easily that \mathcal{N}_{H}($\eta$_{K/k,S,T,V}) \in

im  $\iota$ and

 $\iota$^{-1}\mathcal{N}_{H}($\eta$_{K/k,S,T,V})=\mathrm{N}_{H}^{r}($\eta$_{K/k,S,T,V}) .

So in this case Conjecture 2 is true by the �norm relation� (Proposition 2.5). In other

words, Conjecture 2 is a generalization of the (
norm relation�

Remark 2.7. In §3, we will see that Conjecture 2 is a natural generalization of

conjectures of Gross and of Darmon ([10, 6]).
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§2.4. Burns�s conjecture and the equivariant Tamagawa number

conjecture

In [2, Theorem 3.1], Burns gave a formulation relating two Rubin‐Stark elements.

We modify his formulation to propose a conjecture (Conjecture 3), and refer it as

�Burns�s conjecture�
We introduce some notation. For any  $\varphi$\in \mathrm{H}\mathrm{o}\mathrm{m}_{G}(M, \mathbb{Z}[G]) ,

where M is a G‐module,
define $\varphi$^{H} \in \mathrm{H}\mathrm{o}\mathrm{m}_{G/H}(M^{H}, \mathbb{Z}[G/H]) by

 $\varphi$:M^{H} \rightarrow^{ $\varphi$}\mathbb{Z}[G]^{H}\rightarrow^{\sim}\mathbb{Z}[G/H],

where the last isomorphism is given by \mathrm{N}_{H} \mapsto  1 . Let s be a non‐negative integer.
For any  $\Phi$\displaystyle \in\bigwedge_{G}^{s}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(M, \mathbb{Z}[G]) ,

define $\Phi$^{H} \displaystyle \in\bigwedge_{G/H}^{s}\mathrm{H}\mathrm{o}\mathrm{m}_{G/H}(M^{H}, \mathbb{Z}[G/H]) to be the

image of  $\Phi$ under the map

\left\{\begin{array}{ll}
$\varphi$_{1} \text{∧\cdots ∧} $\varphi$_{s}\mapsto$\varphi$_{1}^{H} \text{∧\cdots ∧} $\varphi$_{s}^{H} & \mathrm{i}\mathrm{f} s>0,\\
\mathbb{Z}[G] \rightarrow \mathbb{Z}[G/H] & \mathrm{i}\mathrm{f} s=0.
\end{array}\right.
Note that, by (1.3), for a given  $\Phi$\displaystyle \in\bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G]) ,

we have the maps

 $\Phi$:\displaystyle \bigcap_{G}^{r}\mathcal{O}_{K,S,T}^{\times}\rightarrow \mathbb{Z}[G]
and

$\Phi$^{H} : (\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}\rightarrow \mathbb{Z}[G/H]\otimes_{\mathbb{Z}}Q(H)^{r'-r}\simeq Q_{\acute{H}}^{r-r}
Conjecture 3 (Burns�s conjecture). Assume that the Rubin‐Stark conjecture

(Conjecture 1) holds for (K/k, S, T, V) and (L/k, S, T, V') . Then we have

 $\Phi$($\eta$_{K/k,S,T,V})=(-1)^{r(r'-r)}$\Phi$^{H}(\mathrm{R}\mathrm{e}\mathrm{c}_{V,V'}($\eta$_{L/k,S,T,V'})) in Q_{\acute{H}}^{r-r}

for every  $\Phi$\displaystyle \in\bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G]) .

Remark 2.8. Burns�s conjecture is a natural generalization of Gross�s conjecture

([10, Conjecture 4.1]). Indeed, consider the following case:

\bullet  V=\emptyset i.e.  r=0,

\bullet  L=k i.e. G=H,

\bullet  r'=n(= |S|-1) .
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In this case, the Rubin‐Stark conjecture for (K/k, S, T, \emptyset) (resp. (k/k, S, T, S\backslash \{v_{0}\}) ) is

true by Remark 2.4 (i) (resp. (ii)), and the associated Rubin‐Stark element is given by

$\eta$_{K/k,S,T,\emptyset}=$\theta$_{K/k,S,T}(0) \in \mathbb{Z}[G]

(resp.  $\eta$ k/k,S,T,S\backslash \{v_{0}\} =\pm h_{k,S,T}u_{1} ∧∧ u_{n}\displaystyle \in\bigwedge_{\mathbb{Z}}^{n}\mathcal{O}_{k,S,T}^{\times},
where h_{k,S,T} is the (S, T) ‐class number of k and \{u_{1}, . . . , u_{n}\} is a basis of \mathcal{O}_{k,S,T}^{\times} ,

see

[15, Example 3.2.11]). Conjecture 3 reads

$\theta$_{K/k,S,T}(0)=\pm h_{k,S,T}\det(\mathrm{r}\mathrm{e}\mathrm{c}_{v_{i}}(u_{j})-1)_{1\leq i\leq n} in Q(G)^{n}

(See (1.4).) This is exactly the formulation of Gross�s conjecture ([10, Conjecture 4.1]).

Burns related Conjecture 3 to the equivariant Tamagawa number conjecture ([3,
Conjecture 4 (iv)]) as follows.

Theorem 2.9 (Burns, [2, Theorem 3.1], [17, Theorem 3.17 and Proposition 3.20]).
Assume that the equivariant Tamagawa number conjecture for the pair (h^{0}( Spec K ),\mathbb{Z}[G])
holds. Then the Rubin‐Stark conjecture (Conjecture 1) holds for both (K/k, S, T, V) and

(L/k, S, T, V and for every  $\Phi$\displaystyle \in\bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G]) we have

 $\Phi$($\eta$_{K/k,S,T,V})=(-1)^{r(r'-r)}$\Phi$^{H}(\mathrm{R}\mathrm{e}\mathrm{c}_{V,V'}($\eta$_{L/k,S,T,V'})) in Q_{\acute{H}}^{r-r}\displaystyle \otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{[L:k]}].
By Remark 2.8, we obtain

Corollary 2.10 (Burns, [2, Corollary 4.1]). The equivariant Tamagawa number

conjecture for the pair (h^{0}( Spec K ), \mathbb{Z}[G]) implies Gross�s conjecture for (K/k, S, T)
([10, Conjecture 4. 1

Note that, if K is abelian over \mathbb{Q} , then the equivariant Tamagawa number conjecture
for the pair (h^{0}( Spec K ), \mathbb{Z}[G]) is known to be true, by the works of Burns, Greither,
and Flach ([4, 7 Using this fact, Burns gave a proof of Gross�s conjecture for abelian

extensions over \mathbb{Q} , which was first proved by Aoki in [1] (see [2, Theorem A Note that

the result in Remark 2.4 (iii) is also a consequence of this fact, using Theorem 2.9.

§2.5. Relations among conjectures

Comparing Conjecture 2 and Conjecture 3, it is natural \mathrm{t} ∧guess the following

Conjecture 4. Assume that the Rubin‐Stark conjecture (Conjecture 1) holds for

(K/k, S, T, V) . If \mathcal{N}_{H}($\eta$_{K/k,S,T,V}) \in im  $\iota$
,

then for every  $\Phi$ \in \displaystyle \bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G])
we have

 $\Phi$($\eta$_{K/k,S,T,V})=$\Phi$^{H}($\iota$^{-1}(\mathcal{N}_{H}($\eta$_{K/k,S,T,V}))) in Q_{\acute{H}}^{r-r}
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Remark 2.11. If r = 0 ,
then Conjecture 4 is clearly true. In [17, Proposition

2.15], the author proved Conjecture 4 when r=1 or r=r' . In a recent joint work with

Burns and Kurihara ([5]), we proved Conjecture 4 completely.

Proposition 2.12 ([17, Theorem 3.15]). Assume that \mathcal{N}_{H}($\eta$_{K/k,S,T,V}) \in \mathrm{i}\mathrm{m} $\iota$,
and that Conjecture 4 holds. Then Conjectures 2 and 3 are equivalent.

Proof. It is clear that under the assumptions Conjecture 2 implies Conjecture 3.

The converse follows from the fact that the map

(\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{K,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r'-r}\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{G}(\bigwedge_{G}^{r}\mathrm{H}\mathrm{o}\mathrm{m}_{G}(\mathcal{O}_{K,S,T}^{\times}, \mathbb{Z}[G]), Q_{\acute{H}}^{r-r})
defined by  a\mapsto ( $\Phi$\mapsto$\Phi$^{H}(a)) is injective (see [17, Theorem 2.17]). \square 

Combining (the proof of) Proposition 2.12 with Burns�s result (Theorem 2.9), we

obtain the following

Theorem 2.13 ([17, Theorem 3.21]). Assume that \mathcal{N}_{H}($\eta$_{K/k,S,T,V}) \in \mathrm{i}\mathrm{m} $\iota$ , that

Conjecture 4 holds, and that the equivariant Tamagawa number conjecture for the pair

(h^{0}( Spec K ), \mathbb{Z}[G]) holds. Then we have the equality

$\iota$^{-1}(\mathcal{N}_{H}($\eta$_{K/k,S,T,V}))=(-1)^{r(r'-r)}\mathrm{R}\mathrm{e}\mathrm{c}_{V,V'}($\eta$_{L/k,S,T,V'})

in (\displaystyle \bigcap_{G/H}^{r}\mathcal{O}_{L,S,T}^{\times})\otimes_{\mathbb{Z}}Q(H)^{r-r}\otimes_{\mathbb{Z}}\mathbb{Z}[1/[L:k]].

Remark 2.14. In the joint work with Burns and Kurihara ([5]), we proved that

Conjectures 2 and 3 are equivalent under no assumptions (namely, we removed the as‐

sumptions of Proposition 2.12). Furthermore, we proved that the equivariant Tamagawa
number conjecture for the pair (h^{0}( Spec K ), \mathbb{Z}[G]) implies Conjecture 2 directly. This

result improves both Theorem 2.13 and Theorem 2.9. Since the equivariant Tamagawa
number conjecture for the pair (h^{0}( Spec K ), \mathbb{Z}[G]) is known to be true if K is abelian

over \mathbb{Q} , as we noted before, we have proved that Conjecture 2 is true if K is abelian

over \mathbb{Q}.

§3. Applications

In this section, we explain that Conjecture 2 is indeed a generalization of conjectures
of Gross and of Darmon ([10, 6]). In [17, §4], it was shown that the (non‐2‐part� of

Darmon�s conjecture, which had been solved by Mazur and Rubin via Kolyvagin systems

([13, Theorem 3.9]), is deduced from Conjecture 2, and Theorem 2.13 was applied
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to give another proof of the (non‐2‐part� of Darmon�s conjecture. We formulate a

slightly modified version of Darmon�s conjecture, and explain that it is deduced from

Conjecture 2. (For the difference between the original Darmon�s conjecture and our

modified version, see Remark 3.1 below.) We also explain that Gross�s (�conjecture
for tori� ([10, Conjecture 8.8]), is deduced from Conjecture 2 by a similar argument.

Admitting the assertion in Remark 2.14 that Conjecture 2 is true if K is abelian over \mathbb{Q},
we give a full proof of (modified) Darmon�s conjecture, and a proof of Gross�s (

conjecture
for tori� for abelian extensions over \mathbb{Q} , whose particular cases were verified by Greither

and Kučera in [8, 9]. This improvement of the main results of [13, 8, 9] is treated in the

joint work with Burns and Kurihara [5].

§3.1. Darmon�s Conjecture

We formulate a slightly modified version of Damon�s conjecture ([6, Conjecture

4.3], [13, Conjecture 3.8]).
Let L be a real quadratic field, and  $\chi$ be the corresponding Dirichlet character with

conductor  f . Let K be the maximal real subfield of L($\mu$_{n}) ,
where n is a square‐free

positive integer coprime to f ,
and $\mu$_{n} denotes the group of n‐th roots of unity in \overline{\mathbb{Q}}^{\times} . Set

G:=\mathrm{G}\mathrm{a}1(K/\mathbb{Q}) and H :=\mathrm{G}\mathrm{a}1(K/L) . Put  n\pm :=\displaystyle \prod_{\ell|n, $\chi$(\ell)=\pm 1}\ell ,
and  v\pm := |\{\ell|n_{\pm}\}| (in

this section, \ell always denotes a prime number). We fix an embedding \overline{\mathbb{Q}}\mapsto \mathbb{C} . Define

a cyclotomic unit by

$\beta$_{n} :=\displaystyle \mathrm{N}_{L($\mu$_{n})/K}(\prod_{ $\sigma$\in \mathrm{G}\mathrm{a}1(\mathbb{Q}($\mu$_{nf})/\mathbb{Q}($\mu$_{n}))} $\sigma$(1-$\zeta$_{nf})^{ $\chi$( $\sigma$)}) \in K^{\times},
where $\zeta$_{nf} = e^{\frac{2 $\pi$ i}{nf}} . Let  $\tau$ be the generator of \mathrm{G}\mathrm{a}1(L/\mathbb{Q}) . Write n_{+} = \ell_{1}\cdots\ell_{$\nu$_{+}} . Let

\mathcal{O}_{L} denote the ring of integers of L . Note that (1- $\tau$)\mathcal{O}_{L}[1/n]^{\times} is a free abelian group

of rank v_{+} + 1 (see [13, Lemma 3.2 (ii)]). Take u_{0} ,
. . .

, u_{$\nu$_{+}} \in \mathcal{O}_{L}[1/n]^{\times} such that

\{u_{0}^{1- $\tau$}, . . . , u_{v_{+}}^{1- $\tau$}\} is a basis of (1- $\tau$)\mathcal{O}_{L}[1/n]^{\times} and

\det(\log|u_{i}^{1- $\tau$}|_{$\lambda$_{j}})_{0\leq i,j\leq v_{+}} >0,
where each $\lambda$_{j} (1 \leq j\leq v_{+}) is \mathrm{a} (fixed) place of L lying above \ell_{j} ,

and $\lambda$_{0} is the infinite

place of L corresponding to the embedding \overline{\mathbb{Q}}\mapsto \mathbb{C} fixed above. Define

R_{n} := (\displaystyle \bigwedge_{1\leq i\leq v_{+}} (\mathrm{r}\mathrm{e}\mathrm{c}_{$\lambda$_{i}} -1)) (  u_{0}^{1- $\tau$}\wedge\cdots ∧  u_{$\nu$_{+}}^{1- $\tau$} ) \in L^{\times} \otimes_{\mathbb{Z}}Q(H)^{$\nu$_{+}}.

Let h_{n} denote the order of the Picard group of \mathcal{O}_{L}[1/n] . Our modified Darmon�s

conjecture is formulated as follows.

Conjecture 5 (Darmon�s conjecture).

\displaystyle \sum_{ $\sigma$\in H} $\sigma \beta$_{n}\otimes$\sigma$^{-1} =-2^{v}-h_{n}R_{n} in (L^{\times}/\{\pm 1\})\otimes_{\mathbb{Z}}Q(H)^{v_{+}}.
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Remark 3.1. Let I_{n} be the augmentation ideal of \mathbb{Z}[\mathrm{G}\mathrm{a}1(L($\mu$_{n})/L)] . Note that

the natural map \mathrm{G}\mathrm{a}1(L($\mu$_{n})/L)\rightarrow H induces the isomorphism

I_{n}^{$\nu$_{+}}/I_{n}^{$\nu$_{+}+1}\displaystyle \otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{2}] \rightarrow^{\sim}Q(H)^{$\nu$_{+}}\otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{2}].
Using this, it is not difficult to see that the following statement is equivalent to [13,
Theorem 3.9]:

\displaystyle \sum_{ $\sigma$\in H} $\sigma \beta$_{n}\otimes$\sigma$^{-1} =-2^{ $\nu$}-h_{n}R_{n} in (L^{\times}/\displaystyle \{\pm 1\})\otimes_{\mathbb{Z}}Q(H)^{$\nu$_{+}}\otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{2}].
(See [17, Lemma 4.7].) Thus, the (non‐2‐part� of the original Darmon�s conjecture ([13,
Conjecture 3.8]) is deduced from our Darmon�s conjecture. Note that, in the original
Darmon�s conjecture, the cyclotomic unit is defined by

$\alpha$_{n} :=\displaystyle \prod_{ $\sigma$\in \mathrm{G}\mathrm{a}1(\mathbb{Q}($\mu$_{nf})/\mathbb{Q}($\mu$_{n}))} $\sigma$(1-$\zeta$_{nf})^{ $\chi$( $\sigma$)},
whereas our cyclotomic unit is $\beta$_{n} = \mathrm{N}_{L($\mu$_{n})/K}($\alpha$_{n}) . Since cyclotomic units, as Stark

elements, lie in real fields, so it is natural to consider $\beta$_{n}.

Theorem 3.2. Conjecture 2 (with varying T) implies Darmon�s conjecture.

Proof. Set S:= { \infty (the infinite place of \mathbb{Q} )} ∪ \{\ell|nf\} ,
and label the elements of

S as \{v_{0}, v_{1}, . . . , v_{m}\} so that v_{0}|f, v_{1} = \infty
,

and  v_{i} = \ell_{i-1} for 2 \leq  i \leq  v_{+} +1 . Set

V:=\{v_{1}\} and V' :=\{v_{i} : 1\leq i\leq v_{+}+1\} . Consider the Rubin‐Stark elements

$\eta$_{K/\mathbb{Q},S,T,V} \displaystyle \in\bigcap_{G}^{1}\mathcal{O}_{K,S,T}^{\times}=\mathcal{O}_{K,S,T}^{\times} and $\eta$_{L/\mathbb{Q},S,T,V'} \displaystyle \in\bigcap_{G/H}^{v_{+}+1}\mathcal{O}_{L,S,T}^{\times},
with a some suitable set T. (Note that, by Remark 2.4 (iii), the Rubin‐Stark conjecture
is true for abelian extensions over \mathbb{Q}. ) By Conjecture 2, we have

\mathcal{N}_{H}( $\eta$ K/\mathbb{Q},S,T,V) = (-1)^{$\nu$_{+}}\mathrm{R}\mathrm{e}\mathrm{c}_{V,V'}( $\eta$ L/\mathbb{Q},S,T,V') in L^{\times} \otimes_{\mathbb{Z}} Q(H)^{$\nu$_{+}}

Using [18, Lemme 1.1, Chapitre IV], we can choose T ,
a finite family of T

,
such that

2=\displaystyle \sum_{T\in T}a_{T}\prod_{\ell\in T}(1-\ell \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\ell}^{-1}) in \mathbb{Z}[G]

with some a_{T} \in \mathbb{Z}[G] ,
where Frobp \in G denotes the Frobenius automorphism at \ell . We

can show that

(1- $\tau$)\displaystyle \sum_{T\in T}a_{T}\mathcal{N}_{H}($\eta$_{K/\mathbb{Q},S,T,V})=\sum_{ $\sigma$\in H} $\sigma \beta$_{n}\otimes$\sigma$^{-1} in (L^{\times}/\{\pm 1\})\otimes_{\mathbb{Z}}Q(H)^{v_{+}}
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and

(1- $\tau$)\displaystyle \sum_{T\in T}\mathrm{e}\mathrm{c}_{V,V'} in L^{\times} \otimes_{\mathbb{Z}}Q(H)^{$\nu$_{+}}

by using explicit descriptions of the Rubin‐Stark elements $\eta$_{K/\mathbb{Q},S,T,V} and $\eta$_{L/\mathbb{Q},S,T,V'}

(see [17, Lemma 4.6]). This proves the theorem. \square 

Remark 3.3. By Remark 2.14, Conjecture 2 is true if K is abelian over \mathbb{Q} . So the

above proof of Theorem 3.2 shows that Darmon�s conjecture is true. This improves the

result of Mazur and Rubin in [13, Theorem 3.9], where the (non‐2‐part� of Darmon�s

conjecture was proved.

§3.2. Gross�s \backslash \backslash 

conjecture for tori�

We review the formulation of Gross�s (

conjecture for tori� ([10, Conjecture 8.8]).
We follow a formulation of Hayward ([11, Conjecture 7.4]). (As Hayward warned in [11,
§7.3], the original conjecture [10, Conjecture 8.8] has a slight error.) Let k be a number

field, and L/k be a quadratic extension. Let \overline{L}/k be a finite abelian extension, which is

disjoint to L
,

and set K:=L\overline{L} . Set G:=\mathrm{G}\mathrm{a}1(K/k) ,
and H :=\mathrm{G}\mathrm{a}1(K/L)=\mathrm{G}\mathrm{a}1(\overline{L}/k) .

Let  $\tau$ be the generator of  G/H=\mathrm{G}\mathrm{a}1(L/k) . Let S be a finite set of places of k which

contains all infinite places of k and all places which ramify in K . Let T be a finite

set of places of k that is disjoint from S and satisfies that \mathcal{O}_{K,S,T}^{\times} is torsion‐free. Let

v_{1} ,
. . .

, v_{r'} be all places in S which split in L . We assume r' < |S| . Note that, by [16,
Lemma 3.4 (i)], we have

\displaystyle \frac{h_{L,S,T}}{h_{k,S,T}} \in \mathbb{Z},
where h_{k,S,T} and h_{L,S,T} are the (S, T) ‐class numbers of k and L respectively (see [11,
§2.1]). Take u_{1} ,

. . .

, u_{r'} \in \mathcal{O}_{L,S,T}^{\times} such that \{u_{1}^{1- $\tau$}, . . . , u_{r}^{1- $\tau$}\} is a basis of (1- $\tau$)\mathcal{O}_{L,S,T}^{\times}(\simeq
\mathbb{Z}^{\oplus r'}) ,

and

\det(- \log|u_{i}^{1- $\tau$}|_{w_{j}})_{1\leq i,j\leq r'} >0,
where w_{j} is \mathrm{a} (fixed) place of L lying above v_{j} . Set

R_{S,T} :=\det(\mathrm{r}\mathrm{e}\mathrm{c}_{w_{j}}(u_{i}^{1- $\tau$})-1)_{1\leq i,j\leq r'} \in Q(H)^{r}
�

We denote $\theta$_{K/k,S,T}(0)^{-} for the image of $\theta$_{K/k,S,T}(0) \in \mathbb{Z}[G] under the map

(3.1) \mathbb{Z}[G]=\mathbb{Z}[H\times G/H] \rightarrow \mathbb{Z}[H] ;  $\tau$\mapsto-1.

Conjecture 6 (Gross�s
(

conjecture for tori�).

$\theta$_{K/k,S,T}(0)^{-} =2^{|S|-1-r'}\displaystyle \frac{h_{L,S,T}}{h_{k,S,T}}R_{S,T} in Q(H)^{r'}
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Remark 3.4. Conjecture 6 is equivalent to [11, Conjecture 7.4] (if we neglect the

sign) . This can be seen by noting that

R_{S,T}= ((\mathcal{O}_{L,S,T}^{\times})^{-} : (1- $\tau$)\mathcal{O}_{L,S,T}^{\times})R_{H}^{-},

where R_{H}^{-} is as in [11, §7.2] (note that our H corresponds to G in [11, §7]).

Theorem 3.5. Conjecture 2 implies Conjecture 6.

Proof. Put V' := \{v_{1}, . . . , v_{r'}\} . We remark that the Rubin‐Stark conjecture for

(K/k, S, T, \emptyset) and (L/k, S, T, V') is true by Remark 2.4 (i) and (ii) respectively. By

Conjecture 2, we have

$\theta$_{K/k,S,T}(0)=\mathrm{R}\mathrm{e}\mathrm{c}_{\emptyset,V'}($\eta$_{L/k,S,T,V'}) in Q_{\acute{H}}^{r}.

We denote \mathrm{R}\mathrm{e}\mathrm{c}_{\emptyset,V'}($\eta$_{L/k,S,T,V'})^{-} for the image of \mathrm{R}\mathrm{e}\mathrm{c}_{\emptyset,V'}($\eta$_{L/k,S,T,V'}) under the map

Q_{\acute{H}}^{r}\simeq \mathbb{Z}[G/H]\otimes_{\mathbb{Z}}Q(H)^{r'} \rightarrow Q(H)^{r'}

induced by (3.1). It is easy to see that

\displaystyle \mathrm{R}\mathrm{e}\mathrm{c}_{\emptyset,V'}($\eta$_{L/k,S,T,V'})^{-} =(\bigwedge_{1\leq i\leq r'} (\mathrm{r}\mathrm{e}\mathrm{c}_{w_{i}} -1))((1- $\tau$)^{r'}$\eta$_{L/k,S,T,V'}) .

We know by the proof of [16, Theorem 3.5] that

(1- $\tau$)^{r'}$\eta$_{L/k,S,T,V'} =2^{|S|-1-r'}\displaystyle \frac{h_{L,S,T}}{h_{k,S,T}}u_{1}^{1- $\tau$} ∧...∧ u_{r}^{1- $\tau$}

Hence we have

$\theta$_{K/k,S,T}(0)^{-}={\rm Re}∧ V^{\prime($\eta$_{L/k,S,T,V'})^{-}}

= (\displaystyle \bigwedge_{1\leq i\leq r'} (\mathrm{r}\mathrm{e}\mathrm{c}_{w_{i}} -1))((1- $\tau$)^{r'}$\eta$_{L/k,S,T,V'})
=2^{|S|-1-r'}\displaystyle \frac{h_{L,S,T}}{h_{k,S,T}}(\bigwedge_{1\leq i\leq r'}(\mathrm{r}\mathrm{e}\mathrm{c}_{w_{i}}(\cdot)-1)) ( u_{1}^{1- $\tau$} ∧ . . . ∧ u_{r}^{1- $\tau$} )

=2^{|S|-1-r'}\displaystyle \frac{h_{L,S,T}}{h_{k,S,T}}R_{S,T}.
\square 

Remark 3.6. In [8, 9], Greither and Kučera studied Gross�s (

conjecture for tori�

when k=\mathbb{Q} ,
and obtained partial results on this conjecture. By Remark 2.14, Theorem

3.5 gives a proof of Gross�s �conjecture for tori� for abelian fields (namely, Conjecture
6 for K abelian over \mathbb{Q}). Thus we improve the main results of [8, 9].
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