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Abstract

This paper presents numerical results obtained, using a numerical method for a flow field

shape optimization, for the design of a room from which people can evacuate smoothly. The

domain of interest is a two‐dimensional Poiseuille flow with sudden contraction in which a

disk is located initially. In fact, the compressible fluid model has been used to describe the

dynamics of people for the study of evacuation. However, we set a model involving the incom‐

pressible Navier‐Stokes equation for the first trial. And the shape optimization to minimize

the dissipation energy on the disk is demonstrated under the volume constraint. For reshaping
numerically, the traction method is used. Numerical results reveal that the shape in the wake

of the disk becomes an acute angle to decrease the dissipation energy monotonically, thereby
satisfying the volume constraint. Such a shape has never been inferred from results of earlier

studies of the evacuation problem in jamology.

§1. Introduction

The shape optimization for the minimizing problem of the dissipation energy on an

disk located in two‐dimensional Poiseuille flow with a sudden contraction is addressed

for the aim to design an optimal room shape from which people can evacuate smoothly
in an emergency situation, where the incompressible Navier‐Stokes equations are used
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as governing equations. And optimal shapes of the disk, flow fields obtained by changing

Reynolds numbers {\rm Re} and the position of the disk on the initial domain and validities

of the model constructed in this paper are discussed.

Numerical techniques to optimize designs of the shape of elastic bodies in a flow field

play an important role in machine design in various fields not only of industry but also

of science and engineering. In this paper, a shape optimization problem based on the

finite element method is demonstrated, and a functional is defined as the sum of a cost

function and a constraint function expressed in weak form, where a shape derivative of

the functional is taken to obtain a sensitivity used for minimize the functional. Firstly,
J. Hadamard took the shape derivative of the functional to maximize the fundamental

frequency of a thin membrane using sensitivity analysis [1]. Especially in fluid dynamics,
the shape derivatives of functionals for the shape optimizations of an isolated body in

an incompressible Newtonian fluid was presented by O. Pironneau[2],[3],[4].
By the way, for numerical calculations it was noticed by H. M. Imam[5] that direct

application of the gradient method often results in oscillating shapes. To avoid oscilla‐

tion, a method using the Laplace operator as a smoother which is called the traction

method was proposed by H. Azegami et al. [7] and H. Azegami [8]. In the traction

method, from some previous studies [9],[10],[11], it is known that the functionals are

minimized safety.
These techniques hold the possibility of application to a room design for safe and

orderly evacuation from a room. The room exit is clogged with people in an emergency

situation because people rush for the exit to evacuate the room. One solution to decrease

the total evacuation time was ascertained from mathematical modeling, analysis, and

real experiments in jamology, and especially numerical simulations built on a cellular

automata model show that the total evacuation time decreases if a column is set near

the exit and is shifted parallel to the exit [12]. However, the best position and best

shape to minimize the total evacuation time remain unclear.

Toward a solution of the evacuation problem, we set an objective of our project as

demonstrating the applicability of the shape optimization theory. Concretely, we aim to

obtain the optimal design of the column which makes the flow smoother. In the study of

evacuation, the compressible fluid model has been used to describe the dynamics of peo‐

ple. However, we set a model involving the incompressible Navier‐Stokes equation for

the first trial. The main problem of this paper is defined as a two‐dimensional Poiseuille

flow with sudden contraction, and the disk assuming that the column is located in the

domain. As an objective cost function, we use the dissipation energy, and the domain

volume is used as a constraint cost function. The shape derivative of the functional with

respect to the domain variation is evaluated using the solution of the main problem and

the adjoint problem. An iterative algorithm based on the traction method for reshaping
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are used for numerical schemes used to conduct shape optimization.
This paper is organized as follows. In section 2, we introduce formulation of the

problem. Particularly in subsection 2.2, the perturbation  $\psi$ of the one‐to‐one mapping

 $\phi$ from the initial domain to the designed domain is explained. Subsection 2.4 presents

formulation of the shape optimization problem. In fact, it is quite difficult to obtain

 $\phi$ because an optimal domain is not clear generally in shape optimization problem.

Therefore, the shape optimization problem formulated in subsection 2.4 is conducted by

adding perturbation  $\psi$ into the initial domain through iterative reshaping as minimizing
the cost function. The traction method is used in section 3 to minimize the functional

stably to the greatest degree possible. Thereby, the shape derivative  JL of the functional

L is obtained. Section 4, introduces specific use of the traction method.

§2. Problem formulation

§2.1. Set of domains

A Cartesian coordinate system is used. A position vector is generally denoted as

x=(x, y) . We consider a domain  $\Omega$=$\Omega$_{\mathrm{i}}\backslash \overline{ $\Omega$}_{\mathrm{c}} \subset \mathbb{R}^{2} as presented in Fig. 1, where

$\Omega$_{\mathrm{i}}= { (x, y) | ([0,2] \times [0,1]) ∪([2, 3] \times [0.35,0.65]) }

$\Omega$_{\mathrm{c}}=\{(x, y) | (x-x_{c})^{2}+(y-0.5)^{2}<0.15\}.

We set the inflow boundary as $\Gamma$_{\mathrm{i}\mathrm{n}}=\{(x, y) |x=0, 0\leq y\leq 1\} and the outflow bound‐

ary as $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}} =\{(x, y) |x=3, 0.35\leq y\leq 0.65\} . Moreover, set $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1}=\partial $\Omega$\backslash ( $\Gamma$_{\mathrm{i}\mathrm{n}} ∪ $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}} ).

Figure 1. Initial domain.
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§2.2. Domain variations

Next, we consider domain deformation with Lipschitz transform  $\phi$ :  $\Omega$ \rightarrow  $\phi$( $\Omega$) ,

where  $\phi$ is \mathbb{R}^{2} ‐valued W^{1,\infty} function. The identity map on \mathbb{R}^{2} is denoted as $\phi$_{0}(x) =

x . In the following argument, we fix a bounded convex domain $\Omega$_{0} \subset \mathbb{R}^{2} . Then we

identify W^{1,\infty}($\Omega$_{0}, \mathbb{R}^{2}) with C^{0,1}(\overline{ $\Omega$}_{0}, \mathbb{R}^{2}) . Presuming that  $\phi$ \in  W^{1,\infty}($\Omega$_{0}, \mathbb{R}^{2}) satisfies

\Vert\nabla ($\phi$^{\mathrm{T}} - $\phi$_{0}^{\mathrm{T}})\Vert_{L^{\infty}($\Omega$_{0},\mathbb{R}^{2})} < 1
,

then  $\phi$ is a bi‐Lipschitz transform from  $\Omega$_{0} to  $\phi$($\Omega$_{0}) ,

i.e.  $\phi$ is bijective from  $\Omega$_{0} onto an open set and  $\phi$, $\phi$^{-1} are both uniformly Lipschitz

continuous, where \nabla$\phi$^{\mathrm{T}} \in \mathbb{R}^{2\times 2} is the Jacobian matrix ([13] Proposition 3.1. p.24 ).
We fix an open set  $\Omega$ which satisfies \overline{ $\Omega$} \subset $\Omega$_{0} . The deformed domain  $\phi$( $\Omega$) is denoted

by  $\Omega$( $\phi$) . The admissible set of  $\phi$ is defined as

 X= {  $\phi$\in W^{1,\infty}($\Omega$_{0}, \mathbb{R}^{2}) | \overline{ $\Omega$}( $\phi$) \subset$\Omega$_{0}, \Vert\nabla($\phi$^{\mathrm{T}}-$\phi$_{0}^{\mathrm{T}})\Vert_{L^{\infty}($\Omega$_{0},\mathbb{R}^{2})} < 1,  $\phi$=0 on \partial $\Omega$ }.
We assume  $\psi$\in W^{1,\infty}($\Omega$_{0}, \mathbb{R}^{2}) with supp (  $\psi$) \in $\Omega$ . For  $\epsilon$\in \mathbb{R} with \Vert $\epsilon$\nabla$\psi$^{\mathrm{T}}\Vert_{L^{\infty}($\Omega$_{0},\mathbb{R}^{2})} <

1
,

we define a bi‐Lipschitz transform  $\phi$( $\epsilon$) =$\phi$_{0}+ $\epsilon \psi$ from  $\Omega$ to itself ([13] Proposition
3.4. p.25 ). As described in this paper, because the traction method is conducted to

reshape the domain  $\Omega$ in the Hilbert space, we define the admissible set of  $\psi$ as

 D= {  $\psi$\in W^{1,\infty}($\Omega$_{0}, \mathbb{R}^{2})\cap H^{1}($\Omega$_{0}, \mathbb{R}^{2}) | $\psi$=0 \mathrm{o}\mathrm{n} \partial $\Omega$ }.

The shape derivatives of functionals are obtained as follows. We presume that

 $\varphi$ \in  H^{1}( $\Omega$) is a scalar valued function which describes a physical state in  $\Omega$ . For such

 $\varphi$(x) ,
we introduce the following functional:

L( $\phi$, x,  $\Omega$) =\displaystyle \int_{ $\Omega$( $\phi$)} $\zeta$( $\phi$, x,  $\varphi$(x), \nabla $\varphi$(x))dx,
where  $\zeta$( $\phi$, x,  $\varphi$(x), \nabla $\varphi$(x)) \in \mathbb{R} for \nabla $\varphi$(x) \in \mathbb{R}^{2} . Using the shape derivative $\zeta$' of  $\zeta$,
the shape derivative JL of L is given as

(2.1) JL( $\phi$, x,  $\Omega$)=\displaystyle \int_{ $\Omega$( $\phi$)}$\zeta$'d_{X}+\int_{\partial$\Omega$_{c}( $\phi$)} $\zeta \nu$\cdot $\psi$ d $\gamma$,
where the deformed boundary is denote by \partial$\Omega$_{c}( $\phi$) and where  $\nu$ denotes an outward

unit normal vector on the boundary ([7] Eq. (18), p.274).

§2.3. Governing equations

Next we consider a steady‐state viscous flow of an incompressible Newtonian fluid

in domain  $\Omega$( $\phi$) with boundary $\Gamma$_{\mathrm{i}\mathrm{n}} ∪ $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}} ∪ $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} ∪ \partial$\Omega$_{\mathrm{c}}( $\phi$) . We introduce a set of velocity
fields

U= {u=(u, v) \in H^{1}(\mathbb{R}^{2}, \mathbb{R}^{2}) |u=u_{\mathrm{D}} on $\Gamma$_{\mathrm{i}\mathrm{n}}, u=0 on $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} ∪ \partial$\Omega$_{\mathrm{c}}( $\phi$) },
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where u_{\mathrm{D}} = (u_{\mathrm{D}}, v_{\mathrm{D}}) \in \{u\in H^{1} (\mathbb{R}^{2}, \mathbb{R}^{2}) | \nabla\cdot u=0\} denotes a prescribed fluid ve‐

locity field on an inhomogeneous Dirichlet boundary. On the out flow boundary $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}},
we pose

(2.2) \displaystyle \frac{1}{{\rm Re}}(\nabla u^{\mathrm{T}}) $\nu$-p $\nu$=0 on $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}}.

Below we always take u_{\mathrm{D}} =y(1-y) and v_{\mathrm{D}} =0 on $\Gamma$_{\mathrm{i}\mathrm{n}} . As a set of a pressure fields,
we introduce

Q=L^{2}( $\Omega$) .

Taking R_{1} ,
which is the length of $\Gamma$_{\mathrm{i}\mathrm{n}}=1 ,

and u_{\max} ,
which is the maximum value

of u_{D} ,
as the characteristic length and velocity, the Reynolds number is defined as

{\rm Re}= \displaystyle \frac{u_{\max}R_{1}}{d},
where d represents the kinematic viscosity. We consider the stationary Navier‐Stokes

equation in non‐dimensional form as

(2.3) (û . \nabla ) \displaystyle \^{u}=-\nabla p+\frac{1}{{\rm Re}} \triangle û,

together with the equation of continuity

(2.4) \nabla . û = 0,

and the Neumann boundary condition (2.2), where (û, p) \in U\times Q.
The weak forms of Eq. (2.3), (2.4) and (2.2) are written as

(2.5) \displaystyle \int_{ $\Omega$} \displaystyle \{((\^{u} . \nabla) \^{u}) .\hat{w}-p\nabla\cdot\hat{w}+\frac{1}{{\rm Re}}(\nabla\hat{u}^{\mathrm{T}})\cdot(\nabla\hat{w}^{\mathrm{T}})\}dx-\int_{ $\Omega$}\hat{q}\nabla. \^{u} dx=0,

for all (\hat{w},\hat{q}) \in W\times Q ,
where (\hat{w},\hat{q}) represents trial functions for velocity û and pressure

p ,
and

W= { w\in H^{1}(\mathbb{R}^{2}, \mathbb{R}^{2}) |w=0 on $\Gamma$_{\mathrm{i}\mathrm{n}} ∪ $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} ∪ \partial$\Omega$_{\mathrm{c}}( $\phi$) }.

As described in this paper, the movement of crowds of person is modeled as the

fluid flow governed by incompressible and stationary Navier‐Stokes equations for the

first trial. However, the population density should be considered using compressible
Navier‐Stokes equations in fact. To evacuate people as smoothly as possible, we use

the minimization problem of the dissipation energy under the volume constraint of the

disk, where the dissipation energy is used as the cost function defined as

\displaystyle \int_{ $\Omega$( $\phi$)}\frac{2}{{\rm Re}} E(û). E(û)dx,
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where E(u) depicts the strain tensor as

E(u) = \displaystyle \frac{1}{2}(\nabla u^{\mathrm{T}}+(\nabla u^{\mathrm{T}})^{\mathrm{T}}) .

People do not move on the boundary $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} where the Dirichlet condition \^{u}= 0

is defined, but $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} is assumed to be just a wall. The Dirichlet condition ûD defined

on the boundary $\Gamma$_{\mathrm{i}\mathrm{n}} depicts the velocity for people to move into the room. On $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}}
defined by the Neumann boundary condition (2.2), people evacuate from the room freely.
These boundary conditions are used for descriptive purposes, but they are physically
unsuitable.

§2.4. Shape optimization problem

For the room design to evacuate people as soon as possible, the minimization prob‐
lem of the dissipation energy under volume constraint M

,
which is the volume of the

initial domain, is formulated in this paper as

Find $\Omega$_{p}

that minimizes \displaystyle \int_{ $\Omega$( $\phi$)} {\rm Re}
\underline{2} E(û). E(û) dx

subject to (û, p) \in U\times Q such that (2.3), (2.4),(2.2) and \displaystyle \int_{ $\Omega$( $\phi$)}dx=M.
The problem above is the target of this paper to optimize the boundary shape of \partial$\Omega$_{\mathrm{c}}( $\phi$) .

It is expected to suggest the optimal room design for jamology.

§3. Evaluation of a shape derivative

As described in this paper, the shape derivative of the Lagrange function L is eval‐

uated by application of the Lagrange multiplier method, where the Lagrange function

L is written as

L( $\phi$, \displaystyle \mathrm{u},p, w,\hat{q},  $\Lambda$)=\int_{ $\Omega$( $\phi$)}{\rm Re}\underline{2} E(û). E(û) dx

-\displaystyle \int_{ $\Omega$( $\phi$)} \displaystyle \{((\^{u}. \nabla) \^{u}).\hat{w}-p\nabla\cdot\hat{w}+\frac{1}{{\rm Re}}(\nabla\hat{u}^{\mathrm{T}})\cdot(\nabla\hat{w}^{\mathrm{T}})\}dx+\int_{ $\Omega$( $\phi$)}\hat{q}\nabla . ûdx

+ $\Lambda$(\displaystyle \int_{ $\Omega$( $\phi$)}dx-M) ,

and \hat{w}, q,  $\Lambda$ respectively denote the Lagrange multiplier for velocity û and pressure  q,

the volume constraint. The shape derivative JL of L with respect to arbitrary variation

of ( $\psi$,\hat{u}', p',\hat{w}',\hat{q}', $\Lambda$') \in D\times W\times Q\times W\times Q\times \mathbb{R} is obtainable as

(3.1) JL( $\phi$, \^{u}, p_{\hat{w}}, \hat{q},  $\Lambda$)=L_{ $\phi$}[ $\psi$]+L_{u^{-},p}[\hat{u}',p']+L_{w^{-}},\hat{q}[\hat{w}', \hat{q}']+L_{ $\Lambda$}[$\Lambda$'],
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where based on the formula for the shape derivative of a functional (2.1),

L_{ $\phi$}[ $\psi$] =-\displaystyle \int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)} \displaystyle \{((\^{u}. \nabla) \^{u}).\hat{w}-p\nabla\cdot\hat{w}+\frac{1}{{\rm Re}}(\nabla\hat{u}^{\mathrm{T}})\cdot(\nabla\hat{w}^{\mathrm{T}})\} $\nu$\cdot $\psi$ d $\gamma$
+\displaystyle \int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)}\{\hat{q}\nabla . û \}  $\nu$\displaystyle \cdot $\psi$ d $\gamma$+\int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)} {\rm Re}

\underline{2} {E(û). E(û)}  $\nu$\cdot $\psi$ d $\gamma$

+\displaystyle \int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)} $\Lambda \nu$\cdot $\psi$ d $\gamma$,
Lû, p^{[\hat{u}'}, p']

=-\displaystyle \int_{ $\Omega$( $\phi$)}\{ ((\hat{u}'\cdot\nabla) \^{u}) .\hat{w} +((\^{u}. \nabla)\hat{u}') . \hat{w}-p'\nabla\cdot\hat{w}+\frac{1}{{\rm Re}}(\nabla\hat{u}^{\prime \mathrm{T}})\cdot(\nabla\hat{w}^{\mathrm{T}})\}dx
+\displaystyle \int_{ $\Omega$( $\phi$)}\hat{q}\nabla\cdot\hat{u}dx+4\int_{ $\Omega$( $\phi$)} {\rm Re}

\underline{1}E(\hat{u}) . E(û)dx,

L_{\hat{w}_{\hat{q}}},[w', q =-\displaystyle \int_{ $\Omega$( $\phi$)} \displaystyle \{((\^{u}. \nabla) \^{u}). w'-p\nabla\cdot w'+\frac{1}{{\rm Re}}(\nabla\hat{u}^{\mathrm{T}})\cdot(\nabla w^{\prime \mathrm{T}})\}dx
+\displaystyle \int_{ $\Omega$( $\phi$)}\hat{q}'\nabla . ûdx,

 L_{ $\Lambda$}[$\Lambda$'] =$\Lambda$' ( \displaystyle \int_{ $\Omega$( $\phi$)} dx—M) .

Stationary conditions for the variables \hat{u}', \hat{w}' and p', \hat{q}' ,
which are known as the Kuhn‐

Tucker conditions in the optimization theory ([6], section 4.2 Optimality criteria, p.275),
are the following.

(3.2) Lû, p^{[\hat{u}'}, p'] =0 \forall(\hat{u}', p') \in W\times Q,

(3.3) L_{w_{\hat{q}}^{-}},[\hat{w}', \hat{q}'] =0 \forall(\hat{w}',\hat{q}') \in W\times Q,
(3.4) L_{ $\Lambda$}[$\Lambda$'] =0.

Equation (3.3),(3.4) agrees with the weak form of Eqs. (2.3), (2.4), (2.2) and the volume

constraint. Equation (3.2) is obtained as the weak form of the adjoint equations of

Eq. (2.3),(2.4), and (2.2). Its strong form is expressed as

(3.5) −(û. \nabla ) \displaystyle \hat{w}+(\nabla\hat{u}^{\mathrm{T}})\hat{w}=-\nabla\hat{q}+\frac{1}{{\rm Re}}\triangle\hat{w}-\frac{4}{{\rm Re}}\nabla^{\mathrm{T}}E(\hat{u}) ,

(3.6) \nabla\cdot\hat{w}=0,

and the Neumann boundary condition

(3.7) \displaystyle \frac{1}{{\rm Re}} \{4E(\^{u}) $\nu$-(\nabla w\hat {}\mathrm{T}) $\nu$\}-\hat{q} $\nu$=0 \mathrm{o}\mathrm{n} $\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}},
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for (w,\hat{q}) \in W\times Q.

By substituting (û, p) and its adjoint variables (\hat{w},\hat{q}) satisfying Eqs. (2.3), (2.4),
and (2.2) and Eqs. (3.5), (3.6) and (3.7) into (3.1), the shape derivative JL of the

Lagrange function L is obtained as

(3.8) JL( $\phi$, \displaystyle \^{u}, p, w,\hat{q})=\int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)}G $\nu$\cdot $\psi$ d $\gamma$,
where (û, p ) and its adjoint variables (\hat{w},\hat{q}) meet (3.2) and (3.3) of the Kuhn‐Tucker

conditions, and the remainder of the Kuhn‐Tucker conditions (3.4) are clear because of

\displaystyle \int_{ $\Omega$( $\phi$)}dx=M . Regarding to L_{ $\phi$}[ $\psi$] , (2.4), (3.6), and \hat{w}=0 on the designed boundary

\partial$\Omega$_{c}( $\phi$) are substituted into L_{ $\phi$}[ $\psi$] . As described in this paper, G=G_{0}+G_{1} denotes

the sensitivity as

(3.9) G_{0}=\displaystyle \frac{1}{{\rm Re}} \{2E(\^{u}). E(\^{u})-(\nabla\hat{u}^{\mathrm{T}})\cdot(\nabla w^{\mathrm{T}})\},
(3.10) G_{1}= $\Lambda$.

G_{0} denotes the shape derivative of the dissipation energy.

§4. Reshaping scheme

The traction method is applicable to optimize the geometrical domain shape if the

shape gradient is obtained. The traction method has been proposed as a procedure for

solving the domain variation  $\psi$\in D by

(4.1) c_{a}\displaystyle \int_{ $\Omega$( $\phi$)}E( $\psi$)\cdot E(y)dx=-\int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)^{G $\nu$\cdot yd $\gamma$}},
for all y\in W ,

where c_{a} is a positive constant to control the step size. The coerciveness

is secured by the Dirichlet condition on $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} . Equation (4.1) shows that  $\psi$ is obtained

as a displacement of a pseudo‐elastic body defined in  $\Omega$( $\phi$) by the loading of a pseudo‐
external force in proportion to -G $\nu$ . The reshaping of the boundary can be operated
with the degree of freedom discretized with the finite element method for numerical

calculations, without reductions of the degree of freedom on the boundary and in the

domain.

Taking account of a bilinear equation (4.1) and  G=G_{0}+G_{1} ,
the domain variation

is expressed as  $\psi$=$\psi$_{0}+ $\Lambda \psi$_{1} . By calculating the following equations (4.2) and (4.3),
$\psi$_{0}, $\psi$_{1} \in D are obtained.

(4.2) c_{a}\displaystyle \int_{ $\Omega$( $\phi$)}E($\psi$_{0})\cdot E(y)dx=-\int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)^{G_{0} $\nu$\cdot yd $\gamma$}}.
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(4.3) c_{a}\displaystyle \int_{ $\Omega$( $\phi$)}E( $\Lambda \psi$_{1})\cdot E(y)dx=-\int_{\partial$\Omega$_{\mathrm{c}}( $\phi$)}G_{1} $\nu$\cdot yd $\gamma$.
Based on a previous study ([14], Problem 7, p.7, Eq. (30)), the Lagrange multiplier  $\Lambda$

for the volume constraint is determined by calculating the following expression

\displaystyle \int_{\partial $\Omega$( $\phi$)} $\nu$\cdot$\psi$_{0}d $\gamma$+ $\Lambda$\int_{\partial $\Omega$( $\phi$)} $\nu$\cdot$\psi$_{1}d $\gamma$=0.
Finally, because $\psi$_{0}, $\psi$_{1},  $\Lambda$ are given, the domain  x\in $\Omega$ is moved into  x+ $\psi$\in $\Omega$( $\phi$) .

In the traction method, the domain is reshaped as minimizing the cost function

because the sign of the sensitivity G is set as negative. Using the regularity theorem

for elliptic boundary value problems in a previous paper [6], the regularity for shape

optimization method using the traction method was discussed.

§5. Numerical scheme

For the shape optimization problem, the following numerical procedures are per‐

formed iteratively, where \mathrm{F}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{F}\mathrm{E}\mathrm{M}++\mathrm{i}\mathrm{s} used for calculations.

First, the stationary Navier‐Stokes equation (2.3) and continuity equation (2.4) are

solved using the Newton method. In this method, Eqs. (2.3) and (2.4) are rewritten

as F( $\alpha$) =0 for  $\alpha$= (û1, p_{1}, \cdots

, ûN,  p_{N})^{\mathrm{T}} ,
which is the nodal vector of (û, p) for the

finite‐element model with N nodes. Here, we assume that the derivative B( $\alpha$) of F( $\alpha$) ,

such that F[ $\delta \alpha$] =  B( $\alpha$) $\delta \alpha$ ,
with respect to the variation  $\delta \alpha$ = $\alpha$^{n+1} -$\alpha$^{n} of  $\alpha$ is

obtainable. The solution  $\alpha$ of  F( $\alpha$)=0 is obtained using the iterative calculations

$\alpha$^{n+1} =$\alpha$^{n}-B^{-1}( $\alpha$)F($\alpha$^{n}) ,

where n denotes the number of iterations.

Second, the adjoint equations (3.5) and (3.6) are solved by the conjugate gradient
method because the adjoint equations become a linear equation with respect to (\hat{w},\hat{q}) .

Third, the traction method is used to obtain the domain variation  $\psi$ = $\psi$_{0} +

 $\Lambda \psi$_{1} under the volume constraint, where the conjugate gradient method is used for

calculations of linear equations (4.2),(4.3) at c_{a} = 0.001 . Finally, using calculated  $\psi$,
the domain is reshaped by x+ $\psi$.

In this study, we use a finite‐element model with the number of nodes shown in

Table 1, which shows the mesh used in the domain corresponding to the x_{c} coordinate

of the center of the circle $\Omega$_{\mathrm{c}}( $\phi$) ,
where the \mathrm{P}2/\mathrm{P}1 finite element for the velocity and the

pressure is used to discretize equations spatially: (2.3),(2.4),(3.5),(3.6),(4.2), and (4.3).

§6. Calculation results

The minimization problem of dissipation energy in two‐dimensional Poiseuille flow

with sudden contraction was addressed. Based on previous studies of jamology, the
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Table 1. Numbers of nodes and elements are N_{\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}}, N_{\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}}..

kinematic viscosity has not been defined. Therefore, herein, {\rm Re} and x_{c} are changed
to demonstrate the shape optimization problem and to elucidate the optimum shape,
where {\rm Re} = 30 , 50, 70, 100 and x_{c} = 1.5 , 1.7. Using the traction method, the degree
of freedom discretized with the finite element method for numerical calculations is not

reduced.

Iteratively conducting numerical procedures described in section 5, iterative histo‐

ries of f_{0} and f_{1} are obtained as shown in Fig. 2, using N, M which are the cost function

and the volume on the initial domain

f_{0}= \displaystyle \frac{1}{N}\int_{ $\Omega$( $\phi$)} {\rm Re}\underline{2} E(û). E(û) dx,

and

f_{1} = \displaystyle \frac{1}{M}\int_{ $\Omega$( $\phi$)} dx.

Based on the definition above, f_{0} and f_{1} are equal to 1 at the first step. The numerical

procedures are stopped under the convergence condition |f_{0}^{m+1}-f_{0}^{m}| <0.01 ,
where m

denotes the number of iterations of the numerical procedures. Fig. 2 shows that iterative

histories of f_{0} and f_{1} for {\rm Re}=30 at x_{c}=1.5 , 1.7, from which f_{0} decreases monotonically
while satisfying the volume constraint. From calculations for {\rm Re}= 50 , 70, 100 at x_{c} =

1.5 , 1.7, it was confirmed that f_{0} decreases monotonically while satisfying the volume

constraint.

The optimum domains are shown respectively in Fig. 3 for {\rm Re} = 30 , Fig. 4 for

{\rm Re}=50 , Fig. 5 for {\rm Re}=70 and Fig. 6 for {\rm Re}= 100 . For x_{c}= 1.5 ,
the disk is shaped

elliptically, but for x_{c} = 1.7 ,
the shape in the wake of the disk is becoming an acute

angle with decreasing {\rm Re} from 100 to 30. In this study, shape optimization is operated
in the domain defined by the incompressible Newtonian fluid. With increasing x_{c} ,

the

distance between $\Gamma$_{\mathrm{w}\mathrm{a}\mathrm{l}1} and \partial$\Omega$_{\mathrm{c}}( $\phi$) becomes narrow near the sudden contraction, where

the dissipation energy is becoming larger. As a result, the shape in the wake of the disk

becomes an acute angle to decrease the dissipation energy. Regarding the flow volume,

\displaystyle \int_{$\Gamma$_{\mathrm{i}\mathrm{n}}}u_{\mathrm{D}}d $\gamma$ is nearly equal to the flow volume \displaystyle \int_{$\Gamma$_{\mathrm{o}\mathrm{u}\mathrm{t}}}ud $\gamma$ in all case studies.
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§7. Conclusions

As described in this paper, the shape of a column located near an exit of a room was

obtained as a solution of the shape optimization problem of the steady Navier‐Stokes

flow field of incompressible fluid for which people can evacuate smoothly. Although the

movement of people has been assumed as a compressible fluid in previous studies, it was

assumed as an incompressible fluid for the studies described herein for the convenience

of using a method that has already been developed. Numerical results reveal that the

shapes in the wake of the disk are becoming acute angles to decrease the dissipation

energy monotonically, thereby satisfying the volume constraint. Such a shape has never

been suggested in previous studies of the evacuation problem in Jamology. For the

next step, it is necessary that shape optimization of the column should be operated
in the domain defined by compressible Navier‐Stokes equations under appropriate cost

functions and constraint functions, where the kinematic viscosity should be obtained by

experimental studies. Moreover, this approach is expected to be applicable to various

situations such as determination of the number, the volume, and the position of the

columns to achieve smooth and safe evacuation.
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Figure 2. Iterative histories of f_{0} and f_{1} for {\rm Re}=30 : (a) x_{c}=1.5 ,
and (b) x_{c}=1.7.

(a) (b)

Figure 3. Optimum shapes at x_{c}=1.5 and x_{c}=1.7 for {\rm Re}=30.
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(a) (b)

Figure 4. Optimum shapes at x_{c}=1.5 and x_{c}=1.7 for {\rm Re}=50.

(a) (b)

Figure 5. Optimum shapes at x_{c}=1.5 and x_{c}=1.7 for {\rm Re}=70.

(a) (b)

Figure 6. Optimum shapes at x_{c}=1.5 and x_{c}=1.7 for {\rm Re}=100.
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