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Abstract

Since we published the so-called Maeda conjecture in [HM97], many verifications and

related results have been obtained by many researchers. In this note, we report on the recent
progress and mention the conjecture of Tsaknias and Dieulefait which is a generalization to
higher levels.

§1. Maeda’s conjecture and verifications

We denote by Sk (SL2(Z)) the space of cusp forms on the full modular group SLy(Z)

of weight k. We simply write Sy for Si(SL2(Z)). Let f(z) € Sk be a normalized Hecke
eigenform of weight k:

and we denote by

Q(f) :=Q(a1,a2,a3,---)
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the field generated by the Fourier coefficients {a, }52; and by G(f) the Galois group of
the Galois closure of Q(f) over Q. We call Q(f) Hecke’s field of f(z). It is well known
that Q(f) is a number field of finite degree and for any o € G(f)

oo
fo (Z) — Z aoe27rz'nz
. n
n=1

is also a normalized Hecke eigenform in Sy which is called a conjugate of f(z). It is
also well known that Sy has a basis consisting of normalized Hecke eigenforms. In the
following, we take any one of them and denote by fr(2). Sk is called non-splitting if the
conjugetes {f7 (2)}oec(p,) Of fr(2) span Si. This is independent of the choice of fi ().
When the following properties (H,) and (Hp) hold for Sk, we say H (k) holds:

(H,) Sk is non-splitting;
(Hy) G(fy) is isomorphic to the symmetric group of degree dimcSk.
The following conjecture is called Maeda’s conjecture:

Conjecture 1.1 ([HM97], Conjecture 1.2).  H(k) holds for any k.

Let T'(n) be the n-th Hecke operator on S and ¢, (z)(€ Q[z]) the characteristic

polynomial of T'(n). When the following properties (®,) and (®5) hold for S, we say
®(n) holds for Sk:

(®o) @n(x) is irreducible over Q;

(@) The Galois group of the minimal splitting field of ¢, (x) is isomorphic to the sym-
metric group of degree dim¢Sk.

From now on, we assume dimcSy > 2 and n > 2 whenever ®(n) is in question. The
following lemmas are useful for the verification of H(k) and ®(n):

Lemma 1.2.  If ®(n) holds for S for some n > 2, then H(k) holds.

Lemma 1.3 ([HM97], Proposition 5.1).  Let o(x) € Z[z]| be a monic polynomial.
If there exist three primes p1, pa and p3 satisfying the following conditions, then p(x)
is irreducible over Q and the Galois group of the minimal splitting field of p(x) is
isomorphic to the symmetric group of degree deg(p(x)):

(i) p(x) mod py is irreducible over I, ;

(i) o(x) = p1(x)p2(x) - @s(x) mod pa (s > 2) with polynomials p;(x) € Z[x]| such
that ¢;(x) mod ps are distinct irreducible polynomials in F,,[x], deg(pi(z)) = 2
and deg(pi(x)) are odd for i > 2;
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(7i7) p(x) = Y1(x)he(x) mod ps with polynomials ;(x) € Z[x] such that v;(x) mod ps
are distinct irreducible polynomials in Fp,[z] and deg(y:(x)) = 1.

Here F,, stands for the finite field of p elements.

Remark 1 ([CF99], Lemma 4).  The condition (iii) can be replaced with the fol-

lowing condition:

(#1) p(x) = Y1(x)he(x) () mod ps (t > 2) with polynomials 1;(x) € Z[x] such
that 1;(z) mod ps are distinct irreducible polynomials in Fp,[z], deg(yi(z)) is
prime and deg(i(z)) > w.

Theorem 1.4.  H(k) holds for k < 14000.

These are verified by that ®(2) holds for S;. The progress of verifications until
2012 is as follows (|[GM12] Table 1):

k | Source
k<62, k#60 Lee-Hung (1995) [LH95]
120 (£ : prime, 2 < ¢ <19) | Buzzard (1996) [B96]
k < 468 Maeda (1997) [EIM97]
k<500, k=0 mod 4 Conrey-Farmer (1999) [CF99]
k <2000 Farmer-James (2001) [FJO1]
kE < 3000 Buzzard-Stein, Kleinerman (2004) [K04]
k < 6000 Chu-Wee Lim (2005) [LO5]
k < 14000 Ghitza-McAndrew (2012) [GM12]

The table given below is the list of po(z) for dimeSy;, = 2, 3, 4:
(7] o2(o)
24 || z* — 1080 x — 20468736
28 || 22 + 8280z — 195250176
30 || 2% — 8640z — 454569984
32 || 2% — 39960 z — 2235350016
34 || 2% + 121680 z — 8513040384
36 || 2% — 139656 2 — 59208339456 x — 1467625047588864
38 || z? + 194400 = — 137403408384
40 || 2® — 548856 2% — 810051757056 x + 213542160549543936
42 || 23 + 344688 2% — 6374982426624 = — 520435526440845312
44 || 23 + 2209944 2% — 15663522502656 = — 19976984434430705664
46 || 2% — 3814272 2% — 44544640241664 = + 135250282417024401408
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L k] p2(z)

48 || z* — 578556023 — 4671423740344322% 4+ 1426830562183253852160x +
3297913828840214320807673856

50 || z® 4 24225168 22 — 566746931810304 = — 13634883228742736412672

52 || z* — 327560402% — 79561722845675522% + 269568678949709508771840x +
4615876968087578049834569957376

54 || z* + 684763202° — 19584715019010048 2> — 1083312724663489297121280x +
39446133467662904714689328971776

56 || z* — 2086225202° — 69659795501724672 2% + 11031882363768735132549120 2 —
255678332805518077225389998997504

58 || z* + 217744560 z° — 411086477602603008 22 — 42515907658957794091991040  +

18678231666950985607375948785647616

3583176547297492565952659077522784256

62 || x* — 1146312000 z* — 6156169255669690368 x> + 2540887466526178560442368000 x +

In particular, we get the list of Hecke’s fields Q( fi) whose degree is 2:

k Q(fx)

24 | Q(v/144169)

28 | Q(V131-139)

30 | Q(v/51349)

32 | Q(V67-273067)

34 | Q(V479-4919)

38 | Q(+/181 - 349 - 1009)

Since Sy, is non-splitting if and only if [Q(f%) : Q]

= dim¢Sy; and

: k k
dlm@Sk = |:E:| —1 or lﬁ]

according as k = 2 mod 12 or not, Conjecture 1.1 implies that for any integer d > 2,

there exist special 6 number fields of dimension d up to conjugate which coincide with
Hecke’s fileds Q(fx) for some fi(z). The following question naturally arises:

Question 1.

What conditions characterize Hecke’s fileds Q(fr)? In particular,

what conditions characterize the following 6 quadratic fields?

Q(v144169), Q(v/131-139), Q(v/51349), Q(V/67 - 273067),

Q(V479 - 4919), Q

Q(V181 - 349 - 1009).
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Now we consider ramification of primes in Hecke’s fields and give a conjecture. Let
hj be the subalgebra of Endc(Sk) generated by all Hecke operators T'(n) over Z and
Sk(Z) :={g(z) € S | all Fourier coefficients of g(z) are rational integers}.

Proposition 1.5 (Hida).  There ezists a basis {ge(2)}¢_, (d = dimcSk) of Sk

such that
(1.1) ge(2) = e2mitz 4 Z a/g,ne%mZ with ayy € 7Z,
n=d-+1
and we have
d d

(1.2) Sk(Z) =D Zge(z), hw =EP ZT(1)

/=1 /=1
(1.3) HomZ(Sk (Z), Z) = hk, HomZ(hk, Z) = Sk(Z)

Proof. 'We denote by g(z) = Y02, a(n,g)q" (¢ = €*™*) the Fourier expansion of
g(z) € S and define a pairing

<,>:Sk><hk—>(C

by
(g,h) :=a(l,g|h), (9(2) € Sk, h € hy).
Now let

G4(2) := 240E4(z —1+2402 > 2] qn,

n=1 \0<t|n

Ge(2) := —504Fg(z _1_5042 Z | 4,

n=1 \0<t|n
A(z) == fi2(z —C]+Z (n,A)g

then we get a basis {g}(2)}%_, of Sy, consisting of the form g}(z) = G ()G (2)A%(2),
(4dag+6by+12¢ = k, ag, by > 0). From the Fourier expansions of G4(z), Gg(2) and A(z),
we see
)=4q'+ Z a(n,g)q" € Zllql], (£=1,2,...,d),
n=~+1
thus, by making suitable linear combinations of {g,(z)}%_, over Z, we obtain a new
basis {ge(2)}¢_, of Sk satisfying (1.1). Then we see for any g(z) € S

d

9(z) =) a(l,9)g:(2).
/=1
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In particular, we get Sk(Z) = @gzl Z ge(z). Since

(1.4) (9,T(n)) = a(l,9|T'(n)) = a(n, g),
we have
(1.5) (ge, T(m)) = dpm, for 1 <L4,m <d,
d
(1.6) 9(2) =D (9, T(0)ge(2).
/=1

Now {T'(¢)}¢_, are linearly independent over C. In fact, if Z‘Z:l AeT'(¢) = 0, then
0= (gm,0) = (gm,zgzl AT (£)) = A, by (1.5). On the other hand, we have for any
h € hy

d
(1.7) h=> {9, W)T(¢)
/=1

In fact, since h is an endmorphism of Sy, and {g,,(2)}%,_, is a basis of S, h is uniquely
determined by { g (2)|h}4,_;, thus by {(gm|h, T(€))}1<m.e<a by (1. 6) So it is sufficient
to show that (g |k, T(€)) = (gm|h, T(£)) (1 < m,t < d) for h = Zn 1{gn, R)T'(n). By
the bilinearity of the pairing (, ), we see

M=

d
<gm|B7T(€)>: <gna ><gm|T Z gn> gm|T ) ( )>

n

=
= {gm|h, T(£)).

(- L

<gm|T(€),T(n))gn, h> = <gm|T(£)7 h> (by (1'6))

Note that since hy is commutative, we see

(g|h1,h2) = a(1,g|h1ha) = a(1, g|hohy) = (g|h2,h1) (h1,ho € hyg).

In particular, we have for any n € N

d
(1.8) T(n) = (g0, T(n)T (¢
=1

Since we have (g¢, T'(n)) = a(n, g¢) € Z, we have T'(n) € Zgzl ZT(¢). Moreover, since
T(m)T(n) = > 40mn) d* 1T (mn/d?), we have h, = > > ZT(n) = Zgzl 7r) =
@?:1 ZT(¢). Now we can consider hy as a submodule of Homy(S(Z), Z) via the pairing
(,). For v € Homy(Sk(Z),7Z), we see (gm,zgzl V(ge)T(0)) = Y(gm) (1 < m, £ < d).
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Since v is uniquely determined by {v(gm)}d,_1, we get ¢ = Z?:l ¥(ge)T(£). This
implies Homy (Sk(Z),Z) = hy. By a similar argument, we have Homg (hy,Z) = Si(Z).
O

Now assume (H,) for S,. Let fr(z) = > 2| ane*™* be the Fourier expansion of
fx(2) and Dy the discriminant of the order Z[fx] := Zlai, a2, -] of Q(fx). Then we
see hy = Z[fi] by T'(n) = a,, and Tr(T'(n)) = Trg(y,),0(an) where Tr (resp. Trg(y,)/0)
stands for the trace of a Hecke operator as a matrix (resp. the trace of an algebraic

number), thus we get

Corollary 1.6.  Under the assumption (H,) for S, we have

d
(1.9) Zfr) =P Zar (d = dimcSy),
(=1
(1.10) Dy, = det(Trgs,)/0(aia)))1<ij<a = det(Te(T'(0)T'(5)))1<i,j<d-

In particular, we can compute Dy using trace formulas of T'(n).

Since Dy is the discriminant of Q(fx) times a square number, we can get some
information of ramification primes in Q(fx) from Djy. We computed Dy, for k < 134
and the data seem to suggest the following on ramification on primes:

Conjecture 1.7. If an odd prime p ramifies in Q(fx), then it does also in
Q(fr+p—1) and Q(fript1)-

The table given below is the list of Dy for k£ < 50:

k| [Q(fk) : Ql Dy,

24 2 26.32.144169

28 2 26.36.131-139

30 2 212.32.51349

32 2 26.32.67-273067

34 2 28.3%.479-4919

36 3 224.36.52.72.23.1259 - 269461929553

38 2 210.32.181 -349 - 1009

40 3 220.310.52.132 .73 - 59077 - 92419245301

42 3 222 .36.52.72. 1465869841 - 578879197969

44 3 22238 .52.72.37-92013596772457847677

46 3 231 .312.52. 227 . 454287770269681529

48 5 240,314,56,74,31
-10210753616344141199245524873423941499439

50 3 222. 310 54.74.12284628694131742619401
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In 2012, Professor Shun’ichi Yokoyama ([Y12]) kindly calculated Dy until k£ <
500 and checked the conjecture. The author very much appreciates his cooperation.
We observe from the data that the conjecture holds for many pairs (p, k) such that p
ramifies in Q(fz). For some cases, the multiplicities of p in D4 p—1 (resp. Dyypi1) are

unfortunately even (but positive), thus in those cases, it is at present unknown whether
p ramifies or not in Q(fryp—1) (resp. Q(frsp+1))-

Example 1.8.  The prime 131 ramifies in Q(fog) as seen in the above table. Let
p=131,kog =28, and k1 = ko +p+ 1, ko =k +p+1 and ks = ko + p = 1. The table
given below is the list of the factors of Dj whose prime factors are less than 103.

k the factor of D;, whose prime factors are less than 103
ko | 28 | 26.36.131-139
" 158 | 2547.3200.562.732.1710.1310.174.193.234.31%.37-89 - 131
Y[ 160 | 2600 . 3244 . 570 73611121310 . 172.236. 538 . 7] . 131 - 139
22159 . 3800 . 5258 . 7130 . 1146 . 1336 . 1734 . 1918 .23. 2914 .31.37
288 | 4120.89.103 - 131 - 1916 - 2292 . 617
22019 X 3752 X 5245 X 7128 X 1142 X 1334 X 1738 X 1915 X 233 X 2918 .31-37
ko | 290
2 41'2.83.89 - 131 - 179 - 271
592 92195 | 3844 . 5258 . 7134 . 1144 . 1334 . 1736 . 1914 . 237 . 2918 .31 - 377
416 .7312.83.89-9716 . 131
24481 X 31708 X 5551 X 7270 X 1196 X 1376 X 1738 X 1934 X 2326 X 294 .31-37
418 1 416. 476 .50% . 678312 . 1312 - 13924 . 167 - 173
490 24748 X 31744 X 5571 X 7282 X 11102 A 1374 A 1742 A 1936 A 2324 .31-37. 4714
538.89-113-131-139-167° - 173
k’g 499 24547 . 31676 . 5553 . 7274 . 1194 . 1374 . 1742 . 1934 . 2320 .31-37. 4722
5316.59.89-113-131-139 - 173 - 257 - 347 - 401 - 571
494 24685 . 31802 . 5569 . 7286 . 11100 . 1376 . 1746 . 1937 . 2321 . 294 . 315 .37
436 4739 . 5326 . 592 . 6110 . 7110.89 . 113 - 131 - 157 - 523 - 661

Thus 131 ramifies in Q(f1s8), Q(f160), Q(f2s8), Q(f200), Q(f202), Q(fa20), Q(fa22)

and Q(f424). But the ramification in Q(f415) is unknown.

We here note a short history we obtained Conjectures 1.1 and 1.7. In about 1979,
Professor Koji Doi hoped Sy is splitting for some k, so the author computed @2 (x) for
Sy, with dimeS; < 12. But they were all irreducible against Doi’s hope, and then Doi
and the author have come to expect (H,) holds for all S;. Under this assumption, Doi,
Hida and Maeda [DHMS84] obtaind an interesting result which suggests the existance
of relations between infinitely many Hecke fields and the fields of division points of
elliptic curves defined over Q (see also the comment after Theorem 3.1). Then in 1996,
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Professor Haruzo Hida told the author about the results by Lee and Hung [LH95] and
Buzzard [B96], so the author again computed more cases for k < 460 and observed
(Hp) held. So Hida recommended the author to publish these results as a conjecture.
When Hida gave a lecture at the symposium at Johns Hopkins University in 1997 and
mentioned Conjecture 1.1, someone, perhaps Professor Buzzard, asked Hida whether
the ¢, (x) are irreducible not only for n = 2 but also for all n > 3. Hida repeated
the question to the author. Since the author had no examples of ¢, (x) for n > 3, he
answered he did not know about that, then the questioner said “This (Conjecture 2.1
below) is my conjecture!”. As for Conjecture 1.7, the author obtained it in 1997 and
talked about it at Mathematical seminar of Muroran Institute of Technology in Japan
on Feb. 23, 2000.

§2. A stronger conjecture and related results

The following conjecture also seems to be called Maeda’s conjecture. But it is
probably done by Buzzard, not by Maeda as mentioned above.

Conjecture 2.1 (Buzzard). In any Sk, ®(n) holds for any n.

There are many results on the following question:

Question 2.  If ®(¢) holds for some £ > 2, then so does ®(n) for any n # £7
In the following, we enumerate the results:

Theorem 2.2 ([CFWO00], Theorem 1).  If ®(¢) holds for some ¢ > 2, then so
does ®(p) for any prime p such that

pZ+l modbor p#Z+1l mod7.
This is generalized as follows:

Theorem 2.3 ([A08], Corollary 1.6, Corollary 1.7).  If ®(¢) holds for some ¢,
then so does ®(n) for n such that

n(n®—1)o1(n) Z0 mod 5

or
n?o1(n) —no3(n) 20 mod 7, if k =0, 2 mod 6,

noi(n) —n3o3(n) 20 mod 7, if k =4 mod 6.

Here o¢(n) = Z dt.

0<d|n
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Theorem 2.4 ([BMO03], Theorem 1.2).  If ®(p) holds for some prime p, then so
does ®(n) for n < dimcSy.

Theorem 2.5 ([A08], Theorem 1.5).  If ®(¢) holds for some £, then so does ®(n)
for n < 10000 and ®(p) for a prime p < 4000000.

Theorem 2.6 ([GM12]|, Theorem 1.5).  In Sy for k < 14000, ®(n) holds forn <
10000 and so does ®(p) for a prime p < 4000000 or

p#Z+l modb orp#+l mod7T.
There are some results on the density of primes p for which ®(p) hold.

Theorem 2.7 ([CFWO00], the comment after Theorem 1).  If ®(n) holds for some

5

n > 2, then the density of primes p for which ®(p) hold is no less than 3.

Theorem 2.8 ([JO98|, Theorem 1).  If there are distinct primes q and £ such
that @4(x) mod ¢ is irreducible, then

. . : X
#{p < X (p: prime) | pp(x) is irreducible} > g X'

Theorem 2.9 ([BMO03], Theorem 1.1).  If @, (z) is irreducible for some prime g,
then there exists 6 > 0 such that

X
<X (p:pri ) ' _—.
#{p < X (p: prime) | pp(x) is reducible} <K (Tog X)179

8§3. Some consequences from Maeda’s conjecture

In this section, we enumerate applications of Conjecture 1.1 or (H,).
Let My(N) (resp. Si(IN)) be the space of modular forms (resp. cusp forms) on the
modular group I'o(N) of weight k. Here

For f(z) = 5227, ane?™™% € Si(N) and g(2) = >0, bpe?™m* € My(N), we put

n=1 n=0
¢S] an
L(S7f) = Z_s’
n=1
> by,
D(safag) :Z ns
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and we define the normalized Petersson inner product by

(f,9) r=(§[SL2(Z) =F0(N)])_1/ﬁ/F - f(2)g(2)y*2dzdy, (2 =z +yi),

$H:={z€C|Im(z) > 0}.

Note that (f,g) is independent of the choice of a level N of f(z) and g(z) such that
7() € S(N) and g(2) € My(N).

In the following, let fx(z) € Sk be a normalized Hecke eigenform and ¢, (x) the
characteristic polynomial of the Hecke operator T'(n) on Si as in §1.

1. [Hecke’s fields and the fields of division points of elliptic curves]
For h(z) € Si(N), we put

®(X;h) = IT & —hkw,
~YETo (N)\SL2(Z)
(3.1) Tr(h) := > A,
~YETo (N)\SL2(Z)
where
o az+ b K _|a b
(W) (=) =) e+ d)* (3 = [ d] € SLa(2))

Let sp,(h) be the m-th elementary symmetric polynomial of {h|xY} ery(n)\s12(2)
then we have s,,,(h) € Skm,

d
O(X:h) =X+ Y (~1)"snu(M)XI™, (d=[SL2(Z) : To(N))),

and Tr(h) € Sg. The equation ®(X;h) = 0 is called the transformation equation.
It is well known that f(z) € Sk is written as

f(z) = > cmmBE1(2)"Eg(2)",  (¢mm € C).
k=4m+6n, mneZ
Here

o0

(3.2) E¢(2) :=C(1 —9 + Z op_1(n)e2™ "=,

2

where ((s) is the Riemann zeta function. Then for an elliptic curve £ over Q defined
by
E:y? =42® — gox — g3, (92,03 € Q),
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we define the specialization of f(z) and ®(X;h) at £ by

f(g) = Z Cm,ngéngga

k=4m-+6n, mneZ

O(X;h, &) =X+ Z NE)X ™.

Note that under the uniformization
E XC/(Zwy + Zws), (€2 (p(2),9(2)) <> z € C/(Zwy + Zws)),

p(z) = 12 D (ﬁ - i) ;- (Im(ws /w2) > 0),

z w?
0F#wEZw1 +Zws

we have
f(€) =(27T/u12)'c f(wi/wa),

O(X;h,E) =X+ Z (27w ) s (B) (wy fwg) X ™.

Theorem 3.1 ([DHMS84], Theorem, Corollary).  Let g(z) € Se(N) and A > 4 an
even integer. We put k := 0 + \.

(a) For any integer p > 1, we have

Tr((9E35 n)")(2) = 347" DD (kp — 1)

% Z D(kru’ - 17 fa g'u(ESk\,N)M_l)

T (f, ) fz).

feP(ku)

Here P(m) is the set of normalized Hecke eigenforms in Sy, and

Bin(z)i= > (cz+d) € My(N),
YET\T'o(N)

o = { !;:] € SLQ(Z)} .

(b) Assume that (H,) holds for any Sk. If all Fourier coefficients of g(z) are
rational and ®(X; gE} n,€) (€ Q[X]) is irreducible over Q, then we have for

f]w € P(k,u) :
(1) [Sh76,Theorem 3|
(1) fen(E) € Qfkp);

D(kp =1, fip, 9" (EX n)" )
T Fregas Jros)

€ Q(fku);
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(4ii) (gEX n)(E) is a root of ®(X;gE; §,&) = 0 and an algebraic number.
Moreover
Trrey s (OB EI) = 345 DT — 1)
D(kp —1, kagM(E;,N)“_l)
X Tro(fi,)/0 ( e T i) ]

where Ky = Q((9E3 §)(E)).

Since we see

Ky =Q(j(w1/w2), j(Nwi/w2))

awy + bwa awq + bwo

c (o, (L e ),

Ky is a subfield of the field of N-division points of £. Here j(z) stands for the
invariant function of elliptic curves. Thus Theorem 3.1(b) suggests that there are
some relations between the field of N-division points of £ and infinitely many Hecke

fields {Q(fxu) | p=1,2,3,...}:

Question 3.  What relations are there between the field of N-division points of
E and infinitely many Hecke fields {Q(fx) | k € N} ?

Example 3.2. Let g(z) € S4(5) be a normalized Hecke eigenform. Since dimSy(5)

=1, g(z) is uniquely determind and the Fourier coefficients are rational. Put simply
®(X) := ®(X;gFE] 5,&). Then we have:

(a) €:y? =423 -4z + 1

O(X) = X°® — 44400X* — 1971360X> 4 488897280X >
+ 47063460096 X + 1162360730560.

(b) 8:y2:4aj3—4§0x—|—%

P(X) = X0 — 148000X* — 1971360X3 + 5432192000X 2
+ 1029841968640X + 14284097373120.

In §5, we will give the proof of Theorem 3.1(a). Theorem 3.1(b) is obtained by
specializing the equation in Theorem 3.1(a) at elliptic curves under (H,,) .
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[Non-vanishing of L-functions]
It is well known that the functional equation holds:

(2m)°T(s)L(s, fu) = (=1)*/2(2m) ***T(k — s)L(k — 5, fi).
In paticular, if £ =2 mod 4, then
L(k/2, fr) = 0.
For k =0 mod 4, the following theorem holds under (H,):

Theorem 3.3 ([CF99],Theorem 1).  Suppose k = 0 mod 4. If (H,) holds for
Sk, then

In §5, we will give the proof of Theorem 3.3.

[Inverse Galois problem]

For a positive integer n, let Pg(n) (resp. Pa(n)) be the set of primes p such that
there is a number field K with Galois group Gal(K/Q) isomorphic to PSLy(Fy,»)
(resp. PGL3(Fyn)) in which only p ramifies.

Theorem 3.4 ([W12], Theorem 1.1).  If Conjecture 1.1 holds, then the following
hold:

(1) For any even integer n > 2, the density of Ps(n) is 1.
(2) For any odd integer n > 1, the density of Pg(n) is 1.

[Divisibility of fi(z) by another eigenform)]

Theorem 3.5 ([BJX11], Theorems 1.3, 1.4, Lemmas 2.5, 3.1, Proposition 6.1).
Assume that @ (x) in Sk is irreducible for some n.

(a) fx(2) = fe(2)g(z) with some normalized Hecke eigenform fy(z) € S¢ (¢ < k)
and a modular form g(z) if and only if dimcSy = 1 and k — £ > 12 satisfies

that

(
0, 2, 4, 6, 8, 10, (£ =12),
0, 4, 6, 10, (£ = 16),
0, 4, 8, (£ = 18),

k—/¢ mod12=

0, 6, (£ = 20),
0, 4, (£ =22),

0, (£ = 26).
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(b) fx(2) = E¢(2)g(z) with the Fisenstein series Fy(z) of weight ¢ (¢ < k) defined
by (3.2) and a modular form g(z) if and only if dimcM,(1) =1 and k — £
satisfies that

0, 4, 6, 10, (£ =4),
0, 4, 8, (£ =6),
k—¢ mod12= (0, 6, (¢ =238),
0, 4, (¢ = 10),
0, (¢ =14).

§4. A generalization to higher levels

P. Tsaknias investigated the decompositions of the spaces of cusp forms of higher
levels and made a conjecture which is a generalization of (H,). In this section, we will
explain his research.

Let SY(N) be the subspace of newforms of Si(N) and SY(N;Q) the subspace over
the algebraic closure Q consisting of elements whose Fourier coefficients are algebraic.
Then the absolute Galois group G := Gal(Q/Q) acts on S2(N; Q) by

[ee) g [ee)
§ :an62mnz — E :aze2mnz
n=1 n=1

We call a normalized Hecke eigenform h(z) € SY(N) a primitive form of level N. A
> L ane®™* € SY(N) is contained in SP(N;Q) and h°(z)
is also a primitive form of level N. We call h%(z) a conjugate of h(z) and the field
Q(h) Q(ay,ag,--+) Hecke’s field of h(z).
primitive forms, S’,g (N;Q) is decomposed as a direct sum of Q-subspaces spanned by
G-orbits {h?(z)}seq for primitive forms h(z) of level N.

Moreover for an imaginary quadratic field K with discriminant —D (D > 0) and a

(c € G).

primitive form h(z) = >

Since SP(N) has a basis consisting of

primitive Hecke character A mod m such that

(¢ =1mod*m, a € K, ue€ N(u>0)),
(0 € Z, (. DN(m)) = 1)

M(a) = (52) a
we put

f)\(Z) _ Z )\(a)eQWiN(a)z.

Here m is a non-zero integral ideal of K, mod™ stands for the multiplicative congruence,
a runs over all non-zero integral ideals in K, and N(a) is the norm of a. Then it is known
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that f(z) belongs to S%,;(DN(m); Q) and is a primitive form (cf. [Sh71], Lemma 3 or
[Mi89], Theorem 4.8.2). We call such a primitive form fy(z) a CM form with complex
multiplication field K of type (m,u). Since f{(2) = fa-(2) (0 € G) where
A7(a) = Ma” )’

the conjugate f{(z) is also a CM form in SO ; (DN (m); Q) with complex multiplication
field K of type (m?,u). Therefore both the subset consisting of CM forms and the
subset consisting of non-CM forms in SY(N) are closed under the action of G, and thus
we can consider the G-orbits of CM forms and non-CM forms. We denote by CM (N, k)
(resp. NCM (N, k)) the number of distinct G-orbits of CM forms (resp. non-CM forms)
of level N and weight k.

Now by William Stein’s indication that {CM (N, k)}2° , are periodic with respect
to k (see [T12], §4), P. Tsaknias focused his research on non-CM forms and computed
many NCM (N, k) and he and L. Dieulefait made the following conjecture which is
regarded as a generalization of (H,).

Conjecture 4.1 (Tsaknias [T12], §2, Tsaknias-Dieulefait [DT12]).
(1) For large k, NCM (N, k) is a constant v(N).
(2) v(N) is multiplicative, namely
if (N,M) =1 thenv(NM) =v(N)v(M).
(3) v(p) =2 for any prime p.
(4) Letn > 2 be an integer.

(a) For an odd prime p:

(00(29—1)4‘00(294—1)—1, n=2,
ny _ Joo(p—1)+o0(p+1), n>4: even,
= 4, p>3andn: odd, or n =3,
8, p=3andn >>5: odd.
(b) Forp=2:
'2, n =23,
6, n=4,
v(2™) = 4 n=5

16, n =6,
8 nm>7: odd,
12, n>8: even.
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Tsaknias and L. Dieulefait have examined the Galois groups of the Galois closures
of Hecke’s fields too. In higher levels, the Galois groups seem to be better understood
if they are considered over cyclotomic subfields included in the Hecke fields; then they
seem to be isomorphic to symmetric groups of degrees of the Hecke fields over the
cyclotomic subfields. Moreover, they seem to try the cases of the spaces of cusp forms
with non-trivial character and Hilbert modular cases. We hope many researchers will
face these problems and throw light on the mysteries about Hecke’s fields.

§5. The proofs of Theorems 3.1(a) and 3.3

Since Theorems 3.1(a) and 3.3 are most interesting to the author and both can
shown by using D(s, f,g), we give here the proofs. About the properties of D(s, f, g),
see [Sh76].

The proof of Theorem 3.1(a). First we will show

Theorem 5.1 ([DHMS84], §4).  For h € S¢(N), and an even integer A > 4, we
have

D(k_lafah)

Te(hBS N)(z) =8-4" 0k —1) >, — s

feP(k)

f(2).
Here k: =0+ .

Proof.  Since h(z)E3 y(z) € Sk(N), Tr(hES y) € Sk(= Sk(1)) and

9N = | v 9/SLa(2)

YETo(N)\SL2(Z)

as fundamental domains, we have for f(z) € P(k)

7'(' * \ -
g(f, Tr(hEX N)) =/ f(z) Z (RE3 3|y (2)y" 2 dady
$/SL2(Z) ~ETH(N)\SL2(Z)

(5.1) -/ o TS () 2y
= (4n)~* =YD (k —1)D(k — 1, f,h), ([Sh76,(2.3)]).

On the other hand, we can write

Tr(hE5 v)(2) = Y c(f)f(2) (c(f) €C).

feP(k)
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Then the orthogonality between elements of P (k) with respect to the Petersson inner

product implies

(5.2) (f; Te(hEX n)) = (PS5 )
Therefore we have by (5.1)
{f; Tr(hES n))

Tr(hEfx) = . f(z)
o i WD
— 9.4~ (k=1 . D(k_]-afah) p
3.4 T(k 1))27)%@ G f(2).

(]

Theorem 3.1(a) is obtained by applying Theorem 5.1 to h(z) = g(z)“E;"\’N(z)“_l.
U

The proof of Theorem 3.3. Suppose £k =0 mod 4 and put

2 Ek(Z)

Gk(Z) = m

Since in general we have

L(S,fk)L(S +1-— g? fk)

D(s, fr, Ey) = (2s+2—k—10)

([Sh76, Lemma 1)),

we see

k—1, fr)L(k/2, fr)
C(k/2)

L
D(k_17fk7Ek:/2): (
Since L(k — 1, fi.) # 0, we have
L(k/2, fi) = 0 if and only if D(k —1, fr, Ey/2) = 0
if and only if D(k — 1, fx,Gi/2) = 0.

On the other hand, since E} , (2) = Gi/2(z) ([Mi89, (7.1.30)]), we have by (5.1)

(4m) " F O (k — 1)D(k — 1, fi, Grya) = §<fk, G2 s),

thus
L(k/2, fr) = 0 if and only if (fx, G 5) = 0.

Now assume that (H,) holds for S, and take and fix an element f; € P(k), then we
have

Gipa(2) =Gr(2)+ Y cff(2) (o €C).
o€G(fr)
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In particular,
<fk7 Gi/Q) = Cid<fk7 fk)

Since G, /2(2) and Gg(z) have rational Fourier expansions, we have for any 7 € Aut(C)

Gro(2) =Gr(z2)+ D G fi(2),
o€G(fr)

thus the uniqueness of the expression implies

T __
Co = Cor-

In particular, ¢, = ¢f;. Thus if ¢;q = 0, then all ¢, = 0, namely, Gi/Q(z) = Gi(2),
which holds only for £ = 8. Since k > 12, we get a contradiction if L(k/2, fr) =0. O
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